首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold ischemia--warm reperfusion (CI/WR) injury of liver transplantation involves hepatocyte cell death, the nature and underlying mechanisms of which remain unclear. Isolated hepatocytes and isolated perfused livers were used to determine the prevalence of necrosis and apoptosis as well as mitochondrial dysfunction. In isolated cells, propidium iodide and Hoechst 33342 staining showed a cold-storage, time-dependent increase in necrosis, whereas apoptosis was minimal even after 48 h of hypothermia. Nonetheless, a progressive loss of mitochondrial membrane potential was observed. Translocation of mitochondrial cytochrome c toward microsomes occurred within 24 h of CI/WR, with cytochrome c reaching the cytosol later. Mitochondria isolated from whole livers subjected to CI/WR also display reduced metabolic parameters and increased susceptibility to swelling. These events are associated with increased activity of major initiator (caspase 9) and effector (caspase 3) caspases. The results demonstrate that CI/WR induces mitochondrial dysfunction in isolated cells and in the whole organ; only in the latter is that sufficient to trigger the classical mitochondrial pathway of apoptosis. Our study also provides evidence for the involvement of endoplasmic reticulum stress in CI/WR hepatocyte injury. Combined protection of mitochondria and endoplasmic reticulum may thus represent an innovative therapeutic avenue to enhance liver graft viability and functional integrity.  相似文献   

2.
Gulonolactone treatment of mice resulted in the elevation of hepatic ascorbate and hydrogen peroxide levels accompanied by transient liver swelling and reversible dilatation of endoplasmic reticulum cisternae. Although a decrease in glutathione (reduced form)/total glutathione ratio was observed in microsomes, the redox state of luminal foldases remained unchanged and the signs of endoplasmic reticulum stress were absent. Increased permeability of the microsomal membrane to various compounds of low molecular weight was substantiated. It is assumed that Gulonolactone-dependent luminal hydrogen peroxide formation in the endoplasmic reticulum provokes a temporary increase in non-selective membrane permeability, which results in the dilation of the organelle and in enhanced transmembrane fluxes of small molecules.  相似文献   

3.
Lipoprotein membrane systems such as chloroplasts and the endoplasmic reticulum exhibit a generalized swelling response. The initial effect is an increase in interlamellar spacing, but as swelling proceeds, the membranes are transformed into closed thin-walled spherical vesicles. Available evidence suggests that morphogenesis of the endoplasmic reticulum of Nitella and the lamellar system of the Zea chloroplasts involves fusion of small spherical vesicles to yield closed double membrane structures, which subsequently undergo further differentiation. It is suggested that the vesicles comprise a convenient "micellar" form by which lipides may be transported within the cell from the sites of lipide synthesis to regions of lamellar growth. The characteristic formation of vesicles in swelling and the apparent fusion of vesicles in morphogenesis appear to represent two aspects of a fundamental plasticity of lipoprotein layer systems.  相似文献   

4.
Follicular atresia, a common process present in all mammals, involves apoptotic and autophagic cell death. However, the participation of paraptosis, a type of caspase‐independent cell death, during follicular atresia is unknown. This study found swollen endoplasmic reticulum in the granulosa cells of adult Wistar rats. Calnexin was used as a marker of the endoplasmic reticulum at the ultrastructural and optical levels. The cells with swelling of the endoplasmic reticulum were negative to the TUNEL assay and active caspase‐3 immunodetection, indicating that this swelling is not part of any apoptotic or autophagic process. Additionally, immunodetection of the CHOP protein was used as a marker of endoplasmic reticulum stress, and this confirmed the presence of the paraptosis process. These data suggest that paraptosis‐like cell death is associated with the death of granulosa cells during follicular atresia in adult Wistar rats.  相似文献   

