首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ecosystem processes are important determinants of the biogeochemistry of the ocean, and they can be profoundly affected by changes in climate. Ocean models currently express ecosystem processes through empirically derived parameterizations that tightly link key geochemical tracers to ocean physics. The explicit inclusion of ecosystem processes in models will permit ecological changes to be taken into account, and will allow us to address several important questions, including the causes of observed glacial–interglacial changes in atmospheric trace gases and aerosols, and how the oceanic uptake of CO2 is likely to change in the future. There is an urgent need to assess our mechanistic understanding of the environmental factors that exert control over marine ecosystems, and to represent their natural complexity based on theoretical understanding. We present a prototype design for a Dynamic Green Ocean Model (DGOM) based on the identification of (a) key plankton functional types that need to be simulated explicitly to capture important biogeochemical processes in the ocean; (b) key processes controlling the growth and mortality of these functional types and hence their interactions; and (c) sources of information necessary to parameterize each of these processes within a modeling framework. We also develop a strategy for model evaluation, based on simulation of both past and present mean state and variability, and identify potential sources of validation data for each. Finally, we present a DGOM-based strategy for addressing key questions in ocean biogeochemistry. This paper thus presents ongoing work in ocean biogeochemical modeling, which, it is hoped will motivate international collaborations to improve our understanding of the role of the ocean in the climate system.  相似文献   

2.
湖泊硫循环微生物研究进展   总被引:6,自引:0,他引:6  
陈俊松  杨渐  蒋宏忱 《微生物学报》2020,60(6):1177-1191
湖泊是响应气候和环境变化的关键生态系统,是研究元素(如碳、氮和硫等)生物地球化学循环的热点环境。湖泊(尤其咸盐湖)具有硫酸盐含量高且含硫化合物种类丰富的特点,因而湖泊中硫元素生物地球化学循环过程非常活跃。微生物是驱动湖泊硫循环的重要推手。因此,研究湖泊中微生物参与的硫元素生物地球化学循环过程以及相关微生物类群构成,对于深入探索微生物在湖泊生态系统中的作用具有重要意义。本文综述了湖泊中驱动硫循环的微生物(硫氧化菌和硫酸盐还原菌)种群多样性、功能基因、代谢途径、硫氧化/硫酸盐还原速率及其对环境条件变化响应等方面的研究现状,并对未来湖泊微生物驱动的硫循环研究方向进行了展望。  相似文献   

3.
Decisions guiding environmental management need to be based on a broad and comprehensive understanding of the biodiversity and functional capability within ecosystems. Microbes are of particular importance since they drive biogeochemical cycles, being both producers and decomposers. Their quick and direct responses to changes in environmental conditions modulate the ecosystem accordingly, thus providing a sensitive readout. Here we have used direct sequencing of total DNA from water samples to compare the microbial communities of two distinct coastal regions exposed to different anthropogenic pressures: the highly polluted Port of Genoa and the protected area of Montecristo Island in the Mediterranean Sea. Analysis of the metagenomes revealed significant differences in both microbial diversity and abundance between the two areas, reflecting their distinct ecological habitats and anthropogenic stress conditions. Our results indicate that the combination of next generation sequencing (NGS) technologies and bioinformatics tools presents a new approach to monitor the diversity and the ecological status of aquatic ecosystems. Integration of metagenomics into environmental monitoring campaigns should enable the impact of the anthropogenic pressure on microbial biodiversity in various ecosystems to be better assessed and also predicted.  相似文献   

