首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Low concentrations of cytochalasin B enhanced the T cell mitogenesis induced by concanavalin A (Con A) and interleukin 2 (IL-2). Mitogenesis was augmented by cytochalasin B given in the Con A-dependent early phase, or through T cell mitogenesis. Cytochalasin B did not enhance T cell mitogenesis when given only in the IL-2-dependent late phase. Use of the monoclonal antibody that directs the IL-2 receptor showed that cytochalasin B increased the expression of the IL-2 receptor induced by Con A. We concluded that cytochalasin b acts on an early phase of T cell mitogenesis and augments the expression of IL-2 receptor which enables certain nonresponsive T cells to respond to IL-2.  相似文献   

2.
Linkage between neutrophil degranulation and calcium discharge   总被引:1,自引:0,他引:1  
Calcium flux across organelle and plasma membranes is an important event in neutrophil activation. We measured calcium discharge into the media from neutrophils stimulated with formyl-methionyl-leucyl-phenylalanine after treatment with cytochalasin b. Cytochalasin markedly potentiated calcium efflux from stimulated neutrophils, and similarly promoted release of lysosomal enzymes into the media. Colchicine neither reproduced nor modified the cytochalasin effect. Neutrophil cytoplasts discharged very little calcium in response to stimulation, and discharge was not significantly altered by cytochalasin b. These findings indicate that neutrophil degranulation is accompanied by efflux of calcium into the media, and suggest that the neutrophil granules constitute a source of mobilizable calcium which could be used to modify the extracellular microenvironment.  相似文献   

3.
Cytochalasin promotes the progression of anti-immunoglobulin-treated B lymphocytes to S phase. However, the intracellular events induced by cytochalasin which may mediate signaling for progression have not been elucidated. In this study, the effect of cytochalasin on the level of intracellular free calcium in murine splenic B lymphocytes was assessed by using the fluorescent calcium indicator Indo-1. Cytochalasins A, B, D, and E induced a rapid and sustained elevation of intracellular free calcium. The calcium response to cytochalasin derived largely from the influx of extracellular calcium, although a small, transient elevation in intracellular calcium persisted when the suspension medium was made calcium-free with EGTA, implicating an intracellular source for a portion of the calcium response. Single cell fluorescence studies revealed that cytochalasin elicited a calcium response in most splenic B cells in suspension, indicating that this phenomenon is not restricted to a subpopulation of responding B cells. Phorbol esters inhibited the B cell calcium response to cytochalasin, and an established response to cytochalasin was rapidly and completely reversed by subsequently administered phorbol ester. T cells that lack the cytochalasin pathway showed a markedly diminished calcium response that was only apparent at higher cytochalasin concentration. However, B cells from xid-defective [CBA/N X DBA/2]F1 males, which fail to respond to anti-immunoglobulin plus cytochalasin, showed a calcium response to cytochalasin similar to that of phenotypically normal F1 females. These data, along with the finding that the rise in intracellular calcium occurred in naive B cells as well as B cells previously treated with anti-immunoglobulin, suggest that there is no clear association between the calcium response induced by cytochalasin and the ability of cytochalasin to stimulate progression to S phase. However, this effect of cytochalasin may suggest a connection between actin filaments and calcium influx in B cells.  相似文献   

4.
The adult corneal endothelium represents a noncycling cell population that resides as a monolayer on its basement membrane, Descemet's membrane. Evidence is presented for the first time, showing that mitotic regulation in this organized tissue, residing on its natural basement membrane, is coupled to microfilament integrity. When mitotically quiescent rat corneal endothelia are organ cultured in medium containing serum and cytochalasin B, low levels of mitosis are initiated. Supplementing the culture medium with either insulin or IGF-2 augments this response and results in increased cell density within the tissue monolayer. Fluorescence microscopy of actin using TRITC-conjugated phalloidin revealed that cellular circumferential microfilament bundles appear unaffected by cytochalasin B treatment, whereas the cytoplasmic microfilaments appear to be completely disrupted. These results suggest the possibility that the actin cytoskeleton is involved with the regulation of cell growth in the corneal endothelium.  相似文献   

