首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Irinotecan (CPT-11), a camptothecin analog, is metabolized to SN-38, an active topoisomerase I inhibitor, and inactive metabolites, including APC and SN-38 glucuronide (SN-38G). A high-performance liquid chromatographic assay method to simultaneously measure the lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in human plasma was developed. Chromatography was accomplished with a reversed-phase C(8) column and fluorescence detection. A gradient mobile phase system was used. The buffer for mobile phase A consisted of 0.75 M ammonium acetate, 5 mM tetrabutylammonium phosphate (pH 6.0), and acetonitrile (86:14, v/v). The buffer for mobile phase B was identical to mobile phase A with the exception of the concentration (50:50, v/v). Precipitation of plasma proteins was performed with cold methanol. The linear range of detection of the lactone and carboxylate forms of SN-38, SN-38G, and APC was 2-25 ng/ml, and 5-300 ng/ml for CPT-11. The limit of quantitation for the analytes ranged from 0.5 to 5 ng/ml. Analysis of patients' plasma samples obtained before and after CPT-11 administration showed that the assay is suitable for measuring lactone and carboxylate forms of CPT-11, SN-38, SN-38G, and APC in clinical studies.  相似文献   

2.
A simple and sensitive HPLC method was developed to simultaneously determine CPT-11 and its major metabolite SN-38 in culture media and cell lysates. Camptothecin (CPT) was used as internal standard (I.S.). Compounds were eluted with acetonitrile-50 mM disodium hydrogen phosphate buffer containing 10 mM sodium 1-heptane-sulfonate, with the pH adjusted to 3.0 using 85% (w/v) orthophosphoric acid (27/73, v/v) by a Hyperclon ODS (C18) column (200 mm x 4.6 mm i.d.), with detection at excitation and emission wavelengths of 380 and 540 nm, respectively. The average extraction efficiencies were 96.9-108.3% for CPT-11 in culture media and 94.3-107.2% for CPT-11 in cell lysates; and 87.7-106.8% for SN-38 in culture media and 90.1-105.6% for SN-38 in cell lysates. Within- and between-day precision and accuracy varied from 0.1 to 10.3%. The limit of quantitation (precision and accuracy <20%) was 5.0 and 2.0 ng/ml for CPT-11 and 1.0 and 0.5 ng/ml for SN-38 in culture media and cell lysates, respectively. This method was successfully applied to quantitate the cellular accumulation and metabolism of CPT-11 and SN-38 in H4-II-E, a rat hepatoma cell line.  相似文献   

3.
Irinotecan (CPT-11) and its main metabolite SN-38 are potent anticancer derivatives of camptothecin (CPT), with active lactone and inactive carboxylate forms coexisting. A simple and sensitive HPLC method using the ion-pairing reagent tetrabutylammonium hydrogen sulfate (TBAHS) was developed to simultaneously determine all four analytes in rat plasma samples. Camptothecin (CPT) was used as internal standard. The mobile phase was 0.1M potassium dihydrogen phosphate containing 0.01 M TBAHS (pH 6.4)-acetonitrile (75:25, v/v). Separation of the compounds was carried out on a Hypersil C18 column, monitored at 540 nm (excitation wavelength at 380 nm). All four compounds gave linear response as a function of concentration over 0.01-10 microM. The limit of quantitation in rat plasma was 0.01, 0.008, 0.005 and 0.005 microM for CPT-11 lactone, CPT-11 carboxylate, SN-38 lactone and SN-38 carboxylate, respectively. The method was successfully used in the study on the effect of coadministered thalidomide on the plasma pharmacokinetics of CPT-11 and SN-38 in rats. Coadministered thalidomide (100mg/kg body weight by intraperitoneal injection) significantly increased the AUC(0-10h) values of CPT-11 lactone and CPT-11 carboxylate by 32.6% and 30.3 %, respectively, (P < 0.01), but decreased the values by 19.2% and 32.4% for SN-38 lactone and carboxylate, respectively, (P < 0.05). Accordingly, the value of total body clearance (CL) of CPT-11 lactone was significantly lower in combination group compared to the control (1.329 versus 1.837 L/h/kg, P = 0.0002). Plasma t(1/2beta) values for SN-38 lactone and carboxylate were significantly (P < 0.01) smaller in rats with coadministered thalidomide, as compared to rats receiving CPT-11 alone. Further studies are needed to explore the underlying mechanisms for the observed kinetic interaction between CPT-11 and thalidomide.  相似文献   

