首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Normal processing of Alzheimer's beta-amyloid precursor protein (APP) is markedly stimulated by phorbol esters, but the underlying mechanisms have yet to be fully understood. In this study, we observed that: (a) Phorbol 12,13-dibutyrate (PDBu)-stimulated APP secretion in cultured SH-SY5Y neuroblastoma and fibroblast cells was blocked by EGTA and calpain inhibitors in a concentration-dependent manner, but not by other protease inhibitors. (b) Secretion of fibronectin, another secretory protein tested for comparison, was enhanced by PDBu, but insensitive to calpain inhibitors. (c) PDBu stimulated intracellular calpain activity as measured by the hydrolysis of a fluorogenic calpain substrate. (d) PDBu also induced rapid proteolysis of two endogenous substrates of calpains, i.e., tau and microtubule-associated protein-2 (MAP-2) and the proteolysis was blocked by EGTA and calpain inhibitors. Taken together, these results suggest that stimulation of APP alpha-processing by PDBu is through a mechanism that involves the activation of Ca(2+) and, most notably, calpain. The implications of the findings are discussed in relation to the regulatory mechanism of APP alpha-processing.  相似文献   

2.
The carboxy-terminal ends of the 40- and 42-amino acids amyloid beta-protein (Abeta) may be generated by the action of at least two different proteases termed gamma(40)- and gamma(42)-secretase, respectively. To examine the cleavage specificity of the two proteases, we treated amyloid precursor protein (APP)-transfected cell cultures with several dipeptidyl aldehydes including N-benzyloxycarbonyl-Leu-leucinal (Z-LL-CHO) and the newly synthesized N-benzyloxycarbonyl-Val-leucinal (Z-VL-CHO). All dipeptidyl aldehydes tested inhibited production of both Abeta1-40 and Abeta1-42. Changes in the P1 and P2 residues of these aldehydes, however, indicated that the amino acids occupying these positions are important for the efficient inhibition of gamma-secretases. Peptidyl aldehydes inhibit both cysteine and serine proteases, suggesting that the two gamma-secretases belong to one of these mechanistic classes. To differentiate between the two classes of proteases, we treated our cultures with the specific cysteine protease inhibitor E-64d. This agent inhibited production of secreted Abeta1-40, with a concomitant accumulation of its cellular precursor indicating that gamma(40)-secretase is a cysteine protease. In contrast, this treatment increased production of secreted Abeta1-42. No inhibition of Abeta production was observed with the potent calpain inhibitor I (acetyl-Leu-Leu-norleucinal), suggesting that calpain is not involved. Together, these results indicate that gamma(40)-secretase is a cysteine protease distinct from calpain, whereas gamma(42)-secretase may be a serine protease. In addition, the two secretases may compete for the same substrate. Dipeptidyl aldehyde treatment of cultures transfected with APP carrying the Swedish mutation resulted in the accumulation of the beta-secretase C-terminal APP fragment and a decrease of the alpha-secretase C-terminal APP fragment, indicating that this mutation shifts APP cleavage from the alpha-secretase site to the beta-secretase site.  相似文献   

3.
Jolly-Tornetta C  Wolf BA 《Biochemistry》2000,39(49):15282-15290
Cleavage of amyloid precursor protein (APP) by beta-secretase generates beta-amyloid (Abeta), the major component of senile plaques in Alzheimer's disease. Cleavage of APP by alpha-secretase prevents Abeta formation, producing nonamyloidogenic secreted APPs products. PKC-regulated APP alpha-secretase cleavage has been shown to involve tumor necrosis factor alpha (TNF-alpha) converting enzyme (TACE). To determine the location of APP cleavage, we examined PKC-regulated APPs secretion by examining cell surface versus intracellular APP in CHO cells stably expressing APP(695) (CHO695). We demonstrate that PKC regulates cell surface and intracellular APP cleavage. The majority of secreted APPs originates from the intracellular compartment, and PKC does not cause an increase in APP trafficking to the cell surface for cleavage. Therefore, intracellular APP regulated by PKC must be cleaved at an intracellular site. Experiments utilizing Brefeldin A suggest APP cleavage occurs at the Golgi or late in the secretory pathway. Experiments using TAPI, an inhibitor of TACE, demonstrate PKC-regulated APPs secretion from the cell surface is inhibited after pretreatment with TAPI, and APPs secretion from the intracellular pool is partially inhibited after pretreatment with TAPI. These findings suggest PKC-regulated APP cleavage occurs at multiple locations within the cell and both events appear to involve TACE.  相似文献   

