首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The central haemodynamic effects of neuropeptide Y (NPY), both alone and together with either noradrenaline (NA) or vasopressin (AVP), have been investigated by microinjecting synthetic peptide into the nucleus tractus solitarius (NTS) of anaesthetized rats. NPY alone elicited dose-dependent changes in blood pressure (BP) and heart rate (HR); 470 fmol inducing a pressor response, and 4.7 pmol a fall in BP. The hypotensive response to 20 nmol NA was significantly modified by both simultaneous and prior injection of an ineffective dose (47 fmol) of NPY. Prior injection of a similar dose of NPY also modified the NTS pressor effect of 10 ng AVP. A relationship between the action of AVP and NPY in the NTS was further indicated by the finding that prior injection of an ineffective dose of AVP (1 ng) reduced the hypotensive response to 4.7 pmol NPY, and by the demonstration of contrasting effects of 4.7 pmol NPY in AVP-deficient Brattleboro rats compared to parent strain LE rats. These results, taken together with the recent localization of NPY-like immunoreactivity in the NTS, suggest a role for NPY in central cardiovascular control. In addition, NPY has been shown to exhibit functional interactions with both an amine neurotransmitter and a neuropeptide present in the NTS of rats.  相似文献   

2.
在清醒雄性大鼠中经静脉抽出血液总量的约50%,造成失血性低血压。对照组大鼠在失血后不予处理。刺激组大鼠在失血后半小时用低频电脉冲刺激坐骨神经30min。刺激组动物的平均动脉压在刺激肘和刺激停止后2小时内均显著高于对照组。在同时记录内脏神经放电的动物中还看到,刺激坐骨神经时交感神经活动显著加强。这可能和血压、心率的恢复有关。在失血动物中刺激坐骨神经引起的升压效应不能被静脉内注射纳洛酮(8mg/kg)翻转;预先注射纳洛酮也不能阻断这种升压效应。在用水合氯醛麻醉的大鼠中,失血后刺激坐骨神经仍能引起升压反应。但如在刺激坐骨神经前静脉注射东莨菪碱(8—20mg/kg),则在多数动物中上述升压反应的幅度显著减小,甚至消失。实验结果表明,在失血性低血压的大鼠中,刺激坐骨神经可促进机体代偿反应,进一步加强交感神经活动,有利于血压的恢复。这一效应可能需要胆硷能递质参与,而内啡肽系统似乎不起重要作用。  相似文献   

3.
Experiments were performed on conscious, male Sprague-Dawley rats to determine whether cyclooxygenase inhibition affects the pressor response to exogenous vasopressin. The rise in arterial blood pressure was tested in response to 1.0, 2.5, 5.0, and 12.5 mU synthetic arginine vasopressin both before and following cyclooxygenase inhibition with either meclofenamate or the structurally dissimilar inhibitor ibuprofen. In addition, time control experiments were also performed where only the saline vehicle for the drugs was administered. In all animals tested, the increase in arterial pressure in response to the highest three concentrations of vasopressin was greater following cyclooxygenase inhibition than before, while the saline vehicle had no effect. The baroreceptor-mediated bradycardia accompanying the rise in blood pressure was variable, but unaffected by meclofenamate or ibuprofen. It is concluded that vasodilator prostaglandins are released in response to pressor levels of vasopressin, which act to modulate the pressor response of the peptide.  相似文献   

4.
Intracerebroventricular (ICV) injections of prostacyclin (PGI2) produced biphasic blood pressure responses consisting of an initial hypotensive phase followed by a sustained pressor phase in awake rats. Heart rate increased following such injections in either awake or anesthetized rats. PGI2, 1 microgram, produced biphasic responses and, 10 micrograms, purely vasodepressor responses in anesthetized rats, but abdominal sympathetic nerve firing recorded was consistently increased. Hypophysectomy did not affect the hypotensive phase of the responses. These results indicate that the initial hypotension can not be explained by centrally-induced changes in sympathetic nerve activity or vasopressin release, but may be due to peripheral effects of PGI2 leaking from the injection site.  相似文献   