4.
杨玉盛 《生态学报》2017,37(1):1-11
随着全球环境变化和人类活动对生态系统影响的日益加深,生态系统结构和功能发生强烈变化,生态系统提供各类资源和服务的能力在显著下降。在这种背景下,全面认识生态系统的结构功能与全球环境变化的关系已成为当前生态学研究的热点之一。本文综述了全球环境变化对典型生态系统(包括森林生态系统、河口湿地生态系统、城市生态系统)影响以及全球环境变化适应的研究现状,分析研究面临的困难及挑战。在此基础上,提出对未来研究发展趋势的展望。在森林生态系统与全球环境变化研究上,未来应重视能更好模拟现实情景的、多因子、长期的全球环境变化控制试验,并注重不同生物地球化学循环之间的耦合作用。在湿地生态系统与全球环境变化研究上,未来应加强氮沉降、硫沉降及盐水入侵对湿地生态系统碳氮循环的影响,明晰滨海湿地的蓝碳功能,加强极端气候和人类干扰影响下湿地生态系统结构和功能变化及恢复力的研究。在城市生态系统与全球环境变化研究上,未来应深化城市生物地球化学循环机制研究,实现城市生态系统的人本需求侧重与转向,并开展典型地区长期、多要素综合响应研究。在全球环境变化适应研究上,未来应构架定量化、跨尺度的适应性评价体系,加强典型区域/部门的适应性研究以及适应策略实施的可行性研究,注重适应与减缓对策的关联研究及实施的风险评估。期望本综述为我国生态系统与全球环境变化研究提供一些参考。  相似文献   

5.
Forests are under pressure from accelerating global change. To cope with the multiple challenges related to global change but also to further improve forest management we need a better understanding of (1) the linkages between drivers of ecosystem change and the state and management of forest ecosystems as well as their capacity to adapt to ongoing global environmental changes, and (2) the interrelationships within and between the components of forest ecosystems. To address the resulting challenges for the state of forest ecosystems in Central Europe, we suggest 45 questions for future ecological research. We define forest ecology as studies on the abiotic and biotic components of forest ecosystems and their interactions on varying spatial and temporal scales. Our questions cover five thematic fields and correspond to the criteria selected for describing the state of Europe’s forests by policy makers, i.e. biogeochemical cycling, mortality and disturbances, productivity, biodiversity and biotic interactions, and regulation and protection. We conclude that an improved mechanistic understanding of forest ecosystems is essential for the further development of ecosystem-oriented multifunctional forest management in the face of accelerating global change.  相似文献   

6.
Algae have been used for a century in environmental assessments of water bodies and are now used in countries around the world. This review synthesizes recent advances in the field around a framework for environmental assessment and management that can guide design of assessments, applications of phycology in assessments, and refinements of those applications to better support management decisions. Algae are critical parts of aquatic ecosystems that power food webs and biogeochemical cycling. Algae are also major sources of problems that threaten many ecosystems goods and services when abundances of nuisance and toxic taxa are high. Thus, algae can be used to indicate ecosystem goods and services, which complements how algal indicators are also used to assess levels of contaminants and habitat alterations (stressors). Understanding environmental managers' use of algal ecology, taxonomy, and physiology can guide our research and improve its application. Environmental assessments involve characterizing ecological condition and diagnosing causes and threats to ecosystems goods and services. Recent advances in characterizing condition include site‐specific models that account for natural variability among habitats to better estimate effects of humans. Relationships between algal assemblages and stressors caused by humans help diagnose stressors and establish targets for protection and restoration. Many algal responses to stressors have thresholds that are particularly important for developing stakeholder consensus for stressor management targets. Future research on the regional‐scale resilience of algal assemblages, the ecosystem goods and services they provide, and methods for monitoring and forecasting change will improve water resource management.  相似文献   

7.
Cities are challenging environments for human life, because of multiple environmental issues driven by urbanization. These can sometimes be mitigated through ecosystem services provided by different functions supported by biodiversity. However, biodiversity in cities is affected by numerous factors, namely habitat loss, degradation, and fragmentation, as well as pollution, altered climate, and new biotic challenges. To better understand the link between biodiversity and ecosystem functions and services, we need to improve our mechanistic knowledge of these relationships. Trait-based ecology is a promising approach for unravelling the causes and consequences of biodiversity filtering on ecosystem processes and underlying services, but large gaps remain unexplored.Here, we present a series of research directions that are aimed at extending the current knowledge of the relationship between trait-based biodiversity and ecosystem functions and services in cities. These directions are based on: (1) improving urban habitat mapping; (2) considering often neglected urban habitats and ecological niches; (3) integrating multiple urban gradients; (4) using trait-based approaches to improve our mechanistic understanding of the relationships between biodiversity and ecosystem functions and services; and (5) extending the involvement of citizens.Pursuing these research directions may support the sustainable management of urban ecosystems and the long-term provision of ecosystem services, ultimately enhancing the well-being of urban populations.  相似文献   

