首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CRF-like immunoreactivity was measured by radioimmunoassay in the brains and gastroenteropancreatic tract of normal rabbits. It was detected in the brain, with the highest concentration being found in the ventral hypothalamus. The distribution of immunoreactivity was much more limited in the rabbit brain than in the rat brain, with substantial amounts of peptide detected only in areas of close proximity to the hypothalamus, e.g., thalamus, preoptic area, midbrain and amygdala. In addition, the extrahypothalamic immunoreactivity was slightly retarded on Sephadex G-50 chromatography relative to rat CRF-like immunoreactivity and synthetic ovine CRF. No apparent CRF-like immunoreactivity was detected in boiling water extracts of lung, pancreas, duodenum or antrum. These data in conjunction with a previous report of void volume immunoreactivity on Sephadex G-50 only in the hypothalamus suggest that CRF is synthesized only in the hypothalamus and is not a member of the class of peptides found throughout the gastroenteropancreatic tract and the central nervous system.  相似文献   

2.
Bovine adrenal medulla extract prepared by acid-acetone or acid methanol extraction showed two peaks of CRF-like immunoreactivity on Sephadex G-50 chromatography. One eluted near the void volume and another (low molecular weight CRF-like immunoreactivity) eluted slightly before arginine vasopressin (AVP), while most of the immunoreactivity in bovine hypothalamus coeluted with synthetic ovine CRF. When low molecular weight CRF fractions were chromatographed by reversed phase high performance liquid chromatography, three CRF-like immunoreactive peaks appeared. The first peak appeared near TRH, the second one eluted near AVP and the last one eluted near somatostatin. These three peaks of immunoreactivity showed ACTH releasing bioactivity in rat pituitary cells cultures. Therefore, the adrenal medulla-CRF-like substances might be tissue-CRF which may play a role to stimulate ACTH release in the severe stress conditions.  相似文献   

3.
We have developed and used a sensitive and specific radioimmunoassay to demonstrate the presence of CRF-like immunoreactivity in extra-hypothalamic areas of ovine brain. Synthetic CRF displaced antibody bound tracer at an ED50 value of 200 pg and there was no cross-reactivity with LHRH, TRH, ACTH, beta-endorphin and several other peptides. Displacement of bound 125I-CRF by brain extracts exhibited curves parallel to synthetic CRF standards. Highest concentrations (1 ng/mg tissue) of CRF-like immunoreactivity were found in the median eminence but surprisingly, high concentrations of CRF-like immunoreactivity were found in frontal, parietal, occipital and particularly temporal areas of cerebral cortex. Much lower concentrations were found in other brain areas including the basal ganglia, limbic system and brain stem.  相似文献   

4.
The distribution of corticotropin releasing factor (CRF)-like immunoreactivity in the rat brain has been demonstrated by immunohistochemistry and radioimmunoassay using 4 different antisera. Two antisera were directed against synthetic ovine CRF, two antisera were directed against synthetic rat/human CRF. Immunohistochemistry revealed that there are discrete regions where CRF immunoreactive cell bodies are seen with all 4 antisera (e.g., the paraventricular nucleus, the dorsolateral tegmental nucleus) whereas there are cells observed only with one rat CRF antiserum (e.g., in the cortex) or terminal fields observed only with ovine CRF antisera (e.g., the spinal trigeminal tract, the substantia gelatinosa, the spinal cord). Radioimmunoassay showed different cross reactivity of the antisera with synthetic ovine or rat/human CRF and sauvagine, however, there was no cross reactivity with a variety of other peptides. Tissue values of CRF obtained by RIA of micropunched brain nuclei with the 4 antisera were frequently dissimilar suggesting that different antisera recognize different substances. High performance liquid chromatography and radioimmunoassay of brain tissue samples, revealed that there is more than one form of CRF-like immunoreactivity present. There is indirect evidence that there exists at least one peptide in the rat brain, prominent in the medulla and the spinal cord, which cross reacts with antisera directed to ovine CRF only.  相似文献   

5.
The availability of antibodies against the ovine corticotropin releasing factor (CRF), which cross-react with a CRF-like immunoreactivity (CRF-LI) in the rat, has enabled us to develop a radioimmunoassay (RIA) for rat CRF-LI in plasma and crude hypothalamic extracts. 125I-Tyr CRF 1-41 was used as the tracer, and synthetic ovine CRF as the reference hormone. The precision profile of the assay indicates a high degree of reproducibility except for the lower dose range. The minimum detectable dose was 20 pg/tube. This assay can detect differences in plasma CRF-LI levels after various manipulations that simultaneously alter the ACTH levels in plasma. A wide range of CRF concentrations has been found in plasma of normal rats. Caution should be exercised in the interpretation of the values obtained since an ovine RIA system was used.  相似文献   