5.
To confirm and extend the results of previous studies which demonstrated central cardiovascular effects of vasopressin in anesthetized rats, we determined blood pressure and heart rate changes for 30 minutes after intracerebroventricular injections of arginine vasopressin, arginine vasotocin and oxytocin in conscious rats. As compared to sham injections, significantly greater increases in either systolic or diastolic blood pressure were noted over the 30 minutes which followed the injection of 0.15, 1.0 or 10.0 nM of either vasopressin or vasotocin. In animals given vasopressin, plasma levels of the peptide were determined. There was a substantial increase in plasma vasopressin only after the highest dose. Overall blood pressure responses to doses of oxytocin as high as 100 nM were not significantly different than sham injections. Heart rate following both vasopressin and vasotocin was increased at 0.15 nM, was initially decreased then increased at 1.0 nM and was substantially decreased after the 10.0 nM dose. There was a significant increase in heart rate at the 10.0 nM and 100 nM doses of oxytocin. Dose response curves for systolic blood pressure and heart rate 20 minutes after injection were similar for vasopressin and vasotocin. We conclude that arginine vasopressin has significant central pressor and tachycardic effects in conscious rats, and it is related, at least in part, to the tail structure of the peptide, which is shared with arginine vasotocin.  相似文献   

6.
Experiments were conducted (i) to determine the hemodynamic (blood pressure and heart rate) responses of conscious rats following intrathecal (IT) administration of endogenous prodynorphin-derived opioids into the lower thoracic space, (ii) to identify the receptors involved in mediating their cardiovascular responses, and (iii) to reveal any possible hemodynamic interactions with the neuropeptide arginine vasopressin. Male Sprague-Dawley rats were surgically prepared with femoral arterial and venous catheters as well as a spinal catheter (into lower thoracic region, T9-T12). After recovery, hemodynamic responses were observed in conscious rats for 5-10 min after IT injections of artificial cerebrospinal fluid (CSF) solution, prodynorphin-derived opioids (dynorphin A, dynorphin B, dynorphin A (1-13), dynorphin A (1-10), alpha- and beta-neoendorphin, leucine enkephalin (LE), methionine enkephalin (ME), arginine vasopressin (AVP), or norepinephrine (NE)). IT injections of AVP (10 or 20 pmol), dynorphin A (1-13), or dynorphin A (10-20 nmol) caused pressor effects associated with a prolonged and significant bradycardia. Equimolar (20 nmol) concentrations of LE, ME, alpha- and beta-neoendorphin, and dynorphin A (1-10) caused no significant blood pressure or heart rate changes. Combined IT injections of dynorphin A (1-13) and AVP caused apparent additive pressor effects when compared with the same dose of either peptide given alone. IT infusion of the specific AVP-V1 antagonist d(CH2)5Tyr(Me)AVP before subsequent IT AVP, dynorphin A (1-13), or NE administration inhibited only the subsequent pressor responses to AVP. The kappa-opioid antagonist (Mr2266) infused IT blocked the pressor actions of subsequent dynorphin A administration and not AVP or NE.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Experiments were conducted in conscious rats to determine whether DOCA-salt treatment could cause an elevation of sodium concentration of cerebrospinal fluid (CSF), which may be responsible for the enhanced activity of sympathetic nervous system (SNS) and increased secretion of vasopressin (AVP). Systolic blood pressure (SBP) and mean arterial pressure (MAP) were gradually but consistently increased by DOCA-salt treatment. Serum Na concentration was similarly increased with time by DOCA-salt, and significantly higher than control in the 4th treatment week. In contrast, DOCA-salt did not alter the CSF Na levels at any time during treatment. A relationship between SBP and CSF Na was never evident at any stage of the DOCA-salt hypertension. The decrease in MAP following administration of the vasopressin V1-receptor antagonist, d(CH2)5Tyr(Me)AVP (30 micrograms/kg), or hexamethonium (30 mg/kg) was enhanced in the DOCA-treated rats, as compared to findings in the controls. These hypotensive effects were gradually, but progressively enhanced with the development of hypertension by DOCA-salt treatment. We tentatively conclude that mechanisms accounting for the enhanced activity of SNS and AVP in DOCA-salt hypertensive rats are independent of an increased Na concentration in the CSF.  相似文献   

