首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By means of the scanning differential calorimetry, x-ray diffractometry, and the dynamic light scattering, we have systematically studied the phase and packing properties of dipalmitoylphosphatidylcholine vesicles or multibilayers in the presence of ethanol. We have also determined the partial ternary phase diagram of such dipalmitoylphosphatidylcholine/water/ethanol mixtures. The directly measured variability of the structural bilayer parameters implies that ethanol binding to the phospholipid bilayers increases the lateral as well as the transverse repulsion between the lipid molecules. This enlarges the hydrocarbon tilt (by up to 23 degrees) and molecular area (by < or = 40%). Ethanol-phospholid association also broadens the interface and, thus, promotes lipid headgroup solvation. This results in excessive swelling (by 130%) of the phosphatidylcholine bilayers in aqueous ethanol solutions. Lateral bilayer expansion, moreover, provokes a successive interdigitation of the hydrocarbon chains in the systems with bulk ethanol concentrations of 0.4-1.2 M. The hydrocarbon packing density as well as the propensity for the formation of lamellar gel phases simultaneously increase. The pretransition temperature of phosphatidylcholine bilayers is more sensitive to the addition of alcohol (initial shift: delta Tp = 22 degrees C/mol) than the subtransition temperature (delta Ts reversible 5 degrees C/mol), whereas the chain-melting phase transition temperature is even less affected (delta Tm = 1.8 degrees C/mol). After an initial decrease of 3 degrees for the bulk ethanol concentrations below 1.2 M, the Tm value increases by 2.5 degrees above this limiting concentration. The gel-phase phosphatidylcholine membranes below Tm are fully interdigitated above this limiting concentration. The chain tilt on the fringe of full chain interdigitation is zero and increases with higher ethanol concentrations. Above Tm, some of the lipid molecules are solubilized by the bound ethanol molecules. More highly concentrated ethanol solutions (> 7 M) solubilize the phosphatidylcholine bilayers with fluid chains fully and result in the formation of mixed lipid-alcohol micelles.  相似文献   

2.
It has been shown recently by Rowe ((1983) Biochemistry 22, 3299-3305) that ethanol has a 'biphasic' effect on the transition temperature (Tm) of phosphatidylcholine bilayers, reducing Tm at low concentrations but increasing Tm at high concentrations. Our X-ray diffraction data show that this reversal of Tm is a consequence of the induction of an unusual gel phase, where the lipid hydrocarbon chains from apposing monolayers fully interpenetrate or interdigitate. The properties of this interdigitated phase also explain the lipid chain length dependence of the reversal in the Tm versus ethanol concentration curves and the narrow width of the transition at high ethanol concentrations, as well as spectroscopic and calorimetric data from lipid suspensions containing other drugs such as methanol, benzyl alcohol, phenyl ethanol, and chlorpromazine.  相似文献   

3.
The thermotropic behaviour of dipalmitoyl phosphatidylcholine analogues with a varying number (n) of CH2 groups between the phosphate and the quaternary ammonium has been investigated. The temperature (Tm) and the enthalpy (deltaH) of the phase transition are non-monotonous functions of the number of CH2 groups. Tm oscillates between 40 and 45 degrees C and deltaH between 7 and 13 kcal/mol for a variation of n between 2 and 11. It is concluded that the hydrocarbon chains in the head groups do not penetrate the hydrocarbon region and do not contribute directly to the melting of the acyl chains. It is suggested that their length may affect the critical balance between the attractive and the repulsive forces within the bidimensional lattice of the head groups. Copolypeptides of lysine with phenylalanine do not appreciably affect the Tm but have a pronounced effect on deltaH of the lipid phase transition, which depends strongly on the ratio of the two amino acids in the polypeptide. The effect of copolypeptide of any defined composition on deltaH is also a non-monotonous function of the number of CH2 groups in the phosphatidylcholine head group, but it does not parallel completely the oscilations in the Tm and deltaH of the pure lipids.  相似文献   