4.
Irinotecan (CPT-11) is an anticancer agent widely employed in the treatment of colorectal carcinoma. A simple, rapid and sensitive high-performance liquid chromatographic method for the simultaneous determination of CPT-11 and its metabolite SN-38 in plasma, and their preliminary clinical pharmacokinetics are described. Both deproteinisation of plasma specimens (100 μl) and addition of the internal standard, camptothecin (CPT), are achieved by incorporating to samples 100 μl of a solution of CPT (1 μg/ml) in acetonitrile–1 mM orthophosphoric acid (90:10); 200 μl of this acidified acetonitrile solution, drug-free, is also added to accomplish complete deproteinisation: this procedure reduces sample preparation time to a minimum. After deproteinisation, samples are treated with potassium dihydrogenphosphate (0.1 M) and injected into a Nucleosil C18 (5 μm, 250×4.0 mm) column. Mobile phase consists of potassium dihydrogenphosphate (0.1 M)–acetonitrile (67:33), at a flow-rate of 1 ml/min. CPT-11, SN-38 and CPT are detected by fluorescence with excitation wavelength set at 228 nm and emission wavelengths of CPT-11, SN-38 and CPT fixed, respectively, at 450, 543 and 433 nm. The limits of quantitation for CPT-11 and SN-38 are 1.0 and 0.5 ng/ml, respectively. This method shows good precision: the within day relative standard deviation (RSD) for CPT-11 (1–10 000 ng/ml) is 5.17% (range 2.15–8.27%) and for SN-38 (0.5–400 ng/ml) is 4.33% (1.32–7.78%); the between-day RSDs for CPT-11 and SN-38, in the previously described ranges, are 6.82% (5.03–10.8%) and 4.94% (2.09–9.30%), respectively. Using this assay, plasma pharmacokinetics of CPT-11, SN-38 and its glucuronidated form, SN-38G, have been determined in one patient receiving 200 mg/m2 of CPT-11 as a 90 min intravenous infusion. The peak plasma concentration of CPT-11 at the end of the infusion is 3800 ng/ml. Plasma decay is biphasic with a terminal half-life of 11.6 h. The volume of distribution at steady state (Vss) is 203 l/m2, and the total body clearance (Cl) is 14.8 l/h·m2. The maximum concentrations of SN-38 and SN-38G reach 28.9 and 151 ng/ml, respectively.  相似文献   

5.
The aim of the present study was to investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on the pharmacokinetics of irinotecan (CPT-11) and its metabolite SN-38. EGCG was potentially used to modulate the ATPase activity of P-glycoprotein (P-gp). Experimental Sprague-Dawley rats were treated with EGCG (20mg/kg, i.v.) 10min before CPT-11 (10mg/kg, i.v.) administration, whereas the control group received CPT-11 (10mg/kg, i.v.) only. The biological samples were prepared by the protein precipitation and detected by HPLC-fluorescence detection which provided a good separation of CPT-11 and SN-38 within 10min. The pharmacokinetic data indicate that the area under the plasma concentration-time curves (AUC) of CPT-11 and SN-38 were increased by 57.7 and 18.3%, and AUC in bile were decreased by 15.8 and 46.8%, respectively, for the group pretreated with EGCG. The blood to bile distribution ratio (AUC(bile)/AUC(blood)) was significantly reduced after group coadministration of EGCG, it can be seen that the bile efflux transport system of CPT-11 and SN-38 may be markedly reduced by the treatment of EGCG which plays the role of P-gp inhibitor. In conclusion, EGCG was found to inhibit the transport of CPT-11 and SN-38 into the biliary elimination and their half-lives in plasma could be substantially prolonged. Based on the food-drug interaction, persons taking daily nutritional supplements should be warned of this interaction possibility.  相似文献   