8.
Kendra McLauchlan 《Ecosystems》2006,9(8):1364-1382
Since the domestication of plant and animal species around 10,000 years ago, cultivation and animal husbandry have been major components of global change. Agricultural activities such as tillage, fertilization, and biomass alteration lead to fundamental changes in the pools and fluxes of carbon (C), nitrogen (N), and phosphorus (P) that originally existed in native ecosystems. Land is often taken out of agricultural production for economic, social, or biological reasons, and the ability to predict the biogeochemical trajectory of this land is important to our understanding of ecosystem development and our projections of food security for the future. Tillage generally decreases soil organic matter (SOM) due to erosion and disruption of the physical, biochemical, and chemical mechanisms of SOM stabilization, but SOM can generally reaccumulate after the cessation of cultivation. The use of organic amendments causes increases in SOM on agricultural fields that can last for centuries to millennia after the termination of applications, although the locations that provide the organic amendments are concurrently depleted. The legacy of agriculture is therefore highly variable on decadal to millennial time scales and depends on the specific management practices that are followed during the agricultural period. State factors such as climate and parent material (particularly clay content and mineralogy) modify ecosystem processes such that they may be useful predictors of rates of postagricultural biogeochemical change. In addition to accurate biogeochemical budgets of postagricultural systems, ecosystem models that more explicitly incorporate mechanisms of SOM loss and formation with agricultural practices will be helpful. Developing this predictive capacity will aid in ecological restoration efforts and improve the management of modern agroecosystems as demands on agriculture become more pressing.  相似文献   

9.
Sandy beaches constitute high natural value ecosystems which have been worldwide a target for growing human activities and ensuing pressures in the last decades, which caused ecological damages on these environments and led to its environmental quality decline. However, little is known about the responses of these ecosystems to distinct stressors and pressures, and holistic and integrated coastal management actions that protect beach environments and their ecological processes are yet to be developed. The aim of this viewpoint article is to present and discuss the utility of using a population approach to macrofaunal key species as a helpful tool for the assessment, management, and sustainable use of sandy beaches. The role of macrofaunal key species as indicators of environmental changes and of ecological quality condition is discussed and illustrated by some practical examples from the literature. The population is presented as a highly relevant ecological unit in management and one of the easiest ones to use, responding more rapidly to disturbances in the ecosystem than the most complex units. In this context, bio-ecology and population dynamics models are presented as tools and their potential, to improve the way we assess and manage ecological quality conditions of beach ecosystems aiming at its sustainable use, are discussed. Also, the advantages and drawbacks of the use of these tools in the population approach are evaluated. Monitoring, assessment and management practices focusing on beach key species bio-ecology as ecological indicator hold large potential in nowadays fast changing scenario, and should be encouraged as a function of their identifiable responses to manmade and natural disturbances.  相似文献   