5.
Mevalonic acid is capable of initiating DNA synthesis, morphologic transformation, and cell division in cultures of human peripheral blood lymphocytes. Pure populations of lymphocytes respond poorly to mevalonic acid, but their response can be enhanced by peripheral blood neutrophils. Addition of cytochalasin B (0.5-1.0 micrograms/ml), but not cytochalasin A, to mixed neutrophil-lymphocyte cultures enhances the response of lymphocytes to both Con A and mevalonate, but the increment in mevalonate-induced DNA synthesis (+343%) far exceeds the enhancement which cytochalasin B produces in the Con A response (+24%). As a consequence, the DNA synthetic response in mevalonate (10(-2) M) containing cultures averages 39% of the response to an optimal dose of Con A. The cytochalasin B-enhanced response of mixed neutrophil-lymphocyte cultures to mevalonate is abolished by prior X irradiation of the lymphocytes, or their pretreatment with mitomycin C, as well as by the addition of hydroxyurea to the cultures but is not altered by prior X irradiation or mitomycin C pretreatment of the neutrophil helper population. These experiments suggest that the enhancing effect of cytochalasin B in the response of mixed neutrophil-lymphocyte cultures to mevalonic acid results from its ability to potentiate a time-dependent conditioning effect on lymphocytes which neutrophils exert. The conditioning effect of neutrophils cannot be achieved by cell-free neutrophil lysosomal enzymes released by exocytosis, and reactive oxygen species potentially generated by neutrophils are not involved. Attempts to demonstrate the production by neutrophils of a soluble mediator induced by mevalonate in the presence of cytochalasin B were without success. In the presence of cytochalasin B, only the metabolically active R(-) enantiomeric form of mevalonate is capable of initiating DNA synthesis in mixed neutrophil-lymphocyte cultures. The cytochalasin B-potentiated response of mixed neutrophil-lymphocyte cultures to mevalonic acid is preferentially displayed in cultures containing E-rosette-negative, as opposed to E-rosette-positive, lymphocytes. These observations add to the growing knowledge about the relationship between mevalonate metabolism, DNA synthesis, and cell replication.  相似文献   

6.
The relationship between cell volume and the neural response to acidic stimuli was investigated by simultaneous measurements of intracellular pH (pHi) and cell volume in polarized fungiform taste receptor cells (TRCs) using 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) in vitro and by rat chorda tympani (CT) nerve recordings in vivo. CT responses to HCl and CO2 were recorded in the presence of 1 M mannitol and specific probes for filamentous (F) actin (phalloidin) and monomeric (G) actin (cytochalasin B) under lingual voltage clamp. Acidic stimuli reversibly decrease TRC pHi and cell volume. In isolated TRCs F-actin and G-actin were labeled with rhodamine phalloidin and bovine pancreatic deoxyribonuclease-1 conjugated with Alexa Fluor 488, respectively. A decrease in pHi shifted the equilibrium from F-actin to G-actin. Treatment with phalloidin or cytochalasin B attenuated the magnitude of the pHi-induced decrease in TRC volume. The phasic part of the CT response to HCl or CO2 was significantly decreased by preshrinking TRCs with hypertonic mannitol and lingual application of 1.2 mM phalloidin or 20 microM cytochalasin B with no effect on the tonic part of the CT response. In TRCs first treated with cytochalasin B, the decrease in the magnitude of the phasic response to acidic stimuli was reversed by phalloidin treatment. The pHi-induced decrease in TRC volume induced a flufenamic acid-sensitive nonselective basolateral cation conductance. Channel activity was enhanced at positive lingual clamp voltages. Lingual application of flufenamic acid decreased the magnitude of the phasic part of the CT response to HCl and CO2. Flufenamic acid and hypertonic mannitol were additive in inhibiting the phasic response. We conclude that a decrease in pHi induces TRC shrinkage through its effect on the actin cytoskeleton and activates a flufenamic acid-sensitive basolateral cation conductance that is involved in eliciting the phasic part of the CT response to acidic stimuli.  相似文献   

