首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complement components C3, C4, and C5 are members of the thioester-containing alpha-macroglobulin protein superfamily. Within this superfamily, a unique feature of the complement proteins is a 150-residue-long C-terminal extension of their alpha-subunits that harbors three internal disulfide bonds. Previous reports have suggested that this is an independent structural module, homologous to modules found in other proteins, including netrins and tissue inhibitors of metalloproteinases. Because of its distribution, this putative module has been named both C345C and NTR. To assess the structures of these segments of the complement proteins, their relationships with other domains, and activities as independent structures, we expressed C345C from C3 and C5 in a bacterial strain that permits cytoplasmic disulfide bond formation. Affinity purification directly from cell lysates yielded recombinant C3- and C5-C345C with properties consistent with multiple intramolecular disulfide bonds and high beta-sheet contents. rC5-, but not rC3-C345C inhibited complement hemolytic activity, and surface plasmon resonance studies revealed that rC5-C345C binds to complement components C6 and C7 with dissociation constants of 10 and 3 nM, respectively. Our results provide strong evidence that this binding corresponds to the previously described reversible binding of C5 to C6 and C7, and taken together with earlier work, indicate that the C5-C345C module interacts directly with the factor I modules in C6 and C7. The high binding affinities suggest that complexes composed of C5 bound to C6 or C7 exist in plasma before activation and may facilitate assembly of the complement membrane attack complex.  相似文献   

2.
Procollagen C-proteinase enhancer (PCOLCE) proteins are extracellular matrix proteins that enhance the activities of procollagen C-proteinases by binding to the C-propeptide of procollagen I. PCOLCE proteins are built of three structural modules, consisting of two CUB domains followed by a C-terminal netrin-like (NTR) domain. While the enhancement of proteinase activity can be ascribed solely to the CUB domains, sequence homology of the NTR domain with tissue inhibitors of metalloproteinases suggest proteinase inhibitory activity for the NTR domain. Here we present the three-dimensional structure of the NTR domain of human PCOLCE1 as the first example of a structural domain with the canonical features of an NTR module. The structure rules out a binding mode to metalloproteinases similar to that of tissue inhibitors of metalloproteinases but suggests possible inhibitory function toward specific serine proteinases. Sequence conservation between 13 PCOLCE proteins from different organisms suggests a conserved binding surface for other protein partners.  相似文献   

3.
We report the primary structure of three novel, putative zinc metalloproteases designated ADAM-TS5, ADAM-TS6, and ADAM-TS7. All have a similar domain organization, comprising a preproregion, a reprolysin-type catalytic domain, a disintegrin-like domain, a thrombospondin type-1 (TS) module, a cysteine-rich domain, a spacer domain without cysteine residues, and a COOH-terminal TS module. These genes are differentially regulated during mouse embryogenesis and in adult tissues, with Adamts5 highly expressed in the peri-implantation period in embryo and trophoblast. These proteins are similar to four other cognate gene products, defining a distinct family of human reprolysin-like metalloproteases, the ADAM-TS family. The other members of the family are ADAM-TS1, an inflammation-induced gene, the procollagen I/II amino-propeptide processing enzyme (PCINP, ADAM-TS2), and proteins predicted by the KIAA0366 and KIAA0688 genes (ADAM-TS3 and ADAM-TS4). Individual ADAM-TS members differ in the number of COOH-terminal TS modules, and some have unique COOH-terminal domains. The ADAM-TS genes are dispersed in human and mouse genomes.  相似文献   

4.
5.
The backbone mobility of the C-terminal domain of procollagen C-proteinase enhancer (NTR PCOLCE1), part of a connective tissue glycoprotein, was determined using 15N NMR spectroscopy. NTR PCOLCE1 has been shown to be a netrin-like domain and adopts an OB-fold such as that found in the N-terminal domain of tissue inhibitors of metalloproteinases-1 (N-TIMP-1), N-TIMP-2, the laminin-binding domain of agrin and the C-terminal domain of complement protein C5. NMR relaxation dynamics of NTR PCOLCE1 highlight conformational flexibility in the N-terminus, strand A and the proximal CD loop. This region in N-TIMP is known to be essential for inhibitory activity against the matrix metalloproteinases and suggests that this region is of equal importance for NTR PCOLCE1, although the specific functional activity of the NTR PCOLCE1 domain is still unknown. Dynamics observed within the structural core of NTR PCOLCE1 that are not observed in N-TIMP molecules suggest that although the two domains have a similar architecture, the NTR PCOLCE1 domain will show different thermodynamic properties on binding and hence the target molecule could be somewhat different from that observed for the TIMPs. ModelFree order parameters show that NTR PCOLCE1 has more flexibility than both N-TIMP-1 and N-TIMP-2.  相似文献   