8.
Administration of the 5-HT(1A) receptor agonist, 8-OH-DPAT, improves cardiovascular hemodynamics and tissue oxygenation in conscious rats subjected to hypovolemic shock. This effect is mediated by sympathetic-dependent increases in venous tone. To determine the role of splanchnic nerves in this response, effects of 8-OH-DPAT (30 nmol/kg iv) were measured following fixed-arterial blood pressure hemorrhagic shock (i.e., maintenance of 50 mmHg arterial pressure for 25 min) in rats subjected to bilateral splanchnic nerve denervation (SD). Splanchnic denervation decreased baseline venous tone as measured by mean circulatory filling pressure (MCFP) and accelerated the onset of hypotension during blood loss. Splanchnic denervation did not affect the immediate pressor effect of 8-OH-DPAT but did reverse the drug's lasting pressor effect, as well as its ability to increase MCFP and improve metabolic acidosis. Like SD, adrenal demedullation (ADMX) lowered baseline MCFP and accelerated the hypotensive response to blood withdrawal but also reduced the volume of blood withdrawal required to maintain arterial blood pressure at 50 mmHg. 8-OH-DPAT raised MCFP early after administration in ADMX rats, but the response did not persist throughout the posthemorrhage period. In a fixed-volume hemorrhage model, 8-OH-DPAT continued to raise blood pressure in ADMX rats. However, it produced only a transient and variable rise in MCFP compared with sham-operated animals. The data indicate that 8-OH-DPAT increases venoconstriction and improves acid-base balance in hypovolemic rats through activation of splanchnic nerves. This effect is due, in part, to activation of the adrenal medulla.  相似文献   

9.
Apparent pressor receptor dissociation rate constants for arginine vasopressin, arginine vasotocin, oxytocin, oxypressin, and [1-deamino, 9-D-alanineamide]arginine vasopressin were estimated by the following method. Two minutes after injection of a moderate dose of agonist into urethane-anesthetized rats prepared for recording mean blood pressure, a large dose of inhibitor was injected. Under these conditions, in the first few moments after inhibitor injection, there should be no rebinding of the agonist after it dissociates, because vacant receptors should be immediately occupied by inhibitor. The rate of the blood pressure drop at the initiation of inhibition was calculated and used as an estimate of the dissociation rate of the agonist. Apparent dissociation rate constants thus estimated were 1.1, 1.1, 6.9, 5.8, and 13.9 min-1 for arginine vasopressin, arginine vasotocin, oxytocin, oxypressin, and [1-deamino, 9-D-alanineamide]arginine vasopressin, respectively. These rate constants were inversely related to the pressor potencies (435, 250, 5, 3, and 0.7 U/mg, respectively) of these five compounds. Such a relationship is to be expected if decreased potency is in part due to a faster "off" rate from pressor receptors.  相似文献   

10.
Yosten GL  Samson WK 《Peptides》2012,33(2):342-345
We recently reported that neuronostatin, a novel neuropeptide, biphasically increased mean arterial pressure, first through the activation of the sympathetic nervous system followed by the release of vasopressin. In those experiments, we found that centrally administered neuronostatin increased plasma vasopressin levels only 2-3 times greater than levels observed in saline-treated controls, and that the increase in mean arterial pressure (approximately 15 mm Hg) could be blocked by pretreatment with a V1-vasopressin antagonist. Here we report the relationship between two to three fold elevations in plasma vasopressin levels and concomitant changes in mean arterial pressure in conscious, unrestrained male rats. We injected increasing doses of vasopressin (5, 20, and 100 ng/kg, intra-arterially) and measured both changes in plasma vasopressin levels and the elevation in mean arterial pressure achieved. At 5-min post injection, plasma levels of vasopressin and mean arterial pressures were similar to those observed following central neuronostatin administration in our earlier study. Thus we conclude that small increases in circulating vasopressin levels can result in significant elevations in mean arterial pressure at least in the conscious rat.  相似文献   