6.
The immunocytochemical localization of neurons containing the 41 amino acid peptide corticotropin-releasing factor (CRF) in the rat brain is described. The detection of CRF-like immunoreactivity in neurons was facilitated by colchicine pretreatment of the rats and by silver intensification of the diaminobenzidine end-product. The presence of immunoreactive CRF in perikarya, neuronal processes, and terminals in all major subdivisions of the rat brain is demonstrated. Aggregates of CRF-immunoreactive perikarya are found in the paraventricular, supraoptic, medial and periventricular preoptic, and premammillary nuclei of the hypothalamus, the bed nuclei of the stria terminalis and of the anterior commissure, the medial septal nucleus, the nucleus accumbens, the central amygdaloid nucleus, the olfactory bulb, the locus ceruleus, the parabrachial nucleus, the superior and inferior colliculus, and the medial vestibular nucleus. A few scattered perikarya with CRF-like immunoreactivity are present along the paraventriculo-infundibular pathway, in the anterior hypothalamus, the cerebral cortex, the hippocampus, and the periaqueductal gray of the mesencephalon and pons. Processes with CRF-like immunoreactivity are present in all of the above areas as well as in the cerebellum. The densest accumulation of CRF-immunoreactive terminals is seen in the external zone of the median eminence, with some immunoreactive CRF also present in the internal zone. The widespread but selective distribution of neurons containing CRF-like immunoreactivity supports the neuroendocrine role of this peptide and suggests that CRF, similarly to other neuropeptides, may also function as a neuromodulator throughout the brain.  相似文献   

7.
Hypothalamic CRF-like immunoreactivity was measured in the a.m. and p.m., after systemic dexamethasone administration or after either stress in adult male rats. Measurement of plasma corticosterone levels revealed the expected circadian rhythmicity, suppression after dexamethasone administration and increase after ether stress. The hypothalamic content of CRF-like immunoreactivity was significantly decreased in the p.m. and after dexamethasone administration. However, no change in hypothalamic CRF-like immunoreactivity was observed after ether stress. The results are consistent with an increased release in the p.m. and decreased synthesis of hypothalamic CRF after systemic dexamethasone administration. The observation that there is no change in content of hypothalamic CRF-like immunoreactivity after ether stress could be due to the fact that the animals were stressed by handling. The results show that this immunoreactivity present in the hypothalamus is altered by changes in the hypothalamic-pituitaryadrenal axis and thus suggest that this peptide is a physiologically significant CRF in the rat.  相似文献   

8.
Summary The occurrence and localization of immunoreactive corticotropin-releasing factor (CRF) in the brain and pituitary of the elasmobranch fish Scyliorhinus canicula, were studied by means of specific radioimmunoassay and immunohistochemistry using the indirect immunofluorescence method. Brain and pituitary extracts showed a good cross-reactivity with the ovine CRF antiserum, but serial dilutions of tissue samples did not completely parallel the standard curve. Relatively high concentrations of CRF-like material were found within the pituitary, diencephalon, and telencephalon. CRF-like immunoreactive perikarya were observed in the preoptic nucleus and in the nucleus lateralis tuberis. Numerous immunoreactive cells appeared to be of the CSF-contacting type. CRF-like immunopositive fibers were seen to run through the hypothalamus within the ventro-medial floor of the infundibular region. A dense plexus of immunoreactive nerve endings terminated in the median eminence and the neurointermediate lobe of the pituitary. These results indicate that a neurosecretory system containing CRF-like immunoreactivity exists in the brain of elasmobranchs, a group of vertebrates which has diverged early from the evolutionary line leading to mammals. In addition, our data support the notion that a CRF-like molecule is involved in the regulation of corticotropic and melanotropic cell activity in this primitive species of fish.  相似文献   

9.
Immunocytochemical localization of CRF in the ovine hypothalamus   总被引:3,自引:0,他引:3  
A population of neuronal cell bodies and their fiber pathways have been elucidated within the ovine hypothalamus. The immunoreactive neurons were located in the anterior and dorsal hypothalamus interspersed throughout the paraventricular nucleus. These perikarya were only observed when an antiserum that was generated against the C-terminal of CRF was employed. A dense fiber projection traversed the medial-basal hypothalamus and ended within the palisade-contact zone of the median eminence and neural stem. Fibers were revealed by antisera generated against both the N-terminal and the C-terminal of CRF. Antisera pre-absorbed with synthetic CRF failed to yield immunoreactivity.  相似文献   

