首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tang W  Zhang Y  Xu W  Harden TK  Sondek J  Sun L  Li L  Wu D 《Developmental cell》2011,21(6):1038-1050
Neutrophils, in response to a chemoattractant gradient, undergo dynamic F-actin remodeling, a process important for their directional migration or chemotaxis. However, signaling mechanisms for chemoattractants to regulate the process are incompletely understood. Here, we characterized chemoattractant-activated signaling mechanisms that regulate cofilin dephosphorylation and actin cytoskeleton reorganization and are critical for neutrophil polarization and chemotaxis. In neutrophils, chemoattractants induced phosphorylation and inhibition of GSK3 via both PLCβ-PKC and PI3Kγ-AKT pathways, leading to the attenuation of GSK3-mediated phosphorylation and inhibition of the cofilin phosphatase slingshot2 and an increase in dephosphorylated, active cofilin. The relative contribution of this GSK3-mediated pathway to neutrophil chemotaxis regulation depended on neutrophil polarity preset by integrin-induced polarization of PIP5K1C. Therefore, our study characterizes a signaling mechanism for chemoattractant-induced actin cytoskeleton remodeling and elucidates its context-dependent role in regulating neutrophil polarization and chemotaxis.  相似文献   

2.
HS1 is an actin regulatory protein and cortactin homolog that is expressed in hematopoietic cells. Antigen receptor stimulation induces HS1 phosphorylation, and HS1 is essential for T cell activation. HS1 is also expressed in neutrophils; however, the function of HS1 in neutrophils is not known. Here we show that HS1 localizes to the neutrophil leading edge, and is phosphorylated in response to the chemoattractant formyl-Met-Leu-Phe (fMLP) in adherent cells. Using live imaging in microchannels, we show that depletion of endogenous HS1 in the neutrophil-like PLB-985 cell line impairs chemotaxis. We also find that HS1 is necessary for chemoattractant-induced activation of Rac GTPase signaling and Vav1 phosphorylation, suggesting that HS1-mediated Rac activation is necessary for efficient neutrophil chemotaxis. We identify specific phosphorylation sites that mediate HS1-dependent neutrophil motility. Expression of HS1 Y378F, Y397F is sufficient to rescue migration of HS1-deficient neutrophils, however, a triple phospho-mutant Y222F, Y378F, Y397F did not rescue migration of HS1-deficient neutrophils. Moreover, HS1 phosphorylation on Y222, Y378, and Y397 regulates its interaction with Arp2/3. Collectively, our findings identify a novel role for HS1 and its phosphorylation during neutrophil directed migration.  相似文献   

3.
A new disintegrin, an RGD-containing peptide of 6 kDa called jarastatin, was purified from Bothrops jararaca venom. It is a potent inhibitor of platelet aggregation induced by ADP, collagen, and thrombin. The effect of jarastatin on neutrophil migration in vivo and in vitro and on the actin cytoskeleton dynamics of these cells was investigated. Incubation in vitro with jarastatin significantly inhibited, in a concentration-dependent manner, the chemotaxis of human neutrophils toward fMLP, IL-8, and jarastatin itself. Despite this inhibitory effect, jarastatin induced neutrophil chemotaxis. A significant increase of F-actin content was observed in jarastatin-treated neutrophils. Furthermore, as demonstrated by confocal microscopy after FITC-phalloidin labeling, these cells accumulated F-actin at the plasmalemma, a distribution similar to that observed in fMLP-stimulated cells. Pretreatment of mice with jarastatin inhibited neutrophil migration into peritoneal cavities induced by carrageenan injection. The results suggest that binding of jarastatin to neutrophil integrins promotes cellular activation and triggers a dynamic alteration of the actin filament system and that this is one of the first event in integrin-mediated signaling.  相似文献   

4.
Purified human prothrombin was activated, both in the absence and in the presence of thrombin inhibitors (diisopropylfluorophosphate or hirudin), by a coagulant principle isolated from Dispholidus typus venom. The process of activation was monitored by sodium dodecyl sulfate polyacrylamide gel electrophoresis. In the absence of thrombin inhibitor, prolonged incubation of prothrombin with the purified venom yielded thrombin, fragment 1 (F 1) and fragment 2 (F 2). In the presence of diisopropylfluorophosphate, which in the experimental conditions used inhibited only partially the thrombin generated activity, products obtained upon activation of prothrombin by venom were F 1 and a two-chain, disulfide-bridged protein of 58 000 daltons called meizothrombin (des F 1). In the presence of hirudin, which fully inhibited thrombin generated activity, prothrombin activation by the venom did not liberate any fragment, but prothrombin was converted to a derivative composed of two disulfide-bridged polypeptide chains of 48 000 and 37 000 daltons, called meizothrombin. These results are similar to those reported by others when studying the process of prothrombin activation by Echis carinatus venom and allow to conclude that Dispholidus typus venom cleaves a bond linking the A and B chains of thrombin, converting prothrombin into meizothrombin. This enzyme is then responsible for the cleavage of the bond linking F 1 and F 2 and the bond linking F2 the A chain of thrombin.  相似文献   