5.
Pancreatic damage induced by injecting a large dose of arginine   总被引:2,自引:0,他引:2  
Male Wistar rats were injected intraperitoneally with a large dose of arginine (500 mg/100 g body weight) and were sacrificed 24, 48 and 72 h later. Pancreatic tissue was examined by electron microscopy to study the resulting process of degeneration. Degeneration started with disorganization of the rough endoplasmic reticulum into whorls with a concomitant decrease in the numbers of zymogen granules. The main changes in acinar cells after 24 h were partial distension of the endoplasmic reticulum, whorls of agranular membranes encircling zymogen granules and perinuclear vacuoles. At this time large sequestered areas in the cytoplasm contained disarranged rough endoplasmic reticulum and degraded zymogen granules. The mitochondria showed only slight changes. After 48 h, dissociation and necrosis of acinar cells were noted. Subsequently, the necrotic cells were replaced by interstitial tissue composed of leucocytes and fibroblasts. It was concluded that a large dose of arginine is toxic to the rat pancreas when injected intraperitoneally. The early morphological changes of the acinar cells may be related to metabolic alterations associated with the endoplasmic reticulum. The disorganization of the endoplasmic reticulum and the reduced number of zymogen granules may indicate disturbance of protein synthesis. The focal sequestration and degradation of the cytoplasm seemed to represent changes of the acinar cells associated with removal of damaged organelles.  相似文献   

6.
Inhibitors of protein synthesis capable of differential effects on nascent peptide synthesis on membrane-bound and free polyribosomes were employed to investigate the structure and function of cellular membranes of liver. The formation of membranous whorls in the cytoplasm and distension of nuclear membranes were induced by inhibitors of protein synthesis (i.e., cycloheximide and emetine) which predominantly interfere with nascent peptide synthesis on membrane-bound polyribosomes in situ. Other inhibitors of protein synthesis such as puromycin and fusidic acid, which inhibit nascent peptide synthesis on both free and membrane-bound polyribosomes, and chloramphenicol, which inhibits mitochondrial protein synthesis, did not induce these alterations. Cycloheximide, puromycin, and chloramphenicol produce some common cellular lesions as reflected by similar alterations in morphology, such as swelling of mitochondria, degranulation of rough endoplasmic reticulum, and aggregation of free ribosomes. The process of whorl formation in the cytoplasm, the incorporation of [3H]leucine and of [3H]choline into endoplasmic reticulum and the total NADPH-cytochrome c reductase activity of the endoplasmic reticulum were determined. During maximum formation of membranous whorls, [3H]leucine incorporation into cytoplasmic membranes was inhibited, while [3H]choline incorporation into these structures was increased; maximum inhibition of protein synthesis and stimulation of choline incorporation into endoplasmic reticulum, however, preceded whorl formation. Cycloheximide decreased the activity of NADPH-cytochrome c reductase of rough endoplasmic reticulum, but increased NADPH-cytochrome c reductase activity of smooth endoplasmic reticulum. In addition, cycloheximide decreased the content of hemoprotein in both the microsomal and mitochondrial fractions of rat liver, and the activities of mixed function oxidase and of oxidative phosphorylation were impaired to different degrees. Succinate-stimulated microsomal oxidation was also inhibited. The possible mechanisms involved in the formation of membranous whorls, as well as their functions, are discussed.  相似文献   

7.
毛竹茎纤维次生壁形成过程的超微结构观察   总被引:6,自引:0,他引:6  
利用透射电镜观察了毛竹(Phyllostachys pubescens Mazel)茎纤维发育过程中次生壁的形成过程。纤维发育早期,细胞具有较大的细胞核和核仁;细胞质浓稠,具有核糖体、线粒体和高尔基体等细胞器。随着纤维次生壁的形成,细胞壁加厚,细胞质变得稀薄,内质网和高尔基体的数量明显增加,并且两者共同参与了运输小泡的形成;在质膜内侧可观察到大量周质微管分布。随着次生壁的进一步加厚及木质化,细胞壁  相似文献   