10.
城郊生态系统土壤安全:问题与挑战   总被引:2,自引:0,他引:2  
赵方凯  杨磊  陈利顶  李刚  孙龙  李守娟 《生态学报》2018,38(12):4109-4120
土壤作为地球表层系统物质和能量迁移转化的关键节点,其生态功能受到城市化快速发展的严重影响,土壤安全面临严峻的挑战。城郊生态系统受到城市和乡村的双重影响,具有复杂的景观结构和剧烈的动态变化,土壤安全问题更为突出和复杂。基于文献计量学方法,对1990—2017年发表的相关文献进行了统计,梳理和总结了城郊生态系统土壤安全研究的趋势和热点问题,对城郊生态系统中土壤安全面临的问题,及其特殊性、复杂性进行了重点论述,明确了当前快速城市化发展过程中城郊土壤安全研究面临的问题和挑战。建议今后的城郊生态系统土壤安全研究应加强区域尺度上的综合和不同城市发展模式下地区之间的比较,明确城市扩张对城郊生态系统土壤安全的影响机制;建立和完善基于"土壤安全"的城郊生态系统服务评价框架,深入研究城郊生态系统格局-过程-服务之间的关系;明确解析城郊土壤主要污染物来源及其复合污染状况,并结合区域特征,因地制宜开展科学的生态规划,优化城郊景观格局,提升城郊地区土壤安全与生态系统服务功能;明确土壤安全在城郊生态系统可持续发展目标中的重要性,建立科学合理的管理政策。  相似文献   

11.
火干扰与生态系统的碳循环   总被引:18,自引:0,他引:18  
吕爱锋  田汉勤  刘永强 《生态学报》2005,25(10):2734-2743
火干扰是陆地生态系统碳循环的重要影响因子。它改变着整个系统的碳循环过程与碳分布格局。正确评估火干扰在碳循环过程中的作用,对推进全球碳循环研究有着重要的意义。从4个方面系统的回顾了火干扰对碳循环的影响过程及其研究方法:(1)火烧过程中含碳痕量气体排放的估算;(2)火烧迹地恢复过程中净第一性生产力(NPP)与土壤呼吸的变化;(3)火干扰对生态系统碳源/汇的影响;(4)模型方法在火干扰与生态系统碳循环研究中的应用。目前火灾碳排量的估算方法业已成熟,但进行更精确的估算必须基于对受干扰生态系统的性质以及火势的时空变异性质的准确理解;相比之下,对于间接的、更为重要的影响,即对火烧迹地恢复过程中碳循环变化的研究则显不足。由于数据缺乏,现有研究大多限于对碳循环某一方面的观测与定量描述,缺乏全面的机理性分析。对此,实地观测、模型模拟与遥感观测的跨尺度集成将成为未来火干扰研究的一个主要方向。  相似文献   

12.
In-depth knowledge about spatial and temporal variation in microbial diversity and function is needed for a better understanding of ecological and evolutionary responses to global change. In particular, the study of microbial ancient DNA preserved in sediment archives from lakes and oceans can help us to evaluate the responses of aquatic microbes in the past and make predictions about future biodiversity change in those ecosystems. Recent advances in molecular genetic methods applied to the analysis of historically deposited DNA in sediments have not only allowed the taxonomic identification of past aquatic microbial communities but also enabled tracing their evolution and adaptation to episodic disturbances and gradual environmental change. Nevertheless, some challenges remain for scientists to take full advantage of the rapidly developing field of paleo-genetics, including the limited ability to detect rare taxa and reconstruct complete genomes for evolutionary studies. Here, we provide a brief review of some of the recent advances in the field of environmental paleomicrobiology and discuss remaining challenges related to the application of molecular genetic methods to study microbial diversity, ecology, and evolution in sediment archives. We anticipate that, in the near future, environmental paleomicrobiology will shed new light on the processes of microbial genome evolution and microbial ecosystem responses to quaternary environmental changes at an unprecedented level of detail. This information can, for example, aid geological reconstructions of biogeochemical cycles and predict ecosystem responses to environmental perturbations, including in the context of human-induced global changes.  相似文献   

13.
Predator-prey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the world's oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top predators on the structure and function of marine ecosystems. It follows that ecological forecasting, ecosystem management, and marine spatial planning require a better understanding of food web relationships. Characterising and scaling predator-prey interactions for use in tactical and strategic tools (i.e. multi-species management and ecosystem models) are paramount in this effort. Here, we explore what issues are involved and must be considered to advance the use of predator-prey theory in the context of marine fisheries science. We address pertinent contemporary ecological issues including (1) the approaches and complexities of evaluating predator responses in marine systems; (2) the 'scaling up' of predator-prey interactions to the population, community, and ecosystem level; (3) the role of predator-prey theory in contemporary fisheries and ecosystem modelling approaches; and (4) directions for the future. Our intent is to point out needed research directions that will improve our understanding of predator-prey interactions in the context of the sustainable marine fisheries and ecosystem management.  相似文献   