6.
We established a high-performance liquid chromatography (HPLC) method for the simultaneous determination of the camptothecin (CPT) derivative, irinotecan hydrochloride (CPT-11) and its metabolites, 7-ethyl-10-hydroxycamptothecin (SN-38) and SN-38 glucuronide (SN-38G) in rat plasma with a fully automated on-line solid-phase extraction system, PROSPEKT. Plasma samples were pretreated with 0.146 M H3PO4 to inactivate carboxylesterase and β-glucuronidase in rat plasma, and added with the internal standard solution (0.146 M H3PO4 containing 1 μg/ml CPT) and then analyzed. The method was validated for CPT-11 (5 to 25 000 ng/ml), SN-38 (5 to 2500 ng/ml) and SN-38G (2.5 to 500 ng/ml). This method enabled the determination of many samples within a relatively short time with easy sample preparation. It also had four advantages compared with conventional determination methods, i.e. automation of a complicated sample preparation, time-saving by the simultaneous determination of three compounds, the direct determination of SN-38G, and the small amount of plasma required for the determination.  相似文献   

7.
An HPLC- fluorescence method to quantitate total 7-ethyl-10-hydroxy-camptothecin (SN-38) in beagle dog plasma spiked with liposome based formulation of SN-38 (LE-SN38) and using camptothecin (CPT) as the internal standard (I.S.) was developed and validated to support pharmacokinetics/toxicokinetics studies. Sample preparation was done by protein precipitation using acetonitrile with 0.5% acetic acid. The supernatant was evaporated, and reconstituted in acetonitrile-20 mM ammonium acetate, pH 3.5 (20:80, v/v). When injected onto a Zorbax SB-C(18) HPLC column SN-38 as well as I.S. were detected by fluorescence using an excitation at 368 nm and emission at 515 nm. The SN-38 concentrations in samples were calculated from a standard curve of peak area ratios of SN-38 to the I.S. using weighted linear regression. The sensitivity limit for SN-38 was 1.00 ng/ml in beagle dog plasma with a precision (expressed as relative standard deviation) of 12.4% and an accuracy (expressed as analytical recovery) of 104%. The assay was linear within the standard curve range of 1-750 ng/ml. Acceptable precision and accuracy were also obtained for concentrations over the balance of the standard curve range from between-run and within-run calculations.  相似文献   

8.
CPT-11 (irinotecan) and mainly its metabolite SN-38 are potent antitumor derivatives of camptothecin. As the active lactone forms of both CPT-11 and SN-38 exist in pH-dependent equilibrium with their respective less potent open-ring hydroxy acid species, the simultaneous monitoring of both forms of both compounds is relevant. CPT-11 and SN-38 derivatives have quite different fluorescence responses. In order to avoid any compromise on the wavelength setting, we developed chromatographic conditions allowing simple automated wavelength setting changes which have been prevented using existing methods involving conventional C18 columns. This was achieved by means of a Symmetry C18 column combined to a gradient elution program using acetonitrile and 75 mM ammonium acetate plus 7.5 mM tetrabutylammonium bromide at pH 6.4. The developed conditions allowed an elution order suitable for a simple automated wavelength change in respect to reliable peak integration. CPT-11 and SN-38 derivatives were detected at λex=362 nm/λem=425 nm and λex=375 nm/λem=560 nm, respectively. The developed method allowed the detection of amounts less than 3 pg of each derivative injected on column. The method was successfully applied to pharmacokinetic and toxicokinetic studies in rat and dog.  相似文献   

9.
A sensitive, rapid LC-MS/MS assay has been developed and validated for the simultaneous quantification of CPT-11 and its two principal metabolites, 7-ethyl-10-hydroxycamptothecin (SN-38), and 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxy-camptothecin (APC) in human liver microsomal fractions and plasma. The method was linear over the ranges of 1.56-100 ng/mL, 3.13-150 ng/mL, and 0.78-100 ng/mL for CPT-11, SN-38, and APC, respectively. The total run time was 7.0 min. This assay offers advantages in terms of expediency, recovery of analytes, and suitability for the analysis of CPT-11 and its metabolites in various biological fluids.  相似文献   