8.
Accumulation of cadmium in the liver was demonstrated by X-ray microanalysis in every type of experiment, i.e. after injecting Cd into the ligated intestine and after the peroral acute single and combined, subchronic and chronic administration of Cd. Half an hour after its injection, Cd was localized diffusely in the liver; one hour after injection its increased accumulation in the cells caused generalized changes in the endoplasmic reticulum, mitochondria and nuclei. In acute and chronic peroral tests, the hepatocytes of the intermedial and peripheral zone of the lobes were the main storage region. After an acute dose of Cd, the cells in the centrolobular zone were hydropic, or single-cell necrosis developed; after the longer effect of combined doses the latter was manifested as centrolobular focal necrosis. Cd was not demonstrated in the lesions. Chronic administration did not lead to manifest severe degenerative changes in the liver. Accretions in the mitochondria and on the membranes of the endoplasmic reticulum were identified by means of X-ray analysis with cadmium peaks. Cadmium showed up clearly as L alpha- and L beta-lines at 3.135-3.320 keV. We presume that cadmium is bound in the ribosomes of the endoplasmic reticulum, as well as the mitochondria, and is released by the invagination of swelling mitochondria of the peripheral hepatocytes into Disse's spaces.  相似文献   

9.
Ultrastructural changes in secondary wall formation of Phyllostachys pubescens Mazel fiber were investigated with transmission electron microscopy. Fiber developed initially with the elongation of cells containing ribosomes, mitochondria and Golgi bodies in the dense cytoplasm. During the wall thickening, the number of rough endoplasmic reticulum and Golgi bodies increased apparently. There were two kinds of Golgi vesicles, together with the ones from endoplasmic reticulum formed transport vesicles. Many microtubules were arranged parallel to the long axis of the cell adjacent to the plasmalemma. Along with the further development of fiber, polylamellate structure of the secondary wall appeared, with concurrent agglutination of chromatin in the nucleus, swelling and disintegration of organelles, while cortical microtubules were still arranged neatly against the inner side of plasmalemma. Lomasomes could be observed between the wall and plasmalemma. The results indicated that the organelles, such as Golgi bodies together with small vesicles, rough endoplasmic reticulum and lomasomes, played the key role in the thickening and lignification of the secondary wall of bamboo fiber, though cortical microtubules were correlative with the process as well.  相似文献   

10.
Summary Using susceptible and resistant sugar beet lines, comparative analyses of root histology and ultrastructure were made during invasion by nematodes and the induction and formation of specific feeding structures (syncytia).The resistant line carried the resistance geneHs1pro–1.Nematodes were able to invade and induce functional syncytia in roots of resistant and susceptible lines. However, syncytia in resistant roots were smaller and less hypertrophied. The vacuolar system of syncytia in susceptible plants contained many small vacuoles. In resistant plants vacuoles were larger but less numerous. Smooth endoplasmic reticulum prevailed in syncytial protoplasts of susceptible plants, whereas almost only rough endoplasmic reticulum occurred in syncytia in resistant plants. The most conspicuous and hitherto undescribed trait of syncytia in resistant roots was the initial appearance of loose, and later compact, aggregations of the endomembrane system which composed most of the endoplasmicreticulum system of syncytia at later stages. Syncytia in resistant plants usually degraded before the nematodes reached their adult stage. The appearance of membrane aggregations and the other resistance-specific features are discussed in relation to their possible effects on syncytium function and role in nematode resistance.Abreviations DAI days after inoculation - ER endoplasmic reticulum - ISC initial syncytial cell - J2 second-stage juvenile - MA membrane aggregations - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

11.
The endoplasmic reticulum of most cell types mainly consists of an extensive network of narrow sheets and tubules. It is well known that an excessive increase of the cytosolic Ca2+ concentration induces a slow but extensive swelling of the endoplasmic reticulum into a vesicular morphology. We observed that a similar extensive transition to a vesicular morphology may also occur independently of a change of cytosolic Ca2+ and that the change may occur at a time scale of seconds. Exposure of various types of cultured cells to saponin selectively permeabilized the plasma membrane and resulted in a rapid swelling of the endoplasmic reticulum even before a loss of permeability barrier was detectable with a low-molecular mass dye. The structural alteration was reversible provided the exposure to saponin was not too long. Mechanical damage of the plasma membrane resulted in a large-scale transition of the endoplasmic reticulum from a tubular to a vesicular morphology within seconds, also in Ca2+-depleted cells. The rapid onset of the phenomenon suggests that it could perform a physiological function. Various mechanisms are discussed whereby endoplasmic reticulum vesicularization could assist in protection against cytosolic Ca2+ overload in cellular stress situations like plasma membrane injury.  相似文献   