14.
消落带是陆地与水体(河流、湖泊、水库、湿地以及其他特殊水体)之间的生态过渡带,具有独特的生态水文学和生物地球化学过程,是截留和转化NH4+、NO3-等非点源氮素进入水体的最后一道生态屏障.整合已有相关研究成果发现: 1)植物固持作用改变氮素在土壤-植被-土壤-大气中相对存在位置;2)微生物反硝化作用将氮素从系统内永久性地去除,是消落带生态系统氮素截留转化的主要机制,但其相对贡献率仍有很大的不确定性.在不同流域背景条件下,影响消落带生态系统氮素生物地球化学循环的主要生态因子变化较大,很难确定地下水位高低、植被状况、微生物属性和土壤基质等哪一个生态因子是驱动消落带生态系统氮素循环的关键因子.研究方法的局限性、大的时空尺度数据的缺乏及对植被宽度认识的模糊性,是导致消落带生态系统氮素截留转化结果变异性大的主要原因.因此,应在消落带生态系统具体研究区位环境因子基础上,利用数学模型、GIS、RS等分析方法及同位素示踪和气体联用测定等定量分析技术,从不同时空尺度研究消落带生态系统氮素的循环与转化规律,以实现消落带生态系统氮素截留转化最优化,为消落带生态系统的科学管理提供理论基础.  相似文献   

15.
土地利用/覆盖变化对陆地生态系统碳循环的影响   总被引:49,自引:1,他引:49       下载免费PDF全文
土地利用/覆盖变化是学术界最为关注的环境变化问题之一,它能够影响陆地生态系统的生物多样性、水、碳和养分循环、能量平衡,引起温室气体释放增加等其它环境问题。不同类型的土地利用/覆盖变化对生态系统碳循环的作用不同,由高生物量的森林转化为低生物量的草地、农田或城市后,大量的CO2将释放到大气中。全球土地利用/覆盖变化具有很强的空间变异性,对生态系统碳循环的影响同样具有明显的空间差异:热带地区的土地利用/覆盖变化造成大量的碳释放,而中高纬度地区土地利用/覆盖变化则表现为碳汇。目前,土地利用/覆盖变化引起的生态系统碳循环变化主要是通过模型模拟来估算的。尽管土地利用/覆盖变化及其相关过程与生态系统碳循环的关系已经比较清楚,但是,由于土地利用/覆盖变化过程复杂且影响广泛,对于如何量化两者之间的关系还存在很多不确定性。目前的量化过程主要是利用经验数据来实现的,机理性不强,使得对土地利用/覆盖变化造成的陆地生态系统CO2释放量的估测差异很大。除了进一步加强长期定位研究以获得土地利用/覆盖变化与生态系统碳循环过程的定量关系外,土地利用/覆盖变化模型与植被动态模型、生态系统过程模型的耦合也是今后模型发展的主要方向之一。采用合理的管理措施能够大量增加土地利用/覆盖变化过程中的碳储存量,降低碳释放量,因此在模型中耦合管理措施来研究土地利用/覆盖变化过程对生态系统碳循环的影响是未来几年的工作重点。  相似文献   