10.
An analytical method was developed for the anticancer agent irinotecan (CPT-11) and its main metabolite SN-38 in human whole blood and in red blood cells (RBCs). Sample pretreatment involved deproteinization of whole blood or plasma-diluted RBCs isolated by MESED instruments, with a mixture of aqueous perchloric acid and methanol (1:1, v/v). Separation was carried out using isocratic elution on a Hypersil ODS stationary phase, with detection at excitation and emission wavelengths of 355 and 515 nm, respectively. The lower limit of quantitation (LLQ) in blood was established at 5.00 ng/ml for both compounds, with values for within-run precision (WRP) and between-run precision (BRP) of less than 10%. The method is currently being applied to investigate the blood distribution of CPT-11 and SN-38 in cancer patients.  相似文献   

11.
A simplified method for the simultaneous determination of irinotecan (CPT-11, I) and its active metabolite (SN-38, II) in human plasma by high-performance liquid chromatography (HPLC) with fluorescence detection has been developed. Following the addition of the internal standard (I.S.) camptothecin, the drugs were extracted from plasma using methanol. The average extraction efficiencies were 87% for I, 90% for II and 90% for the I.S. Chromatography was performed using a TSK gel ODS-80Ts column, monitored at 556 nm (excitation wavelength, 380 nm) and the mobile phase was acetonitrile-50 mM disodium hydrogen phosphate (28:72) containing 5 mM heptanesulphonate (pH 3.0). The linear quantitation ranges for I and II were 30–2000 and 1–30 ng/ml, respectively.  相似文献   

12.
A reversed-phase high-performance liquid chromatographic method with fluorescence detection was developed and validated for the quantitation of SN-38, the active metabolite of irinotecan (CPT-11), a new anticancer drug. This method uses solid-phase extraction with a C18 column for sample clean-up and concentration following acidification of human plasma with two volumes of 0.1 M HCl. Using blank plasma spiked with SN-38, we found the assay to be linear over the concentration range of 10–500 pM (3.9–195 pg/ml) with acceptable total and within-day imprecision. The recovery of SN-38 ranged from 48.3% (10 pM) to 91.5% (500 pM) whereas that of the internal standard, 20-(S)-camptothecin, was 96.9% (500 pM). This method represents a sizeable increase in sensitivity over other published methods and is shown to be suitable for the measurement of ‘trough' concentrations of SN-38 during the treatment of patients with a weekly regimen of irinotecan.  相似文献   

13.
Abstract

Polyethyleneglycol (PEG) -coated liposomal CPT-11 (PEG-LCPT(11)) was prepared and its pharmaceutical usefulness was examined. These liposomes, plain liposomal CPT-11 (PLCPT(11)) and PEG-LCPT(11), were composed of dimyristoylphosphatidylcholine, cholesterol, and dimyristoylphosphatidylglycerol (10 : 10 : 6, mol/mol) with or without PEG. The mean particle diameters were both about 1 60 nm. The trapping efficiencies were approximately 90%. In a distribution study, CDFl mice were injected with CPT-11 solution (CPT(11)sol), PLCPT(11) and PEG-LCPT(11) at a dose of 10 mg/kg (i.v.). Concentrations in each tissue of CPT-11 and SN-38, the active metabolite of CPT-11, were determined. After the administration, CPT-11 and SN-38 concentrations in the blood increased by liposomal encapsulation (liposomalization), and the circulation time in the blood was prolonged further by PEG-modification of the liposomes (PEGylation). In the liver, PLCPT(11) was rapidly taken up by the reticuloendothelial system (RES), and the uptake was avoided by PEGylation. Tumor accumulations of CPT-11 and SN-38 were accompanied by an increase in antitumor activity of CPT-11 by liposomalization. Thus, the prolongation of the circulation time in the blood by liposomalization and the avoidance of the RES uptake by PEGylation caused passive targeting of the tumor, with a resulting increase in the antitumor activity of CPT-11.  相似文献   

14.
The intestinal transport of irinotecan (CPT-11) and its active metabolite, SN-38, has been previously reported (K. Kobayashi et al., Int. J. Cancer, 83 (1999) 491-496). In the present study, the effect of the two major primary bile acids, cholic acid (CA) and taurocholic acid (TCA), on the uptake of CPT-11 and SN-38 by hamster intestinal epithelial cells was investigated. These two bile acids at concentrations up to 200 microM did not directly alter the cellular uptake of CPT-11 and SN-38. However, under physiologically acidic intestinal pH conditions, micelle formation induced by 20 mM TCA significantly reduced the cellular uptake of CPT-11 and SN-38 by 60% and 80%, respectively.  相似文献   