7.
An effective and inexpensive protocol for producing cytochalasins A and B is being disclosed to propose a viable method by which to examine the in vivo antineoplastic activity of these congeners in preclinical tumor-bearing mammalian models. In addition, we determine the maximum tolerated doses of cytochalasin B using multiple routes and formulations, characterize the tissue distribution of intravenous bolus cytochalasin B, and assess the in vivo antineoplastic activity of cytochalasin B in comparison in doxorubicin in Balb/c mice challenged intradermally with M109 murine lung carcinoma. We also examine the effects of cytochalasin B against several other murine neoplastic cell lines (Lewis lung, LA4, B16F10, and M5076). Finally, we examine a potential mechanism of the antimetastatic activity of cytochalasin B by observing the effects of the agent on the secretion of N-acetylglucosaminidase (GlcNACase) by B16BL6 and B16F10 murine melanomas in vitro. The results of the study can be summarized as follows: 1) Cytochalasin B can be safely administered intravenously, intraperitoneally, and subcutaneously in murine models, with the maximum tolerated dose of all routes of administration being increased by liposome encapsulation. 2) Cytochalasin B can significantly inhibit the growth of tumors in mice challenged with M109, Lewis lung, LA4, B16F10, or M5076, producing long-term survival against lung carcinomas and adenocarcinomas (M109, Lewis lung, and LA4) and B16F10 melanoma, but not M5076 sarcoma. These effects were comparable to intraperitoneally administered doxorubicin. 4) Low concentrations of cytochalasin B inhibit the secretion of GlcNACase, indicating that cytochalasin B may inhibit metastatic progression by mechanisms not directly associated with its influence on cell adhesion and motility.  相似文献   

8.
The effects were studied of cytochalasin B and N-formyl peptide (FMLP) in various concentrations on the morphology and degranulation (release of the granule contents lysozyme and beta-glucuronidase) of polymorphonuclear leukocytes (PMN) suspended in either Hanks' solution or 100% fresh heparinised plasma. PMN in low concentrations of FMLP in Hanks' solution or in plasma alone showed "long" polarisation and did not degranulate. Cytochalasin B caused the PMN in low concentrations of FMLP or in plasma to become spherical, but no degranulation of the cells occurred. High concentrations of FMLP in Hanks' solution induced "short" polarisation of PMN with slight degranulation of the cells. Cytochalasin B together with high concentrations of FMLP in Hanks' solution induced zeiosis ("blebbing") and marked degranulation of the cells. However, cytochalasin B and high concentrations of FMLP in plasma caused PMN to exhibit "short" polarised morphology and markedly degranulate. These results suggest that degranulation of PMN can be associated with either the "short" polarised shape of the cells or zeiosis, but not the "long" polarised form. Furthermore, the results indicate that plasma, although capable of causing "long" polarisation of the cells, inhibits zeiosis without affecting the degranulation of the cells induced by cytochalasin B.  相似文献   

9.
The effects of cytochalasin B on functional and physical macrophage-lymphocyte interaction have been examined. Cytochalasin B, an inhibitor of a variety of membrane activities blocks antigen-dependent bindings of immune lymphocytes to macrophages and antigen-triggered lymphocytes proliferation if added at the initiation of culture. Cytochalasin B becomes progressively less inhibitory if addition is delayed by increasing intervals from the onset of culture. Under these conditions neither antigen handling by macrophages nor the proliferative response of lymphocytes to PHA is inhibited by cytochalasin B. These data are interpreted to suggest that cytochalasin B inhibits antigen-specific macrophage-lymphocyte interaction either by inhibition of an initial antigen-independent phase of macrophage-lymphocyte interaction or by interfering with a lymphocyte membrane event necessary for the interaction of the antigen-specific lymphocyte receptor with the macrophage-bound antigenic signal.  相似文献   