4.
C Huang 《Biochemistry》1991,30(1):26-30
Phospholipids are a major component of biological membranes. In excess water, phospholipids may self-assemble into fully hydrated lamellae which, upon heating, may undergo the gel to liquid-crystalline phase transition at the characteristic temperature, Tm. Our present knowledge about the Tm values for various phospholipids is far from complete, although it is necessary to know the Tm value for preparing liposomes. In this study, we have derived empirically a general expression of Tm = 154.2 + 2.0(delta C) - 142.8(delta C/CL) - 1512.5(1/CL) in which two apparent structural parameters, delta C and CL, of a phosphatidylcholine molecule and their ratio, delta C/CL, are applied to estimate the Tm value of the phosphatidylcholine bilayer in excess water. The parameter delta C is the effective chain-length difference, in C-C bond lengths, between the two acyl chains for the phosphatidylcholine molecule in the gel-state bilayer, and CL is the effective length of the longer of the two acyl chains, also in C-C bond lengths. A figure containing 163 calculated Tm values is presented, and this information will be useful as a guide for designing experiments.  相似文献   

5.
Moore TS  Du Z  Chen Z 《Plant physiology》2001,125(1):423-429
Diacylglyceryltrimethylhomo-Ser (DGTS) is an abundant lipid in the membranes of many algae, lower plants, and fungi. It commonly has an inverse concentration relationship with phosphatidylcholine, thus seemingly capable of replacing this phospholipid in these organisms. In some places this replacement is complete; Chlamydomonas reinhardtii is such an organism, and was used for these investigations. We have assayed headgroup incorporation to form DGTS in vitro. The precursor for both the homo-Ser moiety and the methyl groups was found to be S-adenosyl-L-Met. DGTS formation was associated with microsomal fractions and is not in plastids. By analogy with phosphatidylcholine and phosphatidylethanolamine biosynthesis in higher plants, the microsomal activity probably is associated with the endoplasmic reticulum. The pH optimum for the total reaction was between 7.5 and 8.0, and the best temperature was 30 degrees C. The apparent K(m) and V(max) for S-adenosyl-L-Met in the overall reaction were 74 and 250 microM, respectively.  相似文献   

6.
The interaction of surfactants with the vesicle membrane of the negatively charged lipid, dilauroylphosphatidic acid, was investigated through their effect on the gel-to-liquid-crystalline phase transition of the lipid bilayer. Three types of surfactants (anionic, cationic and non-ionic) with different hydrocarbon chain length were examined. (i) Anionic sodium alkylsulfates affected the phase transition temperature, Tm, only weakly. (ii) Non-ionic alkanoyl-N-methylglucamides decreased Tm monotonously with increasing concentration. The depression of Tm induced by these surfactants was analyzed by applying the van't Hoff model for the freezing-point depression, and the partition coefficients of the surfactants between bulk water and lipid membrane were estimated. (iii) Cationic alkyltrimethylammonium bromides affected Tm in a complex manner depending on the hydrocarbon chain length of the surfactants. Octyl-/tetradecyl-trimethylammonium bromide depressed/elevated Tm monotonously with increasing concentration, whereas the change in Tm induced by decyl- and dodecyltrimethylammonium bromides was not monotonous but biphasic. This complex behavior of the phase transition temperature was well explained, based on the statistical mechanical theory presented by Suezaki et al. (Biochim. Biophys. Acta, 818 (1985) 31-37), which takes into account the interaction between surfactant molecules incorporated in the lipid membrane.  相似文献   

7.
The effect of the fluorophore trans-parinaric acid on the structure of lipid bilayer was studied and compared with the effect of other 'perturbants'. These include commonly used fluorophores (diphenylhexatriene, heptadecylhydroxycoumarin, cis-parinaric acid and two fatty acids, palmitic and oleic acids). Differential scanning calorimetry (DSC) and proton nuclear magnetic resonance techniques were used to evaluate structural changes in the lipid bilayers. The thermodynamic parameters of dipalmitoylphosphatidylcholine multilamellar vesicles obtained from the DSC thermograms suggest that trans-parinaric acid differs from the other 'perturbants'. trans-Parinaric acid has the most pronounced impact on the Tm, the width (delta T1/2) and the index of asymmetry of the main gel to liquid crystalline phase transition without any effect on its transition, delta H. The presence of trans-parinaric acid in the lipid bilayer of dimyristoylphosphatidylcholine small unilamellar vesicles influences the chemical shift difference between the choline protons of phosphatidylcholine molecules present in the two leaflets of the vesicle bilayer (delta delta H). This suggests that trans-parinaric acid affects the head group packing in the bilayer. Its main effect is abolishing the major alterations in head group packing that occur through the phase transition. The above data indicate that trans-parinaric acid is concentrated in the gel phase domains, whereby it stabilizes the phase separation between the gel and liquid crystalline phases, probably by affecting lipid molecules present in the boundary regions between these two domain types.  相似文献   