4.
Non-amyloidogenic alpha-secretase processing of amyloid precursor protein (APP) is stimulated by protein kinase C (PKC). Levels and activity of PKC are decreased in sporadic Alzheimer's disease skin fibroblasts. We investigated whether alterations in PKC and PKC-mediated APP processing occur also in fibroblasts established from individuals with familial Alzheimer's disease APP KM670/671NL, PS1 M146V and H163Y mutations. These pathogenic mutations are known to alter APP metabolism to increase Abeta. PKC activities, but not levels, were decreased by 50% in soluble fractions from sporadic Alzheimer's disease cases. In contrast, familial Alzheimer's disease fibroblasts showed no significant changes in PKC enzyme activity. Fibroblasts bearing the APP KM670/671NL mutation showed no significant differences in either PKC levels or PKC-mediated soluble APP (APPs) secretion, compared to controls. Fibroblasts bearing PS1 M146V and H163Y mutations showed a 30% increase in soluble PKC levels and a 40% decrease in PKC-mediated APPs secretion. These results indicate that PKC deficits are unlikely to contribute to increased Abeta seen with APP and PS1 mutations, and also that PS1 mutations decrease alpha-secretase derived APPs production independently of altered PKC activity.  相似文献   

5.
Jolly-Tornetta C  Wolf BA 《Biochemistry》2000,39(25):7428-7435
Cleavage of amyloid precursor protein (APP) by beta-secretase generates beta-amyloid (Abeta), the major component of senile plaques in Alzheimer's disease. Cleavage of APP by alpha-secretase prevents Abeta formation, producing nonamyloidogenic APP products. Protein kinase C (PKC) has been shown to regulate APPs secretion, and PKCalpha and PKCepsilon have been implicated in APPs secretion in fibroblasts. This study examined the PKC isoform involved in regulated APPs secretion in human NT2N neurons and in CHO cells stably expressing APP(695). Inhibition of PMA-induced APPs secretion with the PKC inhibitors Calphostin C and GF109203X demonstrated that PKC is involved in PMA-regulated APPs secretion in NT2N cells. The specific PKC isoforms present in NT2N and CHO695 cells were identified, and PKCalpha and PKCepsilon were found to translocate from cytosol to membranes in NT2N and CHO695 cells. Translocation of PKC to the membrane allows for activation of the enzyme, as well as for positioning of the enzyme close to its substrate. Long-term PMA treatment led to complete downregulation of PKCalpha in NT2N cells and to downregulation of PKCalpha and PKCepsilon in CHO695 cells. PKCalpha downregulation in the NT2N cells resulted in loss of PMA-regulated APPs secretion and a substantial reduction in constitutive APPs secretion. Downregulation of PKCalpha and PKCepsilon in CHO695 cells resulted in loss of PMA-regulated APPs secretion; however, constitutive APPs secretion was unaffected. These findings suggest that PKCalpha is involved in PMA-regulated APPs secretion in NT2N cells and PKCalpha and/or PKCepsilon is involved in PMA-regulated APPs secretion in CHO695 cells.  相似文献   