10.
At any instant, the human erythrocyte sugar transporter presents at least one sugar export site but multiple sugar import sites. The present study asks whether the transporter also presents more than one sugar exit site. We approached this question by analysis of binding of [3H]cytochalasin B (an export conformer ligand) to the human erythrocyte sugar transporter and by analysis of cytochalasin B modulation of human red blood cell sugar uptake. Phloretin-inhibitable cytochalasin B binding to human red blood cells, to human red blood cell integral membrane proteins, and to purified human red blood cell glucose transport protein (GluT1) displays positive cooperativity at very low cytochalasin B levels. Cooperativity between sites and K(d(app)) for cytochalasin B binding are reduced in the presence of intracellular ATP. Red cell sugar uptake at subsaturating sugar levels is inhibited by high concentrations of cytochalasin B but is stimulated by lower (<20 nM) concentrations. Increasing concentrations of the e1 ligand forskolin also first stimulate then inhibit sugar uptake. Cytochalasin D (a cytochalasin B analogue that does not interact with GluT1) is without effect on sugar transport over the same concentration range. Cytochalasin B and ATP binding are synergistic. ATP (but not AMP) enhances [3H]cytochalasin B photoincorporation into GluT1 while cytochalasin B (but not cytochalasin D) enhances [gamma-32P]azidoATP photoincorporation into GluT1. We propose that the red blood cell glucose transporter is a cooperative tetramer of GluT1 proteins in which each protein presents a translocation pathway that alternates between uptake (e2) and export (e1) states but where, at any instant, two subunits must present uptake (e2) and two subunits must present exit (e1) states.  相似文献   

11.
Over a concentration range of o-5-10 mug/cm-3, cytochalasin B caused a biphasic change in the electrophoretic mobility of disaggregated neural retina cells. An initial rise in anodal mobility at low concentrations of the drug was transformed into a reduction in the mobility below that of the control at a concentration of 10 mug/cm-3. The effect of cytochalasin B was found to be reversible by washing treated cells in cytochalasin B-free media. This was investigated at a concentration of cytochalasin at which the greatest difference existed between the mobilities of the control and experimental cell suspensions. Reaggregation of cell dispersions failed to show any significant difference in the rate of aggregation between cytochalasin B-treated cells and the control. Scanning electron microscopy of cells fixed while in suspension also showed little significant change in the surface morphology upon application of cytochalasin B. In high concentrations of the drug cells appeared somewhat smoother in outline, but no correlation was found between changes in surface morphology and the variations in cell electrophoretic mobility. It is concluded that the observed changes in electrophoretic mobility may be attributed to a binding of cytochalasin B to the cell membrane. This lends support to the hypothesis that the primary site of action of cytochalasin B may be the plasma membrane.  相似文献   

12.
The subcellular distribution of the Ah receptor from the mouse hepatoma line, Hepa-1, was investigated following cytochalasin B treatment and cell enucleation. Probing the resultant cytoplast and nucleoplast fractions with radiolabelled tetrachlorodibenzo-p-dioxin (TCDD) revealed the presence of a specifically bound peak of receptor only in the cytoplast fraction. However, the quantity of receptor recovered in these experiments was only 10–12% of the expected value. We therefore undertook an investigation to determine the fate of the Ah receptor in the presence of cytochalasin B. Incubation of Hepa-1 cells with this compound resulted in a rapid loss or inactivation of cytosolic binding activity with a concomitant decrease in the amount of receptor partitioned into the nucleus at all time periods examined. Control experiments indicated that cytochalasin B did not compete with TCDD for binding to the Ah receptor and furthermore, that its mechanism of action could not be attributed to a non-specific effect on all cytosolic proteins. The results obtained are discussed in relation to the proposed models for induction by the estrogen and glucocorticoid binding receptors.  相似文献   