15.
In the course of our study to determine the cross-sensitivity between CPT-11 and its active metabolite, SN-38, we found a SN-38-resistant human pancreatic tumor cell line, QGP-1N, which shows sensitivity to CPT-11. The IC50 of SN-38 was 152 times greater for QGP-1N than for SUIT-2, also a human pancreatic tumor cell line, whose IC50 of CPT-11 was similar to that for QGP-1N. The uptakes of CPT-11 and SN-38 and the intracellular conversion of CPT-11 to SN-38 could not explain the difference in sensitivity. DNA synthesis of QGP-1N cells was inhibited by CPT-11 which did not affect that of SUIT-2, while SN-38 inhibited the DNA synthesis of SUIT-2 at lower concentrations than that of QGP-1N. The inhibition test of topoisomerase I catalytic activity by CPT-11 or SN-38 revealed no difference in the biochemical properties of the topoisomerase I enzymes to the compounds between these two cell lines. These results indicate that CPT-11 should have its own inhibitory effect on DNA synthesis through a yet unknown mechanism in QGP-1N cells, although SN-38 plays an essential role in the antitumor activity of CPT-11 in SUIT-2 cells. In some cases, the antitumor effect of CPT-11 might be consequent not only on SN-38 but also on CPT-11 itself.  相似文献   

16.
Sensitive high-performance liquid chromatographic assays have been develope to determine the levels of the lactone and lactone plus carboxylate (total) forms of the antitumor agent irinotecan (CPT-11) and its active metabolite SN-38, in human plasma. The related compound camptothecin was used as the internal standard. The selective sample pretreatment for the lactone forms involved a single solvent extraction with acetonitrile-n-butyl chloride (1:4,v/v), whereas the sample clean-up for the total forms was a simple protein precipitation with aqueous perchloric acid-methanol (1:1, v/v), which results in the conversion of the carboxylate to the lactone forms. Chromatography was carried out on a Hypersil ODS column, with detection performed fluorimetrically. The methods have been validated, and stability tests under various conditions have been performed. The lower limits of quantitation are 0.5 and 2.0 ng/ml for the lactone and total forms, respectively. The assays have been used in a single pharmacokinetic experiment in a patient to investigate the applicability of the method in vivo.  相似文献   

17.
Irinotecan is currently used in several cancer regimens mainly in colorectal cancer (CRC). This drug has a narrow therapeutic range and treatment can lead to side effects, mainly neutropenia and diarrhea, frequently requiring discontinuing or lowering the drug dose. A wide inter-individual variability in irinotecan pharmacokinetic parameters and pharmacodynamics has been reported and associated to patients’ genetic background. In particular, a polymorphism in the UGT1A1 gene (UGT1A1*28) has been linked to an impaired detoxification of SN-38 (irinotecan active metabolite) to SN-38 glucuronide (SN-38G) leading to increased toxicities. Therefore, therapeutic drug monitoring of irinotecan, SN-38 and SN-38G is recommended to personalize therapy. In order to quantify simultaneously irinotecan and its main metabolites in patients’ plasma, we developed and validated a new, sensitive and specific HPLC–MS/MS method applicable to all irinotecan dosages used in clinic. This method required a small plasma volume, addition of camptothecin as internal standard and simple protein precipitation. Chromatographic separation was done on a Gemini C18 column (3 μM, 100 mm x 2.0 mm) using 0.1% acetic acid/bidistilled water and 0.1% acetic acid/acetonitrile as mobile phases. The mass spectrometer worked with electrospray ionization in positive ion mode and selected reaction monitoring. The standard curves were linear (R2 ≥0.9962) over the concentration ranges (10–10000 ng/mL for irinotecan, 1–500 ng/mL for SN-38 and SN-38G and 1–5000 ng/mL for APC) and had good back-calculated accuracy and precision. The intra- and inter-day precision and accuracy, determined on three quality control levels for all the analytes, were always <12.3% and between 89.4% and 113.0%, respectively. Moreover, we evaluated this bioanalytical method by re-analysis of incurred samples as an additional measure of assay reproducibility. This method was successfully applied to a pharmacokinetic study in metastatic CRC patients enrolled in a genotype-guided phase Ib study of irinotecan administered in combination with 5-fluorouracil/leucovorin and bevacizumab.  相似文献   