6.
ADAM metalloproteases are membrane bound glycoproteins that control many biological processes during development and differentiation, mainly by acting as ectodomain sheddases. The Drosophila genome contains five genes that code for classical ADAM proteins which are characterized by a highly conserved domain structure with the respective catalytic domains facing the extracellular space. More than 50 genes encode related proteins such as those that have lost their primary enzymatic activity while retaining, e.g., their adhesive properties. The physiological relevance of many Drosophila ADAMs and their relatives is still unknown, however for others, a striking role during organogenesis and tissue maintenance has been demonstrated during the last few years. We have carried out genetic screenings combined with candidate approaches, aiming to identify new components involved in cardiogenesis and muscle differentiation. Herein we summarize our results with a particular focus on metalloproteases with known or potential roles in tissue differentiation.  相似文献   

7.
The procollagen C-proteinase (PCP) is a zinc peptidase of the astacin family and the metzincin superfamily. The enzyme removes the C-terminal propeptides of fibrillar procollagens and activates other matrix proteins. Besides its catalytic protease domain, the procollagen C-proteinase contains several C-terminal CUB modules (named after complement factors C1r and C1s, the sea urchin UEGF protein, and BMP-1) and EGF-like domains. The two major splice forms of the C-proteinase differ in their overall domain composition. The longer variant, termed mammalian tolloid (mTld, i.e., PCP-2), has the protease-CUB1-CUB2-EGF1-CUB3-EGF2-CUB4-CUB5 composition, whereas the shorter form termed bone morphogenetic protein 1 (BMP-1, i.e., PCP-1) ends after the CUB3 domain. Two related genes encode proteases similar to mTld in humans and have been termed mammalian tolloid like-1 and -2 (mTll-1 and mTll-2, respectively). For mTll-1, it has been shown that it has C-proteinase activity. We demonstrate that recombinant EGF1-CUB3, CUB3, CUB3-EGF2, EGF2-CUB4, and CUB4-CUB5 modules of the procollagen C-proteinase can be expressed in bacteria and adopt a functional antiparallel beta-sheet conformation. As shown by surface plasmon resonance analysis, the modules bind to procollagen I in a 1:1 stoichiometry with dissociation constants (K(D)) ranging from 622.0 to 1.0 nM. Their binding to mature collagen I is weaker by at least 1 order of magnitude. Constructs containing EGF domains bind more strongly than those consisting of CUB domains only. This suggests that a combination of CUB and EGF domains serves as the minimal functional unit. The binding affinities of the EGF-containing modules for procollagen increase in the order EGF1-CUB3 < CUB3-EGF2 < EGF2-CUB4. In the context of the full length PCP, this implies that a given module has an affinity that continues to increase the more C-terminally the module is located within the PCP. The tightest binding module, EGF2-CUB4 (K(D) = 1.0 nM), is only present in mTld, which might provide a quantitative explanation for the different efficiencies of BMP-1 and mTld in procollagen C-proteinase activity.  相似文献   

8.
Epidermal growth factor (EGF)-like modules are involved in protein-protein interactions and are found in numerous extracellular proteins and membrane proteins. Among these proteins are enzymes involved in blood coagulation, fibrinolysis and the complement system as well as matrix proteins and cell surface receptors such as the EGF precursor, the low density lipoprotein receptor and the developmentally important receptor, Notch. The coagulation enzymes, factors VII, IX and X and protein C, all have two EGF-like modules, whereas the cofactor of activated protein C, protein S, has four EGF-like modules in tandem. Certain of the cell surface receptors have numerous EGF modules in tandem. A subset of EGF modules bind one Ca(2+). The Ca(2+)-binding sequence motif is coupled to a sequence motif that brings about beta-hydroxylation of a particular Asp/Asn residue. Ca(2+)-binding to an EGF module is important to orient neighboring modules relative to each other in a manner that is required for biological activity. The Ca(2+) affinity of an EGF module is often influenced by its N-terminal neighbor, be it another EGF module or a module of another type. This can result in an increase in Ca(2+) affinity of several orders of magnitude. Point mutations in EGF modules that involve amino acids which are Ca(2+) ligands result in the biosynthesis of biologically inactive proteins. Such mutations have been identified, for instance, in factor IX, causing hemophilia B, in fibrillin, causing Marfan syndrome, and in the low density lipoprotein receptor, causing hypercholesterolemia. In this review the emphasis will be on the coagulation factors.  相似文献   