13.
ACTH inhibits DNA synthesis in normal rat and mouse tumor Y-1 adrenocortical cells within the same concentration range that it stimulates steroidogenesis. These processes can be independently regulated as demonstrated by the divergent actions of cytochalasin B on these cells. In the normal cells, cytochalasin B does not increase steroidogenesis in serum-free or serum-containing media, and it decreases the stimulation produced by ACTH. In the absence of serum, the Y-1 cells respond in a similar way. However, in serum-containing media, cytochalasin B increases steroidogenesis in these cells and does not inhibit the response to ACTH. In both cell types, cytochalasin B inhibits [3H]thymidine incorporation into DNA by a mechanism different than that of ACTH. In the Y-1 cells, this inhibition is caused by a decreased uptake of [3H]thymidine into the cell, which probably reflects a decreased transport across the cell membrane. In the normal cells, cytochalasin B, like ACTH, does not affect [3H]thymidine transport, but it decreases DNA synthesis much more rapidly than does ACTH. This inhibition may be the result of the disruption of microfilaments by cytochalasinB, because our evidence indicates that it is not caused by a decrease in glucose uptake by the cells.  相似文献   

14.
Studies were made on the effects of baicalein (5,6,7-trihydroxyflavone) on leukotrienes B4 and C4 biosyntheses and degranulation induced by calcium ionophore A23187 (A23187) in human polymorphonuclear leukocytes. Baicalein inhibited A23187-induced biosynthesis of leukotrienes B4 and C4 in human polymorphonuclear leukocytes. The concentration of baicalein required for 50% inhibition (IC50) of leukotrienes B4 and C4 formations was 1.46.10(-6) and 6.00.10(-7) M, respectively, using 1.0 microgram/ml of A23187. In addition, baicalein dose-dependently inhibited beta-glucuronidase and lysozyme releases induced by A23187, leukotriene B4 plus cytochalasin B and platelet-activating factor plus cytochalasin B. Furthermore, baicalein was found to inhibit dose-dependently Ca2+ uptake into the cells and Ca2+ mobilization from the intracellular stores.  相似文献   

15.
The loss of epidermal growth factor (EGF) binding activity on cultured murine 3T3 cells exposed to EGF (EGF receptor down regulation) was determined in colchicine treated cells, cytochalasin B treated cells, and untreated cells. Neither colchicine nor cytochalasin B altered the affinity of the receptor for EGF, but colchicine decreased maximal EGF binding activity by 20%. The maximal extent of EGF receptor down regulation was similar in colchicine treated cells and cytochalasin B treated cells, but the rate of receptor down regulation was higher in cytochalasin B treated cells. Cytoplasts produced by subjecting cytochalasin B treated cells adhering to the substratum to centrifugal force responded to EGF with nearly normal down regulation kinetics. The results suggest that the cytoskeleton is not obligatorily involved in EGF-induced EGF receptor down regulation.  相似文献   

16.
We have found that arachidonic acid rapidly and selectively induces the release of lysosomal enzymes from cytochalasin B treated rabbit peritoneal neutrophils. 5, 8, 11, 14-eicosatetraynoic acid inhibits the arachidonate induced release with an apparent KD of 1.5 × 10?6M. 5,8,11,14-eicosatetraynoic acid (2.5 × 10?5M also inhibits the chemotactic factors and the A23187 induced release in the presence of cytochalasin B but does not affect the degranulation induced by A23187 alone. These observations strongly suggest a role for arachidonate metabolites in rabbit neutrophil physiology.  相似文献   

17.
The size increase of skin epithelial cells during aging is well-known. Here we demonstrate that treatment of aging cells with cytochalasin B substantially decreases cell size. This decrease was demonstrated on a mouse model and on human skin cells in vitro. Six nude mice were treated by topical application of cytochalasin B on skin of the dorsal left midsection for 140 days (the right side served as control for placebo treatment). An average decrease in cell size of 56±16% resulted. A reduction of cell size was also observed on primary human skin epithelial cells of different in vitro age (passages from 1 to 8). A cell strain obtained from a pool of 6 human subjects was treated with cytochalasin B in vitro for 12 hours. We observed a decrease in cell size that became statistically significant and reached 20–40% for cells of older passage (6–8 passages) whereas no substantial change was observed for younger cells. These results may be important for understanding the aging processes, and for cosmetic treatment of aging skin.  相似文献   