12.
In this study, we determined functional integrity and reactive oxygen species generation in mitochondria and endoplasmic reticulum in liver of rats subjected to endotoxic shock to clarify whether intracellular reactive oxygen species (ROS) destabilize cellular integrity causing necrosis in rats challenged with lipopolysaccharide (LPS). LPS caused drastically increased plasma levels of alanine aminotransferase, suggesting damage to plasma membranes of liver cells. Liver necrosis was confirmed by histological examination. LPS induced a significant increase in ROS production in rat liver mitochondria (RLM), but did not impair mitochondrial function. In contrast to mitochondria, enzymatic activity and ROS production of cytochrome P450 were lower in microsomal fraction obtained from LPS-treated animals, suggesting the dysfunction of endoplasmic reticulum. Protein patterns obtained from RLM by two-dimensional electrophoresis showed significant upregulation of mitochondrial superoxide dismutase by LPS. We hypothesize that upregulation of this enzyme protects mitochondria against mitochondrial ROS, but does not protect other cellular compartments such as endoplasmic reticulum and plasma membrane causing necrosis.  相似文献   

13.
The general histological organization of Hydra is reviewed and electron microscopic observations are presented which bear upon the nature of the mesoglea, the mode of attachment of the contractile processes of the musculo-epithelial cells, and the cytomorphosis of the cnidoblasts. Particular attention is devoted to the changes in form and distribution of the cytoplasmic organelles in the course of nematocyst formation. The undifferentiated interstitial cell is characterized by a small Golgi complex, few mitochondria, virtual absence of the endoplasmic reticulum, and a cytoplasmic matrix crowded with fine granules presumed to be ribonucleoprotein. These cytological characteristics persist through the early part of the period of interstitial cell proliferation which leads to formation of clusters of cnidoblasts. With the initiation of nematocyst formation in the cnidoblasts, numerous membrane-bounded vesicles appear in their cytoplasm. These later coalesce to form a typical endoplasmic reticulum with associated ribonucleoprotein granules. During the ensuing period of rapid growth of the nematocyst the reticulum becomes very extensive and highly organized. Finally, when the nematocyst has attained its full size, the reticulum breaks up again into isolated vesicles. The Golgi complex remains closely applied to the apical pole of the nematocyst throughout its development and apparently contributes to its enlargement by segregating formative material in vacuoles whose contents are subsequently incorporated in the nematocyst. The elaboration of this complex cell product appears to require the cooperative participation of the endoplasmic reticulum and the Golgi complex. Their respective roles in the formative process are discussed.  相似文献   

14.
The general histological organization of Hydra is reviewed and electron microscopic observations are presented which bear upon the nature of the mesoglea, the mode of attachment of the contractile processes of the musculo-epithelial cells, and the cytomorphosis of the cnidoblasts. Particular attention is devoted to the changes in form and distribution of the cytoplasmic organelles in the course of nematocyst formation. The undifferentiated interstitial cell is characterized by a small Golgi complex, few mitochondria, virtual absence of the endoplasmic reticulum, and a cytoplasmic matrix crowded with fine granules presumed to be ribonucleoprotein. These cytological characteristics persist through the early part of the period of interstitial cell proliferation which leads to formation of clusters of cnidoblasts. With the initiation of nematocyst formation in the cnidoblasts, numerous membrane-bounded vesicles appear in their cytoplasm. These later coalesce to form a typical endoplasmic reticulum with associated ribonucleoprotein granules. During the ensuing period of rapid growth of the nematocyst the reticulum becomes very extensive and highly organized. Finally, when the nematocyst has attained its full size, the reticulum breaks up again into isolated vesicles. The Golgi complex remains closely applied to the apical pole of the nematocyst throughout its development and apparently contributes to its enlargement by segregating formative material in vacuoles whose contents are subsequently incorporated in the nematocyst. The elaboration of this complex cell product appears to require the cooperative participation of the endoplasmic reticulum and the Golgi complex. Their respective roles in the formative process are discussed.  相似文献   