8.
Major glyco- and phospholipids as well as betaine lipid 1,2-diacylglycero-O-4'-(N,N,N-tri-methyl)-homoserine (DGTS) were isolated from five species of marine macrophytes harvested in the Sea of Japan in summer and winter at seawater temperatures of 20-23 and 3 degrees C, respectively. GC and DSC analysis of lipids revealed a common increase of ratio between n-3 and n-6 polyunsaturated fatty acids (PUFAs) of polar lipids from summer to winter despite their chemotaxonomically different fatty acid (FA) composition. Especially, high level of different n-3 PUFAs was observed in galactolipids in winter. However, the rise in FA unsaturation did not result in the lowering of peak maximum temperature of phase transition of photosynthetic lipids (glycolipids and phosphatidylglycerol (PG)) in contrast to non-photosynthetic ones [phosphatidylcholine (PC) and phosphatidylethanolamine (PE)]. Different thermotropic behavior of these lipid groups was accompanied by higher content of n-6 PUFAs from the sum of n-6 and n-3 PUFAs in PC and PE compared with glycolipids and PG in both seasons. Seasonal changes of DSC transitions and FA composition of DGTS studied for the first time were similar to PC and PE. Thermograms of all polar lipids were characterized by complex profiles and located in a wide temperature range between -130 and 80 degrees C, while the most evident phase separation occurred in PGs in both seasons. Polarizing microscopy combined with DSC has shown that the liquid crystal - isotropic melt transitions of polar lipids from marine macrophytes began from 10 to 30 degrees C mostly, which can cause the thermal sensitivity of plants to superoptimal temperatures in their environment.  相似文献   

9.
Over 40 higher plant species were examined for the contents of total lipids, phospholipids, diacylglyceryl-N,N,N-trimethylhomoserine (DGTS), phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) by using micro-HPTLC. The results showed a wider range of plants containing betaine lipids. So, DGTS was found in some higher plant species, not studied earlier, belonging to Equisetophyta, Polypodiophyta; the lipid composition of many other species from Spermatophyta was also studied. It was demonstrated that more primitive plant species contained, as a rule, the betaine lipid DGTS. The quantitative data for the distribution of the main phospholipid classes PC, PE, and PG in various plant species and their tissues are given in this paper.  相似文献   

10.
Effects of dodecyltrimethylammonium chloride (DTAC), dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium iodide (DTAI) on thermotropic phase behaviour of phosphatidylcholine bilayers containing cholesterol as well as on 1H NMR spectra were studied. Two series of experiments were performed. In the first one the surfactants were added to the water phase while in the other directly to the lipid phase (a mixed film from cholesterol, surfactant and phosphatidylcholine was formed). The effects of particular surfactants on the main phase transition temperature, Tm, were more pronounced when added to the lipid phase (2nd method) than to the water phase (1st method); the opposite happened when cholesterol was absent (Rózycka-Roszak and Pruchnik 2000, Z. Naturforsch. 55c, 240-244). Furthermore, in the case of the first method the transitions were asymmetrical while in the second method nearly symmetrical. It is suggested that surfactant poor and surfactant rich domains are formed when surfactants are added to the water phase.  相似文献   

11.
The marine alga Chlorella minutissima contains DGTS (diacylglyceryl-N,N,N-trimethylhomoserine) as a major component (up to 44% of total lipids). This lipid is absent from other members of the Chlorococcales, except for C. fusca, which contains DGTS as 1.3% of total lipids. Contrary to expectation, the DGTS is accompanied by PC (phosphatidylcholine) as the major phospholipid. DGTS is normally highly saturated in the C-1 position of glycerol, but in C. minutissima, both C-1 and C-2 are acylated with EPA (eicosapentaenoic acid, 20:5) in the major molecular species (over 90% of total). The DGTS level shows a marked rhythmic fluctuation with time which is inversely correlated with the level of MGDG (monogalactosyldiacylglycerol), the other major lipid. Improved NMR data and the first electrospray MS data on this lipid are presented.  相似文献   