10.
Radioimmunoassay of CRF-like material in rat hypothalamus   总被引:1,自引:0,他引:1  
Corticotropin releasing factor (CRF) was recently isolated from ovine hypothalami by its ability to stimulate adrenocorticotropin (ACTH) and β-endorphin release from dispersed rat pituitary cells. In order to study the physiology of this peptide, we have developed a sensitive and specific radioimmunoassay (RIA) for CRF. Synthetic CRF was conjugated to bovine thyroglobulin and emulsified with complete Freund's adjuvant. A suitable antiserum was obtained which showed no crossreactivity with eight naturally occurring peptides. N-Tyr-CRF was iodinated and used as tracer. With this assay, CRF-like immunoreactivity which coeluted with ovine CRF on Sephadex G50 was detected in rat hypothalami.  相似文献   

11.
12.
Goat hypothalamic extract prepared by HCl extraction and chromatographed on a Sephadex G-50 column showed two immunoreactive CRF peaks. Most of the immunoreactivity coeluted with synthetic ovine CRF, and a small peak eluted near the void volume. Bovine, monkey, rat and human hypothalamic extracts prepared by acid-acetone or acid-methanol extraction showed three immunoreactive peaks. Most of the immunoreactivity coeluted with ovine CRF, and other smaller peaks eluted near the void volume and slightly before arginine vasopressin. Goat hypothalamic extract showed the highest cross-reactivity with anti-ovine CRF serum, followed by bovine hypothalamic extract. Less cross-reactivity was found in human, rat and monkey hypothalamic extracts. CRF immunoreactivity in goat hypothalamic extract coeluted with ovine CRF on reversed phase high performance liquid chromatography (HPLC) and main CRF immunoreactivity in human and rat hypothalamic extracts eluted slightly later than ovine CRF. These results suggest that there is a heterogeneity among the CRF molecules in these species and that goat CRF may be more similar to that of sheep CRF and the amino acid sequence or molecular weight of other animals CRF may be different from that of sheep CRF. The monkey posterior pituitary and rat neurointermediate lobe showed similar elution patterns of CRF immunoreactivity to their hypothalamic extracts on Sephadex gel filtration and HPLC. These results indicate that the posterior pituitary contains a similar CRF to hypothalamic CRF.  相似文献   

13.
The brain CRF concentration of spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) was examined by rat CRF radioimmunoassay. Anti-CRF serum was developed by immunizing rabbits with synthetic rat CRF. Synthetic rat CRF was also used as tracer and standard. The displacement of 125I-rat CRF by serially diluted extracts of male Wistar rats hypothalamus, thalamus, midbrain, pons, medulla oblongata, cerebral cortex, cerebellum and neurointermediate lobe was parallel to the displacement of synthetic rat CRF. In both WKY and SHR the highest levels of CRF immunoreactivity were shown by the hypothalamus and neuro-intermediate lobe, and considerable CRF immunoreactivity was also detected in other brain regions. The CRF immunoreactivity in the hypothalamus, neurointermediate lobe, midbrain, medulla oblongata and cerebral cortex was significantly reduced in SHR and it may suggest that CRF abnormality may be implicated in the reported abnormalities in the pituitary-adrenal axis, autonomic response and behavior of SHR.  相似文献   

14.
Corticotropin-releasing factor (CRF) and urocortin (Ucn) are both members of the CRF neuropeptide family. The distribution of Ucn- and CRF-like immunoreactive (ir) structures in the central nervous system of several vertebrate species has been studied, but little is known about that in non-vertebrates. We used a highly specific polyclonal antibody against rat Ucn and CRF to determine and compare the distribution of Ucn- and CRF-like immunoreactivity in the earthworm nervous system. Several Ucn- and CRF-like ir perikarya were described in the cerebral ganglion, subesophageal and ventral cord ganglia. The majority of Ucn-like ir cells were found in the ventral ganglia, whereas CRF-like ir cells were most abundant in the cerebral ganglion. Scattered Ucn- and CRF-like ir varicose fiber terminals were seen in all areas of the earthworm central nervous system. Ucn-like ir cell bodies and fiber terminals were also demonstrated in the pharyngeal wall. No co-localization of Ucn- and CRF-like ir nervous structures were observed. This study provided morphological evidence that Ucn- and CRF-like neurosecretory products exist in the earthworm central nervous system. Furthermore, both the distribution and morphology of Ucn- and CRF-like ir structures were distinct, therefore, it can be hypothesized that these neuropeptides exert different neurendocrine functions in the earthworm nervous system.  相似文献   