9.
Hookworms are human parasites that have devastating effects on global health, particularly in underdeveloped countries. Ancylostoma ceylanicum infects humans and animals, making it a useful model organism to study disease pathogenesis. A. ceylanicum excretory-secretory protein 2 (AceES-2), a highly immunoreactive molecule secreted by adult worms at the site of intestinal attachment, is partially protective when administered as a mucosal vaccine against hookworm anemia. The crystal structure of AceES-2 determined at 1.75 Å resolution shows that it adopts a netrin-like fold similar to that found in tissue inhibitors of matrix metalloproteases (TIMPs) and in complement factors C3 and C5. However, recombinant AceES-2 does not significantly inhibit the 10 most abundant human matrix metalloproteases or complement-mediated cell lysis. The presence of a highly acidic surface on AceES-2 suggests that it may function as a cytokine decoy receptor. Several small nematode proteins that have been annotated as TIMPs or netrin-domain-containing proteins display sequence homology in structurally important regions of AceES-2′s netrin-like fold. Together, our results suggest that AceES-2 defines a novel family of nematode netrin-like proteins, which may function to modulate the host immune response to hookworm and other parasites.  相似文献   

10.
Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus. NS5b is an RNA-dependent RNA polymerase that polymerizes the newly synthesized RNA. HCV likely uses host proteins for its replication, similar to other RNA viruses. To identify the cellular factors involved in HCV replication, we searched for cellular proteins that interact with the NS5b protein. HnRNP A1 and septin 6 proteins were identified by coimmunoprecipitation and yeast two-hybrid screening, respectively. Interestingly, septin 6 protein also interacts with hnRNP A1. Moreover, hnRNP A1 interacts with the 5'-nontranslated region (5' NTR) and the 3' NTR of HCV RNA containing the cis-acting elements required for replication. Knockdown of hnRNP A1 and overexpression of C-terminally truncated hnRNP A1 reduced HCV replication. In addition, knockdown of septin 6 and overexpression of N-terminally truncated septin 6 inhibited HCV replication. These results indicate that the host proteins hnRNP A1 and septin 6 play important roles in the replication of HCV through RNA-protein and protein-protein interactions.  相似文献   

11.
A number of genetic and molecular studies have implicated Chordin in the regulation of dorsoventral patterning during gastrulation. Chordin, a BMP antagonist of 120 kDa, contains four small (about 70 amino acids each) cysteine-rich domains (CRs) of unknown function. In this study, we show that the Chordin CRs define a novel protein module for the binding and regulation of BMPs. The biological activity of Chordin resides in the CRs, especially in CR1 and CR3, which have dorsalizing activity in Xenopus embryo assays and bind BMP4 with dissociation constants in the nanomolar range. The activity of individual CRs, however, is 5- to 10-fold lower than that of full-length Chordin. These results shed light on the molecular mechanism by which Chordin/BMP complexes are regulated by the metalloprotease Xolloid, which cleaves in the vicinity of CR1 and CR3 and would release CR/BMP complexes with lower anti-BMP activity than intact Chordin. CR domains are found in other extracellular proteins such as procollagens. Full-length Xenopus procollagen IIA mRNA has dorsalizing activity in embryo microinjection assays and the CR domain is required for this activity. Similarly, a C. elegans cDNA containing five CR domains induces secondary axes in injected Xenopus embryos. These results suggest that CR modules may function in a number of extracellular proteins to regulate growth factor signalling.  相似文献   