12.
The influence of acyl chain-length asymmetry on the thermodynamic parameters (Tm, delta H, and delta S) associated with the reversible main phase transition of aqueous dispersions prepared from saturated diacyl phosphatidylcholines was studied by high-resolution differential scanning calorimetry. Two series of saturated diacyl phosphatidylcholines, grouped according to their molecular weights of 678 and 706, with a total number of 25 molecular species were examined. The normalized acyl chain-length difference between the sn-1 and sn-2 acyl chains for a given phospholipid molecule in the gel-state bilayer is expressed quantitatively by the structural parameter delta C/CL, and the values of delta C/CL for the two series of lipids under study vary considerably from 0.04 to 0.67. When the value of delta C/CL is within the range of 0.09-0.40, it was shown that the thermodynamic parameters are, to a first approximation, a linear function of delta C/CL with a negative slope. In addition, the experimental Tm values and the predicted Tm values put forward by Huang (Biochemistry (1991) 30, 26-30) are in very good agreement. Beyond the point of delta C/CL = 0.41, the influence of acyl chain-length asymmetry on the thermodynamic parameters deviates significantly from a linear function. In fact, within the range of delta C/CL values of 0.42-0.67, the thermodynamic parameters in the Tm (or delta H) vs. delta C/CL plot were shown to be bell-shaped with the maximal Tm (or delta H) at delta C/CL = 0.57. These results are discussed in terms of changes in the acyl chain packing modes of various phosphatidylcholine molecules within the gel-state bilayer in excess water.  相似文献   

13.
Effect of lipid physical state on the rate of peroxidation of liposomes.   总被引:2,自引:0,他引:2  
The effect of cholesterol on the rate of peroxidation of arachidonic acid and 1-palmitoyl-2-arachidonoyl phosphatidylcholine (PAPC) in dimyristoylphosphatidylcholine (DMPC) liposomes was examined above and below the phase transition temperature (Tm) of the lipid. The rate of peroxidation of arachidonic acid was more rapid below the phase transition temperature of the host lipid. At a temperature below the Tm (4 degrees C), increasing concentrations of cholesterol reduced the rate of peroxidation of arachidonic acid as judged by the production of thiobarbituric acid reactive substances. Above Tm (37 degrees C), cholesterol increased the rate of peroxidation of the fatty acid. Similarly, PAPC was peroxidized more rapidly at 4 degrees C than at 37 degrees C. However, cholesterol had little effect on the rate of peroxidation of PAPC at 4 degrees C. The rate of peroxidation of arachidonic acid was related to the lipid bilayer fluidity as judged by fluorescence anisotropy measurements of diphenylhexatriene. The rate of peroxidation increased slowly with increasing rigidity of the probe environment when the bilayer was relatively fluid and more rapidly as the environment became more rigid. The increase in the rate of peroxidation of arachidonic acid in the less fluid host lipid was unrelated to differences in iron binding or to transfer of arachidonic acid to the aqueous phase. Decreasing the concentration of arachidonic acid in DMPC to less than 2 mol% dramatically decreased the rate of peroxidation at 4 degrees C, suggesting that formation of clusters of fatty acids at 4 degrees C is required for rapid peroxidation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Differential scanning calorimetry (DSC) has been employed to study the effects of cholesterol on the phase transition of C(18):C(10) phosphatidylcholine (C(18):C(10)PC). C(18):C(10)PC is an asymmetric mixed-chain phosphatidylcholine known to form mixed-interdigitated structures below the transition temperature and form partially interdigitated lipid bilayers above the transition. Three types of samples were used. The treated sample is the lipid dispersion that had undergone three freeze-thaw cycles and stored at 4 degrees C for more than 48 h. The untreated sample was made by vortexing the dry lipid in 50 mM KCl, without the above-mentioned pretreatment. The cold-treated sample was prepared by incubating the treated sample at -20 degrees C for 15 d. There is no apparent difference in the DSC curves between the treated and cold-treated samples. The data derived from the treated samples seem to be more reproducible. The DSC curves between the cholesterol/C(18):C(10)PC and cholesterol/symmetric diacylphosphatidylcholine mixtures are different in three aspects: overall appearance, the cholesterol dependence of delta H, and the effect of cholesterol on the maximal transition temperature Tm, the onset temperature To, and the completion temperature Tc. for both the treated and untreated samples, the total enthalpy change delta H of the phase transition of C(18):C(10)PC decreases with increasing cholesterol content, approaching zero at approximately 25 mol%. This level is lower than the total enthalpy changes reported previously for the cholesterol/symmetric diacylphosphatidylcholine mixtures. Both the heating and cooling thermograms show that Tm, To, and Tc decrease with increasing cholesterol content. The decreasing rates of these temperatures with cholesterol are in the neighborhood of -0.24 degree per mol% of cholesterol.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have investigated the phase characteristics of 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC23PC), a phosphatidylcholine with diacetylenic groups in the acyl chains, and its saturated analog 1,2-ditricosanoyl-sn-glycero-3-phosphocholine (DTPC), using Fourier-transform infrared spectroscopy (FTIR). Previous studies on the phase behavior of DC23PC in H2O have shown that DC23PC exhibits: (1) formation of cylindrical structures ('tubules') by cooling fluid phase multilamellar vesicles (MLVs) through Tm (43 degrees C), and 2) metastability of small unilamellar vesicles (SUVs) in the liquid-crystalline state some 40 degrees C below Tm, with subsequent formation of a gel phase comprised of multilamellar sheets at 2 degrees C. The sheets form tubules when heated and cooled through Tm. FTIR results presented here indicate that as metastable SUVs are cooled toward the transition to bilayer sheets, spectroscopic changes occur before the calorimetric transition as measured by a reduction in the CH2 symmetric stretch frequency and bandwidth. In spite of the vastly different morphologies, the sheet gel phase formed from SUVs is spectroscopically similar to the tubule gel phase. The C-H stretch region of DC23PC gel phase shows bands at 2937 and 2810 cm-1 not observed in the saturated analog of DC23PC, which may be related to perturbations in the acyl chains introduced by the diacetylenic moiety. The narrow CH2 scissoring mode at 1470 cm-1 and the prominent CH2 wagging progression indicate that DC23PC gel phase was highly ordered acyl chains with extended regions of all-trans methylene segments. In addition, the 13 cm-1 reduction in the C = O stretch frequency (1733-1720 cm-1) during the induction of DC23PC gel phase indicates that the interfacial region is dehydrated and rigid in the gel phase.  相似文献   