18.
An analytical method for the determination of alpha-acetyldigoxin in Digitalis lanata leaves by HPLC has been developed. The procedure consists of extraction of dry leaf powder with 50% methanol and cleanup by a Sep-Pak C18 cartridge prior to HPLC analysis. The quantitation is carried out by the incorporation of beta-methyldigoxin as an internal standard. HPLC is performed on an octylsilyl bonded silica column with acetonitrile/methanol/water (100/11/188, v/v). The effluent is monitored by uv absorption at 220 nm. The amount of alpha-acetyldigoxin per 100 mg of dry leaf powder is estimated at 5.55 +/- 0.21 micrograms (mean +/- SD). The average recovery of alpha-acetyldigoxin from added samples is 97.2%. The present method is sensitive, reliable, and relatively simple. Application of this HPLC method to the analysis of samples obtained by fermentation of the leaf powder is also demonstrated.  相似文献   

19.
The application of 7-ethyl-10-hydroxycamptothecin (SN-38) in cancer treatment is limited by its low solubility. This study is to develop a liposome-entrapped formulation of SN-38 (LE-SN38) to solve the obstacle and to evaluate its pharmacokinetic profile in dogs and tissue distribution in mice. LE-SN38 which is more likely to be suitable for large-scale production was prepared by the carrier-deposition method. An UPLC–MS/MS method was used to determinate the concentration of SN-38 in this study. LE-SN38 was cleared rapidly from dog plasma within 1 h, and the AUC0?∞ values of three dosages of LE-SN38 indicated an apparent dose-dependent manner. As for the distribution study, the peak of SN-38 levels in most tissues were detected within 10 min after LE-SN38 administration. In addition, concentration of SN-38 in most tissues except kidney and heart in LE-SN38 group was higher than that in irinotecan hydrochloride (CPT-11) group generally, whereas the administrated CPT-11 had 20 times dosage compared to LE-SN38. LE-SN38 was rapidly eliminated from dog plasma and manifested linear dynamics in dose range of 0.411–1.644 mg/kg. The distribution behavior of SN-38 is altered in a liposome-based delivery system. At the same time, LE-SN38 has lower toxicity compared to CPT-11 in some degree.  相似文献   

20.
Analysis of camptothecins in biologic media is hampered by chemical hydrolysis of the parent lactone (form I) to an inactive hydroxy acid (form II). A solid-phase extraction (SPE) method utilizing C2-bonded silica particles (100 mg, 1 ml) is presented for simultaneous determination of forms I and II of camptothecin (CPT) and SN-38 (active metabolite of clinically used CPT-11) in culture media and cell lysates. A new HPLC separation is described that efficiently resolves all four compounds employing gradient elution with 10 mM ammonium acetate, increasing methanol (20-80% over 15 min), and a 15-cm by 3-mm Symmetry Shield (RP8) column. Components were detected by fluorescence at an excitation wavelength of 380 nm and emission wavelength of 423 nm. Lactones were shown to be unstable at alkaline pH and hydroxy acids unstable at alkaline pH while the following conditions preserved the chemical equilibrium in specimens: samples kept on ice, final pH of eluates 7.4, autosampler temperature 4 degrees C, and analysis cycle <4 h. Quantitative recovery of lactones was achieved from RPMI culture medium over a wide concentration range (93.5-111.6% for 1-400 ng/ml) although greater variability was noted with the hydroxy acids (59.6-110.3%, 1-400 ng/ml). Limit of quantitation (precision and accuracy <20%) was 0.2 ng/ml for CPT lactone, 0.5 ng/ml for SN-38 lactone, and 2 ng/ml for the two hydroxy acids. The method was applied to quantitate the accumulation of SN-38 and CPT (form I and II) in HT29 and HCT116 human colon cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号