15.
Ultracytochemistry of pancreatic damage induced by excess lysine   总被引:1,自引:0,他引:1  
The ultracytochemical changes induced in the pancreas by a single large dose of lysine (400 mg/100 g body weight) were studied in male Wistar rats of 7 weeks old. The first changes in the acinar cells were marked swelling of mitochondria with increase in their calcium content and decrease in their ATP content. Early calcium deposits seemed to occur in the matrices of swollen mitochondria and later various patterns occurred. These findings suggested that damage of the acinar cells by excess lysine resulted in breakdown of the mitochondrial membrane barrier to calcium as a very early abnormality, and that extracellular calcium then entered the mitochondrial matrices and inhibited mitochondrial function. Subsequently focal areas of the cytoplasm were degraded. Autophagic vacuoles appeared in these areas, and then acid phosphatase activity in their periphery as a result of fusion with lysosomes. The reaction of acid phosphatase was demonstrated in the locally degraded rough endoplasmic reticulum within or around autophagic vacuoles, suggesting that the endoplasmic reticulum as well as lysosomes participated in the intracellular degradation of cytoplasmic organelles in damaged acinar cells.  相似文献   

16.
The endoplasmic reticulum is the site of synthesis and folding of secretory proteins and is sensitive to changes in the internal and external environment of the cell. Both physiological and pathological conditions may perturb the function of the endoplasmic reticulum, resulting in endoplasmic reticulum stress. The chondrocyte is the only resident cell found in cartilage and is responsible for synthesis and turnover of the abundant extracellular matrix and may be sensitive to endoplasmic reticulum stress. Here we report that glucose withdrawal, tunicamycin, and thapsigargin induce up-regulation of GADD153 and caspase-12, two markers of endoplasmic reticulum stress, in both primary chondrocytes and a chondrocyte cell line. Other agents such as interleukin-1beta or tumor necrosis factor alpha induced a minimal or no induction of GADD153, respectively. The endoplasmic reticulum stress resulted in decreased chondrocyte growth based on cell counts, up-regulation of p21, and decreased PCNA expression. In addition, perturbation of endoplasmic reticulum function resulted in decreased accumulation of an Alcian Blue positive matrix by chondrocytes and decreased expression of type II collagen at the protein level. Further, quantitative real-time PCR was used to demonstrate a down-regulation of steady state mRNA levels coding for aggrecan, collagen II, and link protein in chondrocytes exposed to endoplasmic reticulum stress-inducing conditions. Ultimately, endoplasmic reticulum stress resulted in chondrocyte apoptosis, as evidenced by DNA fragmentation and annexin V staining. These findings have potentially important implications regarding consequences of endoplasmic reticulum stress in cartilage biology.  相似文献   

17.
A single 5-mg/kg oral dose of diclazuril affected both the asexual and sexual development of Eimeria tenella in experimentally inoculated chickens. In second-generation schizonts, early growth and nuclear divisions progressed normally, but a marked inhibition of merozoite formation was observed. Exogenesis of merozoites was largely prevented, whereas production of micronemes, amylopectin granules, and dense bodies and the formation of rhoptries, conoid, and pellicle continued. All these subcellular organelles accumulated, together with differentiated nuclei, within the main cytoplasmic mass. In the end, complete necrosis of the schizonts occurred. In macrogamonts, dilation of the rough endoplasmic reticulum around type II wall-forming bodies, fusion of type II wall-forming body contents, disturbance of the normal parallel arrangement of rough endoplasmic reticulum, and disruption of row formation of amylopectin granules became evident. In the microgamonts, normal evagination of microgametes was prevented; the flagellar complex formed within the main cytoplasmic mass and the differentiated nuclei remained present within the parasite body. The macro- and microgamonts also ended up in a stage of complete necrosis. These data indicate that diclazuril treatment primarily affects the normal differentiation of the respective endogenous stages during parasite development. This leads to complete degeneration of schizonts and gamonts indicating the lethal effect of this new anticoccidial compound.  相似文献   