5.
High levels of free heme are found in pathological states of increased hemolysis, such as sickle cell disease, malaria, and ischemia reperfusion. The hemolytic events are often associated with an inflammatory response that usually turns into chronic inflammation. We recently reported that heme is a proinflammatory molecule, able to induce neutrophil migration, reactive oxygen species generation, and IL-8 expression. In this study, we show that heme (1-50 microM) delays human neutrophil spontaneous apoptosis in vitro. This effect requires heme oxygenase activity, and depends on reactive oxygen species production and on de novo protein synthesis. Inhibition of ERK and PI3K pathways abolished heme-protective effects upon human neutrophils, suggesting the involvement of the Ras/Raf/MAPK and PI3K pathway on this effect. Confirming the involvement of these pathways in the modulation of the antiapoptotic effect, heme induces Akt phosphorylation and ERK-2 nuclear translocation in neutrophils. Futhermore, inhibition of NF-kappa B translocation reversed heme antiapoptotic effect. NF-kappa B (p65 subunit) nuclear translocation and I kappa B degradation were also observed in heme-treated cells, indicating that free heme may regulate neutrophil life span modulating signaling pathways involved in cell survival. Our data suggest that free heme associated with hemolytic episodes might play an important role in the development of chronic inflammation by interfering with the longevity of neutrophils.  相似文献   

6.
7.
Inhibitory effect upon neutrophil migration to the inflammatory focus was previously detected in the cell-free incubation fluid of lipopolysaccharide (LPS)-stimulated macrophage monolayers. In the present study we showed that the neutrophil recruitment inhibitory activity from this supernatant was mainly detected in a fraction (P2) obtained by gel filtration chromatography on Sephacryl S-300. P2 fraction was able to inhibit 'in vivo' neutrophil emigration induced by different inflammatory stimuli, but it did not affect 'in vitro' neutrophil chemotaxis induced by FMLP. When injected intravenously, P2 inhibited oedema induced by carrageenin or immunological stimulus but not the oedema induced by dextran, thus affecting cell-dependent inflammatory responses. It was observed that P2 also induced neutrophil migration when injected locally in peritoneal cavities. This activity was significantly reduced by pretreatment of the animals with dexamethasone. Cytokines, such as IL-8 and TNF-alpha that are known to exhibit inhibitory effect upon neutrophil migration, were not detected in P2 fraction by highly sensitive assays. Overall the results suggest the existence of a novel cytokine exhibiting 'in vivo' neutrophil inhibitory activity, referred as NRIF.  相似文献   

8.
Chemokine receptor-initiated signaling plays critical roles in cell differentiation, proliferation, and migration. However, the regulation of chemokine receptor signaling under physiological and pathological conditions is not fully understood. In the present study, we demonstrate that the CXC chemokine receptor 4 (CXCR4) formed a complex with ferritin heavy chain (FHC) in a ligand-dependent manner. Our in vitro binding assays revealed that purified FHC associated with both the glutathione S-transferase-conjugated N-terminal and C-terminal domains of CXCR4, thereby suggesting the presence of more than one FHC binding site in the protein sequence of CXCR4. Using confocal microscopy, we observed that stimulation with CXCL12, the receptor ligand, induced colocalization of the internalized CXCR4 with FHC into internal vesicles. Furthermore, after CXCL12 treatment, FHC underwent time-dependent nuclear translocation and phosphorylation at serine residues. By contrast, a mutant form of FHC in which serine 178 was replaced by alanine (S178A) failed to undergo phosphorylation, suggesting that serine 178 is the major phosphorylation site. Compared with the wild type FHC, the FHC-S178A mutant exhibited reduced association with CXCR4 and constitutive nuclear translocation. We also found that CXCR4-mediated extracellular signal-regulated kinase 1/2 (ERK1/2) activation and chemotaxis were inhibited by overexpression of wild type FHC but not FHC-S178A mutant, and were prolonged by FHC knockdown. In addition to CXCR4, other chemokine receptor-initiated signaling appeared to be similarly regulated by FHC, because CXCR2-mediated ERK1/2 activation was also inhibited by FHC overexpression and prolonged by FHC knockdown. Altogether, our data provide strong evidence for an important role of FHC in chemokine receptor signaling and receptor-mediated cell migration.  相似文献   