16.
Several ecosystems in the western US are already undergoing nitrogen (N)saturation, a condition where previously N limited ecosystems are no longer Nlimited. This state of N saturation leads to adverse impacts on terrestrialecology and water quality. Due to the complexities of terrestrialcarbon-nitrogen cycling, integrated hydrologic-biogeochemical modeling providesa tool to improve our understanding and discern between the impacts of changesin N deposition from changes in other ecosystem processes. A model ofbiogeochemical processing in alpine watersheds was developed and applied to theEmerald Lake watershed. Simulations of major terrestrial carbon and nitrogenpools and fluxes were adequate. The use of snow cover information to estimatesoil temperatures improved model simulations indicating that snow coverprocesses need to be incorporated into biogeochemical models of seasonally snowcovered areas. The model simulated mineral nitrogen processes well butsignificant changes in denitrification and dissolved organic nitrogen exportprocesses appear to be necessary. Ourresults also showed that variations in snow cover duration have more of animpact on mineral N export, plant uptake and mineralization than appearspossible due to changes in atmospheric deposition.  相似文献   

17.
生态脆弱区生态系统状态演变分析的若干数学方法   总被引:1,自引:0,他引:1  
生态脆弱区往往存在多个生态系统(草原、荒漠和灌木等)共存的现象.由于外部环境和人类活动等因素的影响,生态脆弱区会发生从一种生态系统转变为另一种生态系统的现象,即突变现象.分析生态脆弱区多生态系统共存情况下生态系统的稳定性对了解生态脆弱区生态系统的变化具有重要意义.本文回顾了目前能够描述生态脆弱区多生态系统的动力系统及其...  相似文献   

18.

Dissolved organic matter (DOM) is recognized for its importance in freshwater ecosystems, but historical reliance on DOM quantity rather than indicators of DOM composition has led to an incomplete understanding of DOM and an underestimation of its role and importance in biogeochemical processes. A single sample of DOM can be composed of tens of thousands of distinct molecules. Each of these unique DOM molecules has their own chemical properties and reactivity or role in the environment. Human activities can modify DOM composition and recent research has uncovered distinct DOM pools laced with human markers and footprints. Here we review how land use change, climate change, nutrient pollution, browning, wildfires, and dams can change DOM composition which in turn will affect internal processing of freshwater DOM. We then describe how human-modified DOM can affect biogeochemical processes. Drought, wildfires, cultivated land use, eutrophication, climate change driven permafrost thaw, and other human stressors can shift the composition of DOM in freshwater ecosystems increasing the relative contribution of microbial-like and aliphatic components. In contrast, increases in precipitation may shift DOM towards more relatively humic-rich, allochthonous forms of DOM. These shifts in DOM pools will likely have highly contrasting effects on carbon outgassing and burial, nutrient cycles, ecosystem metabolism, metal toxicity, and the treatments needed to produce clean drinking water. A deeper understanding of the links between the chemical properties of DOM and biogeochemical dynamics can help to address important future environmental issues, such as the transfer of organic contaminants through food webs, alterations to nitrogen cycling, impacts on drinking water quality, and biogeochemical effects of global climate change.

  相似文献   

19.
20.
Highlights of large lake research and management in Europe   总被引:1,自引:0,他引:1  
Lakes in Europe have a bipolar distribution by latitude with higher lake densities in the north (58–65° N) and south (38–48° N). By area, 95% of the large lakes (>100 km2) are located at altitudes lower than 100 m above sea level (ASL) and only 1% lie higher than 1,000 m ASL. Physically large lakes exhibit several similarities to seas and oceans in their thermal structure and circulation dynamics. From the chemical point of view, lakes are important accumulation sites for substances transported from the watershed or built up in the lake itself but they may contribute positively to global greenhouse gas emission. Fauna and flora of ancient large lakes such as the Caspian Sea and Lake Ohrid include large numbers of endemic species, which become endangered if conditions change because of direct human impact, alien species invasions or climate change. Large lakes offer a wide range of ecosystem services to society, the multiple use of which creates multiple pressures on these water bodies such as nutrient load and toxic pollution, modification of hydrology and shore line structure, and shifting of the food web balance by stocking or harvesting various species. Although large lakes are among the best-studied ecosystems in the world, the application to them of environmental regulations such as the European Water Framework Directive is a challenging task and requires that several natural and management aspects specific to these water bodies are adequately considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号