6.
Calpain is secreted by intra-articular synovial cells and degrades the main components of cartilage matrix proteins, proteoglycan, and collagen, causing cartilage destruction. Matrix metalloproteinase-3 (MMP-3) has also been detected in synovial fluid and serum, and is involved in the development and progression of rheumatoid arthritis by degradation of the extracellular matrix and cartilage destruction. To investigate the relationship between calpain and MMP-3 in rheumatic inflammation, we utilized the rheumatic synovial cell line, MH7A. Tumor necrosis factor (TNF-alpha) stimulation-induced increased expression of mu-calpain, m-calpain, and MMP-3 in these cells, as well as the release of calpain and MMP-3 into the culture medium. The calpain inhibitors, ALLN (calpain inhibitor I) and calpeptin, did not affect the intracellular expression of MMP-3, but reduced the secretion of MMP-3 in a concentration-dependent manner. Down-regulation of mu- but not m-calpain by small interfering RNAs abolished TNF-alpha-induced MMP-3 release from the synovial cells. These findings suggest that calpain, particularly mu-calpain, regulates MMP-3 release by rheumatic synovial cells, in addition to exerting its own degradative action on cartilage.  相似文献   

7.
The calpains are a family of cysteine proteases with closely related amino acid sequences, but a wide range of Ca(2+) requirements (K(d)). For m-calpain, K(d) is approximately 325microM, for mu-calpain it is approximately 50microM, and for calpain 3 it is not strictly known but may be approximately 0.1microM. On the basis of previous structure determination of m-calpain we postulated that two regions of the calpain large subunits, the N-terminal peptide (residues 1-20) and a domain III-IV linker peptide (residues 514-530 in m-calpain) were important in defining K(d). The mutations Lys10Thr in the N-terminal peptide, and Glu517Pro in the domain linker peptide, reduced K(d) of m-calpain by 30% and 42%, respectively, revealing that these two regions are functionally important. The increased Ca(2+)-sensitivity of these mutants demonstrate that the Lys10-Asp148 salt link and the short beta-sheet interaction involving Glu517 are factors contributing to the high K(d) of m-calpain. Though these two regions are physically remote from the active site and Ca(2+)-binding site, they play significant roles in regulating the response of calpain to Ca(2+). Differences in these interactions in mu-calpain and in calpain 3 are also consistent with their progressively lower K(d) values.  相似文献   

8.
Deposition of plaques containing Abeta is considered important in the pathogenesis of Alzheimer's disease. Phorbol esters that activate protein kinase C (PKC) promote alpha-secretase-mediated processing of the beta amyloid precursor protein (APP), which generally reduces formation of Abeta. To determine which PKC isozymes mediate this process, we studied CHO cells that express human APP751. Phorbol 12-myristate, 13-acetate (PMA)-stimulated APP secretion, which was reduced by a general PKC inhibitor bisindoylmaleimide I, but not by G? 6976, which inhibits PKCalpha, beta, gamma, and mu. Since PKCdelta and epsilon were the only other PMA-sensitive isozymes present, we studied cells that express selective peptide inhibitors of these isozymes. Expression of the PKCepsilon inhibitor inhibited PMA-induced APPs secretion and suppression of Abeta production. In contrast, the PKCdelta inhibitor had no effect. These results provide evidence that PKCepsilon decreases Abeta production by promoting alpha-secretase mediated cleavage of APP.  相似文献   

9.
The amyloid beta-protein (Abeta), implicated in the pathogenesis of Alzheimer's disease (AD), is a proteolytic metabolite generated by the sequential action of beta- and gamma-secretases on the amyloid precursor protein (APP). The two main forms of Abeta are 40- and 42-amino acid C-terminal variants, Abeta40 and Abeta42. We recently described a difluoro ketone peptidomimetic (1) that blocks Abeta production at the gamma-secretase level [Wolfe, M. S., et al. (1998) J. Med. Chem. 41, 6-9]. Although designed to inhibit Abeta42 production, 1 also effectively blocked Abeta40 formation. Various amino acid changes in 1 still resulted in inhibition of Abeta40 and Abeta42 production, suggesting relatively loose sequence specificity by gamma-secretase. The alcohol counterparts of selected difluoro ketones also lowered Abeta levels, indicating that the ketone carbonyl is not essential for activity and suggesting that these compounds inhibit an aspartyl protease. Selected compounds inhibited the aspartyl protease cathepsin D but not the cysteine protease calpain, corroborating previous suggestions that gamma-secretase is an aspartyl protease with some properties similar to those of cathepsin D. Also, since the gamma-secretase cleavage sites on APP are within the transmembrane region, we consider the hypothesis that this region binds to gamma-secretase as an alpha-helix and discuss the implications of this model for the mechanism of certain forms of hereditary AD.  相似文献   