9.
Thrombin-induced chemotaxis and aggregation of neutrophils   总被引:15,自引:0,他引:15  
Thrombin-induced neutrophil chemotaxis and aggregation were studied using cells isolated from either human or sheep blood. Sheep neutrophils (10(8) cells/ml) exhibited maximum chemotactic migration towards 10(-8)M human alpha-thrombin, 10(-8)M gamma-thrombin (which lacks the fibrinogen site), and 10(-12)MD-Phe-Pro-Arg-CH2-alpha-thrombin (catalytically inactive thrombin). Chemotactic responses of the same magnitude were obtained with human neutrophils (10(8) cells/ml). The chemotactic responses to thrombin were comparable to those obtained with diluted (1:200 v/v) zymosan activated serum (ZAS) and 10(-11)M FMLP. Premixing of the thrombin forms with hirudin in 1:1 stoichiometric amounts abolished the chemotaxis but not chemokinesis Aggregatory responses of human and sheep neutrophils were comparable for ZAS, alpha-thrombin, and gamma-thrombin. The responses of both human and sheep neutrophils to D-Phe-Pro-Arg-CH2-alpha-thrombin were attenuated, indicating that the proteolytic site may be involved in the aggregatory response. The results suggest that thrombin-induced neutrophil chemotaxis and aggregation are mediated by different mechanisms, since chemotaxis is a catalytically independent response whereas aggregation is an active site independent response.  相似文献   

10.
In this study, we examined the mechanism by which CD38 cleavage is regulated through the mitogen-activated protein (MAP) kinases after stimulation by fMLP and interleukin-8 (IL-8) in neutrophils. Both fMLP and IL-8 increased chemotaxis and decreased CD38 protein in neutrophils, but did not change CD38 mRNA levels. Both fMLP and IL-8 increased CD38 in supernatants, which was inhibitable with PMSF. fMLP stimulation resulted in phosphorylation of p38 MAP kinase and p42/44 MAP kinase (ERK). SB20358, a p38 MAP kinase inhibitor, down-regulated neutrophil chemotaxis. Conversely, PD98059, an ERK inhibitor, did not influence chemotaxis to either agonist. The addition of SB20358 blocked the decrease of CD38 on neutrophils and the increase in supernatants induced by fMLP or IL-8, whereas PD98059 did not. These findings suggest that CD38-mediated chemotaxis to fMLP or IL-8 is characterized by proteolytic cleavage of CD38 and signaling through p38 MAP kinase. Activation of the protease for cleavage appears to be a postreceptor event that is dependent on p38 MAP kinase signaling.  相似文献   

11.
12.

Background

Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis.

Methodology/Principal Findings

We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis.

Conclusions/Significance

We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.  相似文献   

13.
Trehalose 6,6′‐dimycolate (TDM), or cord factor, is a crucial stimulus of immune responses during Mycobacterium tuberculosis infection. Although TDM has immuno‐stimulatory properties, including adjuvant activity and the ability to induce granuloma formation, the mechanisms underlying these remain unknown. We hypothesized that TDM stimulates transendothelial migration of neutrophils, which are the first immune cells to infiltrate the tissue upon infection. In this study, it was shown that TDM enhances N‐formylmethionyl‐leucyl‐phenylalanine (fMLP)‐induced chemotaxis and transendothelial movement by prolonging AKT phosphorylation in human neutrophils. TDM induced expression of macrophage‐inducible C‐type lectin, a receptor for TDM, and induced secretion of pro‐inflammatory cytokines and chemokines in differentiated HL‐60 cells. In 2‐ and 3‐D neutrophil migration assays, TDM‐stimulated neutrophils showed increased fMLP‐induced chemotaxis and transendothelial migration. Interestingly, following fMLP stimulation of TDM‐activated neutrophils, AKT, a crucial kinase for neutrophil polarization and chemotaxis, showed prolonged phosphorylation at serine 473. Taken together, these data suggest that TDM modulates transendothelial migration of neutrophils upon mycobacterial infection through prolonged AKT phosphorylation. AKT may therefore be a promising therapeutic target for enhancing immune responses to mycobacterial infection.
  相似文献   