16.
17.
B Babbitt  L Huang  E Freire 《Biochemistry》1984,23(17):3920-3926
The interactions of palmitoyl-alpha-bungarotoxin (PBGT) with dipalmitoylphosphatidylcholine (DPPC) bilayers have been studied by using high-sensitivity differential scanning calorimetry together with steady-state and time-resolved phosphorescence and fluorescence spectroscopy. The incorporation of PBGT into large single lamellar vesicles causes a decrease in the phospholipid phase transition temperature (Tm), a broadening of the heat capacity function, and a decrease in the enthalpy change associated with the phospholipid gel to liquid-crystalline transition. Analysis of the dependence of this decreased enthalpy change on the protein/lipid molar ratio indicates that each PBGT molecule exhibits a localized effect upon the bilayer, preventing approximately six lipid molecules from participating in the lipid phase transition. Additional calorimetric experiments indicate that binding to acetylcholine receptor enriched membranes causes a small increase in the Tm of the PBGT/DPPC vesicles. Steady-state fluorescence depolarization measurements employing 1,6-diphenyl-1,3,5-hexatriene (DPH) indicate that the association of PBGT with the phospholipid bilayer decreases the apparent order of the bulk lipid below Tm while increasing the order above Tm. These results have been further supported by rotational mobility measurements of erythrosin-labeled PBGT associated with giant (about 2-micron) unilamellar vesicles composed of dielaidoylphosphatidylcholine or dioleoylphosphatidylcholine using the time-dependent decay of delayed fluorescence/phosphorescence emission anisotropy. Rotational correlation times in the submillisecond time scale (about 30 microseconds) indicate that the protein is highly mobile in the fluid phase and that below Tm the rotational mobility is only slightly restricted.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Synthesis and phase transition chaaracteristics of aqueous dispersions of the homologous (12 : 0, 14 : 0, 16 : 0) diphosphatidylglycerols (cardiolipins) and phosphatidyldiacylglycerols are reported. Electron microscopy of the negatively stained aqueous dispersions reveals a characteristic lamellar structure suggesting that these phospholipid molecules are organized as bilayers in the aqueous dispersions. The phase transition temperature (Tm) and the enthalpy of transition (delta H) increase monotonically with chain length in the cardiolipin and phosphatidyldiacylglycerol series; Tm for phosphatidyldiacylglycerol is higher than that for cardiolipin of the same chain-length. The transition temperatures for the enantiomeric sn-3,3- and sn-1,1-phosphatidyldiacylglycerol and for the diastereomeric, meso-sn-1,3-phosphatidyldiacylglycerol are approximately the same. The molar enthalpy for the transition of cardiolipin-NH+4 bilayers is approximately twice the value for the phosphatidylcholines of the same chain length, i.e., the molar enthalpy per acyl chain is approximately the same in the two systems. The transition temperatures for metal ion salts of C16-cardiolipin exhibit a biphasic dependence upon the unhydrated ionic radii, i.e., the highest Tm is observed for Ca2+-cardiolipin and decreases for the salts of ions with smaller and larger ionic radii than that of Ca2+. The lowest Tm is observed for Rb+-cardiolipin. Monovalent metal salts of cardiolipin exhibit two phase transitions. This effect may result from different conformational packing of the four acyl chains due to differences in metal-phosphate binding.  相似文献   