10.
We investigated the effects of different apolipoprotein E (apoE) isoforms, Abeta (1-42), and apoE/Abeta complexes on PKC-alpha translocation and APP processing in human SH-SY5Y neuroblastoma cells and fibroblasts. Treatment of cells with either 10 nM apoE3 or apoE4, 10 microM Abeta (1-42), or apoE/Abeta complexes induced significant translocation of PKC-alpha in both cell types. Effects were seen using both human recombinant apoE and apoE loaded into beta-very low density lipoprotein (beta-VLDL) particles. Time course (5-24 h) studies of APP processing revealed that some conditions induced transient or moderate increases in the secretion of proteins detected by 22C11. In contrast, the secretion of alpha-secretase cleaved APP was either not modified or transiently decreased, as determined by immunoblotting with the antibody 6E10. These results suggest that apoE, Abeta (1-42) and apoE/Abeta complexes can modulate PKC activity but do not have major consequences for APP processing. These effects could contribute to the reported PKC alterations seen in AD. However, it is unlikely that the contribution of different apoE isoforms to AD pathology occurs via effects on APP processing.  相似文献   

11.
The release of amyloidogenic amyloid-beta peptide (Abeta) from amyloid-beta precursor protein (APP) requires cleavage by beta- and gamma-secretases. In contrast, alpha-secretase cleaves APP within the Abeta sequence and precludes amyloidogenesis. Regulated and unregulated alpha-secretase activities have been reported, and the fraction of cellular alpha-secretase activity regulated by protein kinase C (PKC) has been attributed to the ADAM (a disintegrin and metalloprotease) family members TACE and ADAM-10. Although unregulated alpha-secretase cleavage of APP has been shown to occur at the cell surface, we sought to identify the intracellular site of PKC-regulated alpha-secretase APP cleavage. To accomplish this, we measured levels of secreted ectodomains and C-terminal fragments of APP generated by alpha-secretase (sAPPalpha) (C83) versus beta-secretase (sAPPbeta) (C99) and secreted Abeta in cultured cells treated with PKC and inhibitors of TACE/ADAM-10. We found that PKC stimulation increased sAPPalpha but decreased sAPPbeta levels by altering the competition between alpha- versus beta-secretase for APP within the same organelle rather than by perturbing APP trafficking. Moreover, data implicating the trans-Golgi network (TGN) as a major site for beta-secretase activity prompted us to hypothesize that PKC-regulated alpha-secretase(s) also reside in this organelle. To test this hypothesis, we performed studies demonstrating proteolytically mature TACE intracellularly, and we also showed that regulated alpha-secretase APP cleavage occurs in the TGN using an APP mutant construct targeted specifically to the TGN. By detecting regulated alpha-secretase APP cleavage in the TGN by TACE/ADAM-10, we reveal ADAM activity in a novel location. Finally, the competition between TACE/ADAM-10 and beta-secretase for intracellular APP cleavage may represent a novel target for the discovery of new therapeutic agents to treat Alzheimer's disease.  相似文献   