14.
We determined the effects of infusion of prostacyclin (PGI2) and 6-alpha-carba-PGI2 (6-cPGI2), a stable PGI2 analogue, on pulmonary transvascular fluid and protein fluxes after intravascular coagulation induced by thrombin. Studies were made in control awake sheep prepared with lung lymph fistulas (n = 6) and in similarly prepared awake sheep pretreated with either 6-cPGI2 (n = 5) or PGI2 (n = 5). Both prostacyclin compounds (500 ng X kg-1 X min-1) were infused intravenously. All groups were challenged with 80 U/kg thrombin. Pulmonary arterial pressure (Ppa), pulmonary vascular resistance (PVR), pulmonary lymph flow (Qlym), lymph protein clearance (Qlym X lymph/plasma protein concentration ratio), and neutrophil and platelet counts were determined. In vitro tests assessed sheep neutrophil chemotaxis and chemiluminescence and platelet aggregation. In both 6-cPGI2 and PGI2 groups, the increases in Qlym after thrombin were less than those in the control group. The increase in lymph protein clearance in the 6-cPGI2 group was the same as that in control, whereas the increase in clearance in the PGI2 group was reduced. PVR and Ppa increased to a greater extent in the 6-cPGI2 group than in the control group, whereas the increases in PVR and Ppa were inhibited in the PGI2 group. Neutrophil and platelet counts decreased after thrombin in PGI2 and 6-cPGI2 groups, as they did in the control group. Neither 6-cPGI2 altered neutrophil chemotaxis induced by thrombin and chemiluminescence induced by opsonized zymosan. Both prostacyclin compounds inhibited platelet aggregation induced by ADP or thrombin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Opioid receptors are expressed in cells of the immune system, and potent immunomodulatory effects of their natural and synthetic ligands have been reported. In some studies, the opiate receptor antagonist naloxone itself displayed immunomodulatory actions. We investigated effects of naloxone on leukocyte chemotaxis. Cell migration was tested in micropore filter assays using modified Boyden chambers, and receptor expression was investigated using radiolabel binding assays. Naloxone induced peripheral blood nonadherent mononuclear cell and neutrophil chemotaxis at nanomolar concentrations and deactivated their migration toward beta-endorphin, angiotensin II, somatostatin, or interleukin-8 but not toward RANTES, vasoactive intestinal peptide, or substance P. Ligand binding studies showed no alteration in the binding of interleukin-8 to neutrophils by naloxone. Cleavage of heparan sulfate from proteoglycans on the cells' surface completely inhibited chemotactic and deactivating properties of naloxone but not other attractants. Chemotactic properties were abolished by pretreating cells with heparinase, chondroitinase, sodium chlorate, and anti-syndecan-4 antibodies, indicating the involvement of syndecan-4. The extent of migration toward naloxone was diminished by pretreatment with dimethylsphingosine, a specific sphingosine kinase inhibitor. As syndecan-4 signaling in leukocyte chemotaxis involves activation of sphingosine kinase, results indicate that naloxone interacts with syndecan-4 function in cell migration and suggest a role for heparan sulfate proteoglycans as coreceptors to members of the delta-opiate receptor family.  相似文献   

16.
Sphingosine-1-phosphate (S1P), a serum-borne lipid mediator, was demonstrated to be a potent chemoattractant of endothelial cells. It was recently shown that the colocalization of cortactin and actin related protein 2/3 (Arp2/3) in the lamellipodia is critical to S1P-induced endothelial chemotaxis. In this report, we describe that S1P-stimulated cortactin translocation to the cell periphery to form lamellipodia is specifically mediated by the endothelial S1P1 G-protein coupled receptor, and is regulated by Gi-mediated Akt-dependent S1P1 receptor phosphorylation and Cdc42/Rac activation pathways. In contrast to Src-dependent fibroblast growth factor-induced cortactin translocation, tyrosine phosphorylation cascades are not required for S1P-mediated lamellipodia formation and chemotaxis. Furthermore, we also demonstrate that S1P signaling, via the Gi/Akt/S1P1 phosphorylation/Rac pathway, regulates the cortactin–Arp2/3 complex formation, which ultimately results in membrane ruffling, formation of the lamellipodia and endothelial migration.J.F. Lee and H. Ozaki contributed equally to this work  相似文献   