11.
Vasopressin receptor subtypes in dorsal hindbrain and renal medulla   总被引:2,自引:0,他引:2  
We have investigated the ability of a series of synthetic vasopressin analogues and related peptides to compete with (3H)-arginine8 vasopressin for binding sites in rat renal medulla and dorsal hindbrain. In renal medulla, arginine8 vasopressin and deamino arginine8 vasopressin, a selective antidiuretic, were equipotent while two antagonists of the pressor action of arginine vasopressin were less potent. In the dorsal hindbrain, arginine8 vasopressin and the pressor antagonists were more potent than the synthetic antidiuretic. Potency profiles of these and other analogues suggest that the renal medulla and dorsal hindbrain vasopressin receptors represent different subtypes.  相似文献   

12.
The blunting of arterial pressure increases to a variety of pressor agents or the lowering of arterial pressure in some models of hypertension following intracerebroventricular administration of an angiotensin II (AII) antagonist, has been interpreted as prima facie evidence for the involvement of the central AII system in these situations. Central administration of vasopressin or carbachol (a cholinergic agonist) produces pressor effects which have been reported to be due to an increase in the activity of the sympathetic nervous system. We now report that central administration of AII antagonists [either (Sar-1, Ile-8) AII or (Sar-1, Ala-8) AII] in rats prevents the majority (greater than 70%) of the pressor effects of intraventricular vasopressin or carbachol. These results can be interpreted in two ways. The first is that all of these pressor agents use a central angiotensinergic mechanism(s) to increase sympathetic nervous system activity. An alternative hypothesis is that centrally administered AII antagonists non-specifically inhibit sympathetic nervous system function.  相似文献   

13.
[Arg8]-vasopressin (AVP) plays a crucial role in regulating body fluid retention, which is mediated through the vasopressin V2 receptor in the kidney. In addition, AVP is involved in the regulation of glucose homeostasis via vasopressin V1A and vasopressin V1B receptors. Our previous studies demonstrated that vasopressin V1A receptor-deficient (V1AR−/−) and V1B receptor-deficient (V1BR−/−) mice exhibited hyperglycemia and hypoglycemia with hypoinsulinemia, respectively. These findings indicate that vasopressin V1A receptor deficiency results in decreased insulin sensitivity whereas vasopressin V1B receptor deficiency results in increased insulin sensitivity. In addition, vasopressin V1A and vasopressin V1B receptor double-deficient (V1ABR−/−) mice exhibited impaired glucose tolerance, suggesting that the effects of vasopressin V1B receptor deficiency do not influence the development of hyperglycemia promoted by vasopressin V1A receptor deficiency, and that the blockage of both receptors could lead to impaired glucose tolerance. However, the contributions of the entire AVP/vasopressin receptors system to the regulation of blood glucose have not yet been clarified. In this study, to further understand the role of AVP/vasopressin receptors signaling in blood glucose regulation, we assessed the glucose tolerance of AVP-deficient homozygous Brattleboro (di/di) rats using an oral glucose tolerance test (GTT). Plasma glucose and insulin levels were consistently lower in homozygous di/di rats than in heterozygous di/+ rats during the GTT, suggesting that the blockage of all AVP/vasopressin receptors resulting from the AVP deficiency could lead to enhanced glucose tolerance.  相似文献   

14.
We investigated the effect of pertussis toxin (PTX) on hypotensive response induced by acetylcholine (ACh) and bradykinin (BK) and on noradrenaline (NA)-induced pressor response in spontaneously hypertensive rats (SHR). Fifteen-week-old Wistar rats and age-matched SHR were used. Half of SHR received PTX (10 microg/kg/i.v.) and the experiments were performed 48 h later. After the anesthesia the right carotid artery was cannulated in order to record blood pressure (BP). The hypotensive response to ACh was enhanced in SHR compared to Wistar rats. After pretreatment of SHR with PTX the hypotensive response to ACh was reduced compared to untreated SHR and it was also diminished in comparison to Wistar rats. Similarly, the hypotensive response to BK was also decreased after PTX pretreatment. The pressor response to NA was increased in SHR compared to Wistar rats. NA-induced pressor response was considerably decreased after PTX pretreatment compared to untreated SHR. In conclusion, the enhancement of hypotensive and pressor responses in SHR was abolished after PTX pretreatment. Our results suggested that the activation of PTX-sensitive inhibitory G(i) proteins is involved in the regulation of integrated vasoactive responses in SHR and PTX pretreatment could be effectively used for modification of BP regulation in this type of experimental hypertension.  相似文献   