12.
Five members of the KMT2 family of lysine methyltransferases, originally named the mixed lineage leukemia (MLL1-5) proteins, regulate gene expression during embryogenesis and development. Each KMT2A-E contains a catalytic SET domain that methylates lysine 4 of histone H3, and one or several PHD fingers. Over the past few years a growing number of studies have uncovered diverse biological roles of the KMT2A-E PHD fingers, implicating them in binding to methylated histones and other nuclear proteins, and in mediating the E3 ligase activity and dimerization. Mutations in the PHD fingers or deletion of these modules are linked to human diseases including cancer and Kabuki syndrome. In this work, we summarize recently identified biological functions of the KMT2A-E PHD fingers, discuss mechanisms of their action, and examine preference of these domains for histone and non-histone ligands.  相似文献   

13.
The Ena-VASP homology (EVH1) domain is a protein interaction module found in several proteins that are involved in transducing migratory and morphological signals into cytoskeletal reorganization. EVH1 specifically recognizes proline-rich sequences in its binding partners and directs the localization and formation of multicomponent assemblies involved in actin-based motile processes and neural development. The structure of the complex between an EVH1 domain and the target peptide sequence EFPPPPT identifies the interactions responsible for recognition and distinguishes it from other proline-rich binding modules, including SH3 and WW domains. Surprisingly, the EVH1 domain has structural similarity to pleckstrin homology (PH), phosphotyrosine-binding (PTB) and ran-binding (RanBD) domains.  相似文献   

14.
Tordai H  Bányai L  Patthy L 《FEBS letters》1999,461(1-2):63-67
Based on homology search and structure prediction methods we show that (1) the N-terminal N domains of members of the plasminogen/hepatocyte growth factor family, (2) the apple domains of the plasma prekallikrein/coagulation factor XI family, and (3) domains of various nematode proteins belong to the same module superfamily, hereafter referred to as the PAN module. The patterns of conserved residues correspond to secondary structural elements of the known three-dimensional structure of hepatocyte growth factor N domain, therefore we predict a similar fold for all members of this superfamily. Based on available functional informations on apple domains and N domains, it is clear that PAN modules have significant functional versatility, they fulfill diverse biological functions by mediating protein-protein or protein-carbohydrate interactions.  相似文献   

15.
The structure and function of protein modules.   总被引:1,自引:0,他引:1  
Analysis of protein sequences shows that many proteins in multicellular organisms have evolved by a process of exon shuffling, deletion and duplication. These exons often correspond to autonomously folding protein modules. Many extracellular enzymes have this modular structure; for example, serine proteases involved in blood-clotting, fibrinolysis and complement. The main role of these modules is to confer specificity by protein-protein interactions. Lack of structural information about such proteins has required a new strategy for studying the structure and function of protein modules. The strategy involves the production of individual modules by protein expression techniques, determination of their structure by high resolution nuclear magnetic resonance and definition of functional patches on the modules by site-directed mutagenesis and biological assays. The structures of the growth factor module, the fibronectin type 1 module and the complement module are briefly described. The possible functional roles of modules in various proteins, including the enzymes factor IX and tissue plasminogen activator, are discussed.  相似文献   

16.
Calcium-binding epidermal growth factor (EGF)-like modules are found in numerous extracellular and membrane proteins involved in such diverse processes as blood coagulation, lipoprotein metabolism, determination of cell fate, and cell adhesion. Vitamin K-dependent protein S, a cofactor of the anticoagulant enzyme activated protein C, has four EGF-like modules in tandem with the three C-terminal modules each harbouring a Ca(2+)-binding consensus sequence. Recombinant fragments containing EGF modules 1-4 and 2-4 have two Ca(2+)-binding sites with dissociation constants ranging from 10(-8) to 10(-5) M. Module-module interactions that greatly influence the Ca(2+) affinity of individual modules have been identified. As a step towards an analysis of the structural basis of the high Ca(2+) affinity, we expressed the Ca(2+)-binding EGF pair 3-4 from human protein S. Correct folding was shown by (1)H NMR spectroscopy. Calcium-binding properties of the C-terminal module were determined by titration with chromophoric chelators; binding to the low-affinity N-terminal site was monitored by (1)H-(15)N NMR spectroscopy. At physiological pH and ionic strength, the dissociation constants for Ca(2+) binding were 1.0x10(-6) M and 4. 8x10(-3) M for modules 4 and 3, respectively, i.e. the calcium affinity of the C-terminal site was about 5000-fold higher than that of the N-terminal site. Moreover, the Ca(2+) affinity of EGF 4, in the pair 3-4, was about 9000-fold higher than that of synthetic EGF 4. The EGF modules in protein S are known to mediate the interaction with factor Xa. We have now found modules 3-4 to be involved in this interaction. However, the individual modules 3 and 4 manifested no measurable activity.  相似文献   