18.
This report describes the ultrastructural development of plasmodial tapetum and pollen wall of Butomus umbellatus. The tapetum contains extensive arrays of rough endoplasmic reticulum, vesicles from which are responsible for the formation of sporopollenin-like bodies. The tapetum is also involved in the formation of other forms of sporopollenin precursors. Development of pollen wall continues after microspores are released from their callosic walls; they are then enclosed by plasmodial tapetum. The activity and products of the plasmodial tapetum show substantial correlation with pollen wall development, particularly ektexine formation. In B. umbellatus, the tapetum intrudes into the anther locule at early microspore stage. This timing of plasmodial intrusion occurs at a later stage of pollen development as compared to those in the advanced monocotyledons. We report the rough endoplasmic reticulum origin of sporopollenin-like bodies and their occurrence in the plasmodial tapeta of B. umbellatus.  相似文献   

19.
内质网及其标志酶在离体培养脊髓神经元中的发育变化   总被引:2,自引:1,他引:1  
In an attempt to elucidate the relationship between synapse formation and cell development, the morphology and cytochemistry of the endoplasmic reticulum and its enzymic marker, glucose-6-phosphatase (G-6-Pase), in cultured mouse spinal neurons were investigated ultrastructurally. It was found that in the early period of the development, neurons were characterized by scarceness of organelles; only a few of granular or agranular endoplasmic reticulum and mitochondria were seen. The endoplasmic reticulum and nuclear envelope were packed specifically with G-6-Pase resection product but the product was weak. After a period of culture, most of the neurons had well-developed endoplasmic reticulum, Golgi apparatus, mitochondria and microtubules, etc. The Golgi apparatus was relatively large, having some cisternae associated with vesicles. Either concave of convex face of the saccules was labeled by thiamine pyrophosphatase (TPPase) specifically. GERL, labeled by cytidine monophosphatase (CMPase), was also seen close to the inner or outer face of some Golgi apparatus. The endoplasmic reticulum at this stage was distributed throughout the cytoplasm, including that in dendrites; its enzyme marker (G-6-Pase) localized consistently within the lumen of all endoplasmic reticulum, nuclear space and subsurface cisternae, and frequently in the concave saccules of the Golgi apparatus. After a long-term culture, some neurons became "aged". The endoplasmic reticulum cisternae enlarged and G-6-Pase reaction reduced. Along with the neuronal development, especially maturation of the endoplasmic reticulum and its enzymic marker, synapse formation was begun at the neuropile area. The axo-dendritic synapses always occurred between the axonal terminals and dendrites where the endoplasmic reticulum had showed positive G-6-Pase reactions. Considering the fact, it suggests that the appearance and change of these specific enzymes may be related to the maturation of the neurons in vitro, and also related to the synapse formation between neurons.  相似文献   

20.
The relation between the endoplasmic reticulum and peribacteroid membranes during the development of infected cells of Chinese soybean (Glycine max L. cv. Harvest 11) root nodules by transmission electron microscopy was observed. After the host cells are infected by bacteria, the ultrastructures of the infected cells appear to have many changes, such as that their cytoplasm becomes thicker, the vacuoles decrease in size and organelles rapidly increase in number, among these organelle changes are more obvious than the others. However, changes of endoplasmic reticulum is mostly striking. It is not only increases greatly in number but often swells and forms wider inter-spaces. The swelling of endoplasmic reticulum is especially conspicuous at its ends and often form various vesicles. Sometimes, the front part of the endoplasmic reticulum also forms a gourd-shaped structure, which together with the vesicles usually contain fibrillar material. After they are released from the endoplasmic reticulum to the host cytoplasm, they continuously move towards neighbouring bacteria and close to the peribacteroid membranes. The gourd-shaped structures always locate near but never fuse with the peribacteroid membranes. However, the vesicles can do that and form a kind of papillae, often containing fibrillar material, on the peri bacteroid membranes. These papillae and their fibrillar material gradually disappear whilst the membrane of the vesicle derived from endoplasmic reticulum becomes one part of the peribacteroid membrane by way of fusing with the latter to form a papilla on it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号