12.
BACE1 suppression by RNA interference in primary cortical neurons   总被引:19,自引:0,他引:19  
Extracellular deposition of amyloid-beta (Abeta) aggregates in the brain represents one of the histopathological hallmarks of Alzheimer's disease (AD). Abeta peptides are generated from proteolysis of the amyloid precursor proteins (APPs) by beta- and gamma-secretases. Beta-secretase (BACE1) is a type I integral membrane glycoprotein that can cleave APP first to generate C-terminal 99- or 89-amino acid membrane-bound fragments containing the N terminus of Abeta peptides (betaCTF). As BACE1 cleavage is an essential step for Abeta generation, it is proposed as a key therapeutic target for treating AD. In this study, we show that small interfering RNA (siRNA) specifically targeted to BACE1 can suppress BACE1 (but not BACE2) protein expression in different cell systems. Furthermore, BACE1 siRNA reduced APP betaCTF and Abeta production in primary cortical neurons derived from both wild-type and transgenic mice harboring the Swedish APP mutant. The subcellular distribution of APP and presenilin-1 did not appear to differ in BACE1 suppressed cells. Importantly, pretreating neurons with BACE1 siRNA reduced the neurotoxicity induced by H2O2 oxidative stress. Our results indicate that BACE1 siRNA specifically impacts on beta-cleavage of APP and may be a potential therapeutic approach for treating AD.  相似文献   

13.
The free Ca(2+) concentrations required for half-maximal proteolytic activity of m-calpain are in the range of 400-800 microM and are much higher than the 50-500 nM free Ca(2+) concentrations that exist in living cells. Consequently, a number of studies have attempted to find mechanisms that would lower the Ca(2+) concentration required for proteolytic activity of m-calpain. Although autolysis lowers the Ca(2+) concentration required for proteolytic activity of m-calpain, 90-400 microM Ca(2+) is required for a half-maximal rate of autolysis of m-calpain, even in the presence of phospholipid. It has been suggested that mu-calpain, which has a lower Ca(2+) requirement than m-calpain, might proteolyze m-calpain and reduce its Ca(2+) requirement to a level that would allow it to be active at physiological Ca(2+) concentrations. We have incubated m-calpain with mu-calpain for 60 min at a ratio of 1:50 mu-calpain:m-calpain, in the presence of 50 microM free Ca(2+); this Ca(2+) concentration is high enough for more than half-maximal activity of mu-calpain, but does not activate m-calpain. Under these conditions, mu-calpain caused no detectable proteolytic degradation of the m-calpain polypeptide and did not change the Ca(2+) concentration required for proteolytic activity of m-calpain. mu-Calpain also did not degrade the m-calpain polypeptide at 1000 microM Ca(2+), which is a Ca(2+) concentration high enough to completely activate m-calpain. It seems unlikely that mu-calpain could act as an "activator" of m-calpain in living cells. Because m-calpain rapidly degrades itself (autolyzes) at 1000 microM Ca(2+) and because the subsite specificities of mu- and m-calpain are very similar if not identical, failure of mu-calpain to rapidly degrade m-calpain at 1000 microM Ca(2+) suggests a unique role of autolysis in calpain function.  相似文献   

14.
Effect of Ca2+ on binding of the calpains to calpastatin   总被引:1,自引:0,他引:1  
Autolyzed mu-calpain, unautolyzed mu-calpain, autolyzed m-calpain, and unautolyzed m-calpain (mu-calpain is the micromolar Ca2+-requiring proteinase, m-calpain is the millimolar Ca2+-requiring proteinase) were passed through a calpastatin-affinity column at different free Ca2+ concentrations, and binding of the calpains to calpastatin was compared with proteolytic activity of that calpain at each Ca2+ concentration. Unautolyzed m-calpain, autolyzed m-calpain, and autolyzed mu-calpain required less Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Unautolyzed mu-calpain, however, required slightly more Ca2+ for half-maximal binding to calpastatin than for half-maximal activity. Half-maximal binding of oxidatively inactivated mu- or m-calpain to calpastatin required approximately the same Ca2+ concentrations as half-maximal binding of unautolyzed mu- or m-calpain, respectively, to calpastatin. Binding of unautolyzed m-calpain and autolyzed mu-calpain to calpastatin occurred over a wide range of Ca2+ concentrations, and it seems likely that two or more Ca2+-binding sites with different Ca2+-binding constants are involved in binding of the calpains to calpastatin. Proteolytic activity occurs at different Ca2+ concentrations than calpastatin binding, suggesting a second set of Ca2+-binding sites associated with proteolytic activity. Third and fourth sets of Ca2+-binding sites may be involved in autolysis and in binding to phosphatidylinositol or cell membranes; these four Ca2+-dependent properties of the calpains may require the eight potential Ca2+-binding sites that amino acid sequences predict are present in the calpain molecules.  相似文献   