17.
18.
Flavodiiron proteins (FDPs) play key roles in biological response mechanisms against oxygen and/or nitric oxide; in particular they are present in oxygenic phototrophs (including cyanobacteria and gymnosperms). Two conserved domains define the core of this family of proteins: a N-terminal metallo-β-lactamase-like domain followed by a C-terminal flavodoxin-like one, containing the catalytic diiron centre and a FMN cofactor, respectively. Members of the FDP family may present extra modules in the C-terminus, and were classified into several classes according to their distribution and composition. The cyanobacterium Synechocystis sp. PCC6803 contains four Class C FDPs (Flv1-4) that include at the C-terminus an additional NAD(P)H:flavin oxidoreductase (FlR) domain. Two of them (Flv3 and Flv4) have the canonical diiron ligands (Class C, Type 1), while the other two (Flv1 and Flv2) present different residues in that region (Class C, Type 2). Most phototrophs, either Bacterial or Eukaryal, contain at least two FDP genes, each encoding for one of those two types. Crystals of the Flv1 two core domains (Flv1-ΔFlR), without the C-terminal NAD(P)H:flavin oxidoreductase extension, were obtained and the structure was determined. Its pseudo diiron site contains non-canonical basic and neutral residues, and showed anion moieties, instead. The presented structure revealed for the first time the structure of the two-domain core of a Class C-Type 2 FDP.  相似文献   

19.
Post-translational modifications of the N-terminal histone tails, including lysine methylation, have key roles in regulation of chromatin and gene expression. A number of protein modules have been identified that recognize differentially modified histone tails and provide their proteins with the capacity to sense such modifications. Here, we identify the CW domain of plant and animal chromatin-related proteins as a novel module that recognizes different methylated states of lysine 4 on histone H3 (H3K4me). The solution structure of the CW domain of the Arabidopsis ASH1 HOMOLOG2 (ASHH2) histone methyltransferase provides insight into how different CW domains can distinguish different methylated histone tails. We provide evidence that ASHH2 is acting on H3K4me-marked genes, allowing for ASHH2-dependent H3K36 tri-methylation, which contributes to sustained expression of tissue-specific and developmentally regulated genes. This suggests that ASHH2 is a combined 'reader' and 'writer' of the histone code. We propose that different CW domains, dependent on their specificity for different H3K4 methylations, are important for epigenetic memory or participate in switching between permissive and repressive chromatin states.  相似文献   

20.
Class I phosphoinositide (PI) 3-kinases act through effector proteins whose 3-PI selectivity is mediated by a limited repertoire of structurally defined, lipid recognition domains. We describe here the lipid preferences and crystal structure of a new class of PI binding modules exemplified by select IQGAPs (IQ motif containing GTPase-activating proteins) known to coordinate cellular signaling events and cytoskeletal dynamics. This module is defined by a C-terminal 105-107 amino acid region of which IQGAP1 and -2, but not IQGAP3, binds preferentially to phosphatidylinositol 3,4,5-trisphosphate (PtdInsP(3)). The binding affinity for PtdInsP(3), together with other, secondary target-recognition characteristics, are comparable with those of the pleckstrin homology domain of cytohesin-3 (general receptor for phosphoinositides 1), an established PtdInsP(3) effector protein. Importantly, the IQGAP1 C-terminal domain and the cytohesin-3 pleckstrin homology domain, each tagged with enhanced green fluorescent protein, were both re-localized from the cytosol to the cell periphery following the activation of PI 3-kinase in Swiss 3T3 fibroblasts, consistent with their common, selective recognition of endogenous 3-PI(s). The crystal structure of the C-terminal IQGAP2 PI binding module reveals unexpected topological similarity to an integral fold of C2 domains, including a putative basic binding pocket. We propose that this module integrates select IQGAP proteins with PI 3-kinase signaling and constitutes a novel, atypical phosphoinositide binding domain that may represent the first of a larger group, each perhaps structurally unique but collectively dissimilar from the known PI recognition modules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号