15.
Corticotropin-releasing factor (CRF)-like peptides mediate their effects via two receptor subtypes, CRF1 and CRF2; these receptors have functional implication in the motility of the stomach and colon in rats. We evaluated expression and functions of CRF1 and CRF2 receptors in the rat small intestine (i.e., duodenum and ileum). CRF(1-2)-like immunoreactivity (CRF(1-2)-LI) was localized in fibers and neurons of the myenteric and submucosal ganglia. CRF(1-2)-LI was found in nerve fibers of the longitudinal and circular muscle layers, in the mucosa, and in mucosal cells. Quantitative RT-PCR showed a stronger expression of CRF2 than CRF1 in the ileum, whereas CRF1 expression was higher than CRF2 expression in the duodenum. Functional studies showed that CRF-like peptides increased duodenal phasic contractions and reduced ileal contractions. CRF1 antagonists (CP-154,526 and SSR125543Q) blocked CRF-like peptide-induced activation of duodenal motility but did not block CRF-like peptide-induced inhibition of ileal motility. In contrast, a CRF2 inhibitor (astressin2-B) blocked the effects of CRF-like peptides on ileal muscle contractions but did not influence CRF-like peptide-induced activation of duodenal motility. These results demonstrate the presence of CRF(1-2) in the intestine and demonstrate that, in vitro, CRF-like peptides stimulate the contractile activity of the duodenum through CRF1 receptor while inhibiting phasic contractions of the ileum through CRF2 receptor. These results strongly suggest that CRF-like peptides play a major role in the regulatory mechanisms that underlie the neural control of small intestinal motility through CRF receptors.  相似文献   

16.
《Life sciences》1983,32(9):1001-1007
This newly developed specific radioimmunoassay for corticotropin releasing factor (CRF) had a sensitivity range of 25 pg/tube to 4 ng/tube. Intra and interassay coefficient of variation were 4.6% and 9.8%, respectively. Rat median eminence extracts showed a parallel dose response curve with synthetic ovine CRF and a significant cross reaction was not evident with other tested neuropeptides. The highest mean levels of CRF were found in the median eminence (6.61 ng/mg protein). Considerable amounts of CRF were found in the arcuate nucleus, paraventricular nucleus, dorsomedial nucleus, suprachiasmatic nucleus and ventromedial nucleus. The immunoreactive CRF of the rat medial basal hypothalamus coeluted with bioassayable CRF and with iodinated CRF on Sephadex G-75 chromatography. The results indicate that rat hypothalamus contains a CRF similar to ovine CRF.  相似文献   

17.
The distribution of corticotropin-releasing factor (CRF) immunoreactivity was demonstrated by immunocytochemistry in intact and colchicine-treated pigeons. Colchicine injections were administered at different times related to the circadian activity of the CRF-adrenocorticotropin (ACTH)-corticosterone axis. Three CRF antisera were used, two directed against synthetic rat CRF and one directed against synthetic ovine CRF. No fundamental differences appeared in the pigeon brain with respect to the specific CRF antiserum used. The most effective colchicine injection times corresponded to hypersecretion in the corticotropic axis. CRF-immunopositive neurons were scattered throughout the pigeon brain. In addition to the paraventricular hypothalamic system, which is involved in adenohypophysial ACTH regulation, several other hypothalamic and extrahypothalamic areas showed CRF neurons. The distribution suggests that CRF may also act as a modulator and a neurotransmitter. Two hypothalamic paraventricular nucleus-median eminence CRF pathways are described here. Moreover, CRF-immunopositive reactions were observed in specific areas of cerebral ventricle walls, suggesting that CRF may be released into the cerebral fluid.  相似文献   

18.
R L Moldow  A J Fischman 《Peptides》1982,3(2):143-147
Hypothalamic CRF-like immunoreactivity was measured in normal, hypophysectomized or adrenalectomized adult male rats. As expected, adrenalectomy resulted in decreased levels in plasma corticosterone and increased plasma levels of ACTH; hypophysectomy resulted in decreased levels in both corticosterone and ACTH. The hypothalamic content of CRF-like immunoreactivity in animals two weeks post-hypophysectomy or adrenalectomy was approximately seven times greater than that found in intact animals. At one week, post-surgery, small but statistically significant decreases in content of CRF-like immunoreactivity were observed. The results at one week are consistent with removal of feedback effects of ACTH and corticosterone causing increased release of CRF and decreased content. The increase in CRF-like immunoreactivity two weeks post-surgery is probably not related to direct feedback effects on release but may be due to increased synthesis secondary to long term removal of feedback inhibition.  相似文献   

19.
Radioimmunoassay was used to determine ACTH secretion by cultured hypophyses of human fetuses from the 6th to the 30th week of intrauterine life and their responsiveness to hypothalamic extracts obtained from adult animals. CRF-like activity in the human hypothalamus was measured within the 6th to the 32nd week of prenatal development from changes in ACTH release by cultured cells of the adult rat hypophysis. It was established that starting from weeks 6-7 of embryogenesis, the human fetal hypophysis is capable of synthesizing and secreting immuno-reactive ACTH in vitro. The human fetus hypothalamus of the first trimester of gestation contained no CRF-like substance. The fetus hypothalamus of the second and third trimesters of pregnancy manifested a considerable amount of CRF-like substance. It is suggested that CRF appears at the end of the first trimester of pregnancy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号