18.
Summary The effects of colchicine and cytochalasin B on the structure of dictyosomes of maize root tips were studied. Colchicine did not significantly affect dictyosome structure or change the distribution of dictyosome-derived secretory vesicles. Cytochalasin B did not significantly change dictyosome structure or intercisternal fibers, but did alter markedly the distribution of the secretory vesicles in both the epidermal and outer cap cells. With cytochalasin B, the vesicles accumulated in a region close to their site of formation and did not migrate to the cell surface. The results show that a cytochalasin B-sensitive subcellular component is involved in the vectorial movement of secretory vesicles from sites of formation at dictyosomes to sites of fusion at the cell surface.  相似文献   

19.
The cytochalasins stimulate steroid secretion of Y-1 adrenal tumor cells two-to threefold. The order of potencies is cytochalasin E is greater than D is greater than B, but the maximum response is the the same and always less than with ACTH. Like that with ACTH, the stimulation has a rapid onset, is easily reversible, is inhibited by cucloheximide and aminoglutethimide, and occurs at a stage before pregnenolone. Although the cytochalasin, like ACTH, produce cell rounding, it is shown that this morphological change is not necessarily coupled to steridogenesis. Unlike ACTH, cytochalasin B does not measurably increase cellular levels of cAMP at concentrations that lead to maximal steroidogenesis. The cytochalasin B-induced stimulation of steroidogenesis, unlike the short-term ACTH effect, fails to occur in the absence of serum. This lack of response can be corrected by even low concentrations of human high density lipoproteins (HDL) but not by low density lipoproteins (LDL). We, therefore, propose that cytochalasin B enhances the availability of cholesterol bound to HDL for steroidogenesis by Y-1 adrenal cells.  相似文献   

20.
Differences in cell morphology, concanavalin A-induced receptor redistributions, and the cooperativity of the inhibition of 5'-nucleotidase (AMPase) by concanavalin A (Con A) have been investigated in ascites sublines of the 13762 rat mammary adenocarcinoma cells treated with microfilament- and microtubule-perturbing drugs. By scanning electron microscopy MAT-C1 cells exhibit a highly irregular surface, covered with microvilli extending as branched structures from the cell body. MAT-A, MAT-B, and MAT-B1 cells have a more normal appearance, with unbranched microvilli, ruffles, ridges, and blebs associated closely with the cell body. MAT-C cells have an intermediate morphology. Treatment of MAT-A, MAT-B, or MAT-B1 cells with Con A causes rapid redistribution of Con A receptors. Both cytochalasins and colchicine cause alternations in the receptor redistributions. Receptors on MAT-C1 cells are highly resistant to redistribution, even in the presence of cytoskeletal perturbant drugs. The cooperativity of the inhibition of AMPase by Con A was investigated in MAT-A and MAT-C1 cells. Untreated cells exhibit no cooperativity. If either subline is treated with colchicine, cytochalasin B or D, or dibucaine, cooperativity is observed. Lumicolchicine has no effect. Theophylline or dibutyryl cyclic AMP prevents the effects of either colchicine or cytochalasin. The concentration required for half-maximal induction of cooperativity is 0.3--0.4 microM for both colchicine and cytochalasin D, which is in the appropriate range for specific microtubule and microfilament disruptions. The effectiveness of the cytochalasins (E greater than D greater than B) is consistent with their known effects on microfilaments. No direct correlation was observed between the induction of cooperativity and drug-induced changes in Con A receptor redistribution or cell morphology. The morphology of MAT-A cells is grossly altered by cytochalasins or dibucaine and somewhat less by colchicine. MAT-C1 cells exhibit more minor alterations in morphology as a result of these drug treatments. The results of this study indicate that the inhibition of AMPase, which is a Con A receptor, is a different process from the redistribution of the bulk of the Con A receptors, possibly short range membrane interactions rather than global effects on the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号