17.
18.
To understand the mechanisms by which thrombin induces vascular smooth muscle cell (VSMC) DNA synthesis and motility, we have studied the role of phosphatidylinositol 3-kinase (PI3K)-Akt-mammalian target of rapamycin (mTOR)-S6K1 signaling. Thrombin stimulated the phosphorylation of Akt and S6K1 in VSMC in a sustained manner. Blockade of PI3K-Akt-mTOR-S6K1 signaling by LY-294002, and rapamycin suppressed both thrombin-induced VSMC DNA synthesis and migration. Adenovirus-mediated expression of dominant-negative Akt also inhibited thrombin-induced VSMC DNA synthesis and migration. Furthermore, thrombin induced the expression of Fra-1 in a sustained PI3K-Akt-dependent and mTOR-independent manner in VSMC. Suppression of Fra-1 by its small interfering RNA attenuated both thrombin-induced VSMC DNA synthesis and migration. Thrombin also induced the expression of FGF-2 in a PI3K-Akt-Fra-1-dependent and mTOR-independent manner, and neutralizing anti-FGF-2 antibodies inhibited thrombin-stimulated VSMC DNA synthesis and motility. In addition, thrombin stimulated the tyrosine phosphorylation of EGF receptor (EGFR), and inhibition of its kinase activity significantly blocked Akt and S6K1 phosphorylation, Fra-1 and FGF-2 expression, DNA synthesis, and motility induced by thrombin in VSMC. Together these observations suggest that thrombin induces both VSMC DNA synthesis and motility via EGFR-dependent stimulation of PI3K/Akt signaling targeting in parallel the Fra-1-mediated FGF-2 expression and mTOR-S6K1 activation.  相似文献   

19.
Snake venom serine proteinases (SVSPs) may affect hemostatic pathways by specifically activating components involved in coagulation, fibrinolysis and platelet aggregation or by unspecific proteolytic degradation. In this study, we purified and characterized an SVSP from Bothrops cotiara venom, named cotiarinase, which generated thrombin upon incubation with prothrombin. Cotiarinase was isolated by a two-step procedure including gel-filtration and cation-exchange chromatographies and showed a single protein band with a molecular mass of 29 kDa by SDS-polyacrylamide gel electrophoresis under reducing conditions. Identification of cotiarinase by mass spectrometric analysis revealed peptides that matched sequences of viperid SVSPs. Cotiarinase did not show fibrinogen-clotting, platelet-aggregating, fibrinogenolytic and factor X activating activities. Upon incubation with prothrombin the generation of thrombin was detected using the peptide substrate d-Phe-Pip-Arg-pNA. Moreover, mass spectrometric identification of prothrombin fragments generated by cotiarinase in the absence of co-factors (phospholipids, factor Va, factor Xa and Ca2+ ions), indicated the limited proteolysis of this protein to release prothrombin 1, fragment 1 and thrombin. Cotiarinase is a novel SVSP that acts on prothrombin to release active thrombin that does not match any group of the current classification of snake venom prothrombin activators.  相似文献   

20.
Among matrix metalloproteinases (MMPs), MMP-9 has been observed in patients with brain inflammatory diseases and may contribute to the pathology of brain diseases. Thrombin has been known as a regulator of MMP-9 expression and cells migration. However, the mechanisms underlying thrombin-induced MMP-9 expression in rat brain astrocytes (RBA-1 cells) were not completely understood. Here, we demonstrated that thrombin induced the expression of pro-form MMP-9 in RBA-1 cells and cells migration which were attenuated by pretreatment with the inhibitor of receptor tyrosine kinase (Genistein), c-Src (PP1), Jak2 (AG490), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), PKCs (Ro318220), PKCδ (Rottlerin), or NF-κB (Bay11-7082) and transfection with siRNA of c-Src, PDGFR, Akt, PKCδ, ATF2, p65, IKKα, or IKKβ. In addition, thrombin-stimulated c-Src, Jak2, or PDGFR phosphorylation was inhibited by a thrombin inhibitor (PPACK), PP1, AG490, or AG1296. Thrombin further stimulated c-Src and PDGFR complex formation in RBA-1 cells. Thrombin also stimulated Akt and PKCδ phosphorylation and PKCδ translocation which were reduced by PPACK, PP1, AG490, AG1296, or LY294002. We further observed that thrombin markedly stimulated ATF2 or IκBα phosphorylation and NF-κB p65 translocation which were inhibited by Rottlerin or LY294002. Finally, thrombin stimulated in vivo binding of p65 to the MMP-9 promoter, which was reduced by pretreatment with Rottlerin or LY294002. These results concluded that in RBA-1 cells, thrombin activated a c-Src/Jak2/PDGFR/PI3K/Akt/PKCδ pathway, which in turn triggered ATF2 and NF-κB activation and ultimately induced MMP-9 expression associated with cell migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号