19.
High resolution proton spin-lattice relaxation times (T1), spin-spin relaxation times (T2) and resonance linewidths were measured above the gel-to-liquid crystal transition temperature (Tm), in phosphatidylcholine bilayers possessing various degrees of intramolecular motional anisotrophy at the level of various alkyl chain proton groups. The experiments were designed to test the hypothesis that coupled trans-gauche isomerizations along the chains can be responsible for the anisotropic motion of phosphatidylcholine proton groups in bilayer membranes (Horwitz, A.F., Horsley, W.J. and Klein, M.O. (1972) Proc. Natl. Acad. Sci. U.S. 69,500). Systematic series of structural perturbations of the bilayer were achieved in mixed phosphatidylcholine/fatty acid and in mixed phosphatidylcholine bilayers where the degree of motional anisotrophy of the chains' proton groups was gradually reduced by progressively increasing the chain length disparity of the two components. The systematic T1 and T2 variations observed were interterpreted on the basis of the Woessner's treatment for computing the relaxation times of a spin pair reorienting randomly about an axis which, in turn, tumbles randomly (Woessner, D.E. (1962) J. Chem. Phys. 36, 1). The results confirmed in a qualitative sense the original hypothesis made by Horwitz et al. The time-averaged structural interpretations suggested by the mangetic relaxation studies are in agreement with low-angle X-ray diffraction results obtained below Tm. In addition, the T1 values evaluated at various temperatures in dipalmitoyl phosphatidylcholine vesicles incorporated with either 2H-labeled or unlabeled palmitic acid chains indicated that the average intermolecular contribution to the spin-lattice relaxation rate of the proton groups of the phosphatidylcholine chains appears comparable to the intramolecular term at temperatures moderately higher than Tm, but becomes less and less important as the temperature is further increased above the thermal transition.  相似文献   

20.
In an attempt to gain insight into the physiological role of phosphatidylinositol turnover enhanced by extracellular stimuli, the physical properties of artificial membranes (egg yolk phosphatidylcholine/bovine brain phosphatidylserine) containing phosphatidylinositol or diacylglycerol were studied by ESR using spin probes and freeze-fracture electron microscopy. Diacylglycerol lost both the ability to form lipid bilayer structures and its susceptibility to calcium ions. Yeast phosphatidylinositol included in dipalmitoylphosphatidylcholine liposomes lowered the phase transition temperature of dipalmitoylphosphatidylcholine and expanded the temperature range of phase transition. However, diacylglycerol at the same concentration did not undergo the effects caused by phosphatidylinositol but the phase transition temperature was slightly raised. Phase separation of phosphatidylserine induced by calcium ions was enhanced when the phosphatidylinositol was replaced by diacylglycerol in phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) mixtures. The mobility of phosphatidylcholine spin probe was decreased in phosphatidylcholine/phosphatidylserine/diacylglycerol (3:5:2, by molar ratio) liposomes compared with phosphatidylcholine/phosphatidylserine/phosphatidylinositol (3:5:2, by molar ratio) liposomes. An additional component from protonated stearic acid spin probes was observed in phosphatidylcholine/phosphatidylinositol (8:2, by molar ratio) liposomes at 40 degrees C, whereas the component was not seen in phosphatidylcholine/diacylglycerol (8:2, by molar ratio) liposomes. This may indicate the alteration of surface charge induced by the replacement of phosphatidylinositol by diacylglycerol. Indeed, in the presence of 1 mM Ca2+, the additional component was removed by an electrostatic interaction between Ca2+ and phosphatidylinositol molecules in phosphatidylcholine/phosphatidylinositol liposomes at 40 degrees C. These results support the hypothesis that the enhanced turnover of phosphatidylinositol may play a triggering role for various cellular responses to exogenous stimuli by altering membrane physical states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号