15.
Ectodomain shedding of the amyloid precursor protein (APP) by the two proteases alpha- and beta-secretase is a key regulatory event in the generation of the Alzheimer disease amyloid beta peptide (Abeta). beta-Secretase catalyzes the first step in Abeta generation, whereas alpha-secretase cleaves within the Abeta domain, prevents Abeta generation, and generates a secreted form of APP with neuroprotective properties. At present, little is known about the cellular mechanisms that control APP alpha-secretase cleavage and Abeta generation. To explore the contributory pathways, we carried out an expression cloning screen. We identified a novel member of the sorting nexin (SNX) family of endosomal trafficking proteins, called SNX33, as a new activator of APP alpha-secretase cleavage. SNX33 is a homolog of SNX9 and was found to be a ubiquitously expressed phosphoprotein. Exogenous expression of SNX33 in cultured cells increased APP alpha-secretase cleavage 4-fold but surprisingly had little effect on beta-secretase cleavage. This effect was similar to the expression of the dominant negative dynamin-1 mutant K44A. SNX33 bound the endocytic GTPase dynamin and reduced the rate of APP endocytosis in a dynamin-dependent manner. This led to an increase of APP at the plasma membrane, where alpha-secretase cleavage mostly occurs. In summary, our study identifies SNX33 as a new endocytic protein, which modulates APP endocytosis and APP alpha-secretase cleavage, and demonstrates that the rate of APP endocytosis is a major control factor for APP alpha-secretase cleavage.  相似文献   

16.
Ritonavir, an inhibitor of HIV-1 protease, has been reported to also inhibit the Ca2+-dependent cysteine protease, calpain. We have investigated these claims with an in vitro study of the effect of ritonavir on the m-calpain and mu-calpain isoforms. Ritonavir failed to block either autolytic or hydrolytic calpain activity, but remained fully capable of inhibiting the HIV-1 protease. Any calpain-related effects of ritonavir in cells must, therefore, arise by a mechanism other than direct inhibition of calpains.  相似文献   

17.
Abnormal proteolytic processing of beta-amyloid precursor protein (APP) underlies the formation of amyloid plaques in aging and Alzheimer's disease. The proteases involved in the process have not been identified. Here we found that spontaneous proteolysis of intact APP in detergent-lysed human platelets generated a N-terminal fragment that was immunologically indistinguishable from secreted APP, reminiscent of the action of a putative alpha-secretase. This proteolysis of APP was inhibited by EDTA, suggesting that a metal-dependent protease was involved. Among the several metals tested, calcium was the only one that enhanced APP proteolysis and the reaction was blocked by EGTA as well as by several calpain inhibitors. The APP fragments generated by spontaneous proteolysis in platelet lysates were identical to those produced by exposure of partially purified APP to exogenous calpain. Finally, the secretion of APP from intact platelets was inhibited by cell-permeable calpain inhibitors. Taken together, these results suggest that normal processing of APP in human platelets is mediated by a calcium-dependent protease that exhibits calpain-like properties.  相似文献   

18.
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the presence in the brain of senile plaques which contain an amyloid core made of beta-amyloid peptide (Abeta). Abeta is produced by the cleavage of the amyloid precursor protein (APP). Since impairment of neuronal calcium signalling has been causally implicated in ageing and AD, we have investigated the influence of an influx of extracellular calcium on the metabolism of human APP in rat cortical neurones. We report that a high cytosolic calcium concentration, induced by neuronal depolarization, inhibits the alpha-secretase cleavage of APP and triggers the accumulation of intraneuronal C-terminal fragments produced by the beta-cleavage of the protein (CTFbeta). Increase in cytosolic calcium concentration specifically induces the production of large amounts of intraneuronal Abeta1-42, which is inhibited by nimodipine, a specific antagonist of l-type calcium channels. Moreover, calcium release from endoplasmic reticulum is not sufficient to induce the production of intraneuronal Abeta, which requires influx of extracellular calcium mediated by the capacitative calcium entry mechanism. Therefore, a sustained high concentration of cytosolic calcium is needed to induce the production of intraneuronal Abeta1-42 from human APP. Our results show that this accumulation of intraneuronal Abeta1-42 induces neuronal death, which is prevented by a functional gamma-secretase inhibitor.  相似文献   

19.
Amyloid-beta (Abeta) peptide, the principal component of senile plaques in the brains of patients with Alzheimer's disease, is derived from proteolytic cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. Alternative cleavage of APP by alpha-secretase occurs within the Abeta domain and precludes generation of Abeta peptide. Three members of the ADAM (a disintegrin and metalloprotease) family of proteases, ADAM9, 10 and 17, are the main candidates for alpha-secretases. However, the mechanism that regulates alpha-secretase activity remains unclear. We have recently demonstrated that nardilysin (EC 3.4.24.61, N-arginine dibasic convertase; NRDc) enhances ectodomain shedding of heparin-binding epidermal growth factor-like growth factor through activation of ADAM17. In this study, we show that NRDc enhances the alpha-secretase activity of ADAMs, which results in a decrease in the amount of Abeta generated. When expressed with ADAMs in cells, NRDc dramatically increased the secretion of alpha-secretase-cleaved soluble APP and reduced the amount of Abeta peptide generated. A peptide cleavage assay in vitro also showed that recombinant NRDc enhances ADAM17-induced cleavage of the peptide substrate corresponding to the alpha-secretase cleavage site of APP. A reduction of endogenous NRDc by RNA interference was accompanied by a decrease in the cleavage by alpha-secretase of APP and increase in the amount of Abeta generated. Notably, NRDc is clearly expressed in cortical neurons in human brain. Our results indicate that NRDc is involved in the metabolism of APP through regulation of the alpha-secretase activity of ADAMs, which may be a novel target for the treatment of Alzheimer's disease.  相似文献   

20.
We investigated the ability of the antidementia agents, nicergoline, aniracetam and hydergine to stimulate PKC mediated alpha-secretase amyloid precursor protein (APP) processing in cultured human neuroblastoma SH-SY5Y cells. Western immunoblotting of cell conditioned media using the Mabs 22C11 and 6E10 revealed the presence of 2 bands with molecular mass of 90 and 120 kDa, corresponding to possible alternatively glycosylated forms of secreted APP (APPs). Short-term (30 min and 2 h) treatment of cells with nicergoline gave an increased intensity of both bands, compared to non-treated cells. Maximal nicergoline effects, of the order of 150-200% over basal APPs release, were seen at concentrations between 1 and 10 microM. Under the same condition, 1 microM PdBu, used as a positive control, gave 500-1000% increases of basal APPs release. In contrast, aniracetam and hydergine, did not show any effect on APPs secretion. 2 h treatment with nicergoline had no effect on cellular full-length APP levels, as determined by immunoblotting of cell extracts with 22C11 and CT15 antibodies. Immunoblotting with PKC isoform specific antibodies of soluble and membrane fractions prepared from 2 h treated cells, showed that nicergoline (50 microM) and PdBu (1 microM) both induced translocation of PKC alpha, gamma and epsilon, but not PKC beta. The involvement of PKC in mediating nicergoline stimulated APPs release was also studied using specific inhibitors. 1 microM calphostin C, a broad range PKC inhibitor, significantly reduced both PdBu (1 microM) and nicergoline (10 microM) induced APPs release. In contrast, Go6976 (1 microM), a selective PKC alpha and beta1 inhibitor, as well as the cAMP-dependent protein kinase inhibitor, H89 (1 microM) were without effect. These results indicate that nicergoline can modulate alpha-secretase APP processing by a PKC dependent mechanism that is likely to involve the gamma and epsilon isoforms of this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号