15.
Spontaneuosly hypertensive rats (SHR) have been shown to exhibit several alterations in function of the intrabrain vasopressinergic system. The present study was designed to find out whether centrally administered vasopressin (AVP) may influence the cardiovascular adaptation to hypotensive hypovolemia in SHR rats. Two series of experiments were performed on conscious 17 SHR rats chronically implanted with lateral cerebral ventricle (LCV) cannulas and with femoral artery catheters. Mean arterial pressure (MAP) and heart rate (HR) were monitored before and after arterial bleeding (1,3% body weight) performed during LCV infusion of 1) artificial cerebrospinal fluid 5 microl/hour (aCSF); and 2) arginine vasopressin, 100 ng/hour/5 microl of aCSF (AVP). Central administration of aCSF and AVP had no effect on MAP and HR under resting conditions. Hemorrhage evoked significant hypotension (p<0.001) and bradycardia (p<0.001). During central infusion of AVP hemorrhage resulted in significantly greater hypotension than during central infusion of aCSF alone (p<0,05). The results provide evidence that centrally applied vasopressin significantly modulates cardivascular adjustments to hypotensive hemorrhage in SHR.  相似文献   

16.
A marked lowering of arterial blood pressure was observed in chronic aortic coarctate (CAC) hypertensive rats after intravenous administration of anti-digoxin antiserum. The hypotensive effect lasted for about 30 min after dosing. In contrast to the pronounced changes observed following treatment with anti-digoxin antiserum in CAC rats, only a transient pressor effect was observed in both water-and saline-drinking CAC rats following injection of normal goat serum. In addition, a transient depressor effect was observed in normotensive rats after injection of anti-digoxin antiserum. The results of this study provide additional evidence indicating that an endogenous digoxin-like substance may play an important role in the maintenance of chronic low-renin hypertension induced by aortic coarctation.  相似文献   

17.
Lesions of the lateral parabrachial nucleus (LPBN) impair blood pressure recovery after hypotensive blood loss (Am J Physiol Regul Integr Comp Physiol 280: R1141, 2001). This study tested the hypothesis that posthemorrhage blood pressure recovery is mediated by activation of neurons, located in the ventrolateral aspect of the LPBN (VL-LPBN), that initiates blood pressure recovery by restoring sympathetic vasomotor drive. Hemorrhage experiments (16 ml/kg over 22 min) were performed in unanesthetized male Sprague-Dawley rats prepared with bilateral ibotenate lesions or guide cannulas directed toward the external lateral subnucleus of the VL-LPBN. Hemorrhage initially decreased mean arterial pressure (MAP) from approximately 100 mmHg control to 40-50 mmHg, and also decreased heart rate. In animals with sham lesions, MAP returned to 84 +/- 4 mmHg by 40 min posthemorrhage, and subsequent autonomic blockade with hexamethonium reduced MAP to 53 +/- 2 mmHg. In contrast, animals with VL-LPBN lesions remained hypotensive at 40 min posthemorrhage (58 +/- 4 mmHg) and hexamethonium had no effect on MAP, implying a deficit in sympathetic tone. VL-LPBN lesions did not alter the renin response or the effect of vasopressin V1 receptor blockade after hemorrhage. Posthemorrhage blood pressure recovery was also significantly delayed by VL-LPBN infusion of the ionotropic glutamate receptor antagonist kynurenic acid. Both VL-LPBN lesions and VL-LPBN kynurenate infusion caused posthemorrhage bradycardia to be significantly prolonged. Bradycardia was reversed by hexamethonium or atropine, but did not contribute to posthemorrhage hypotension. Taken together, these data support the hypothesis that stimulation of VL-LPBN glutamate receptors mediates spontaneous blood pressure recovery by initiating restoration of sympathetic vasomotor drive.  相似文献   

18.
The supraoptic-hypophyseal tract is a primary system for the synthesis and release of vasopressin. Angiotensin II (AII) has been shown to release vasopressin when injected into the cerebral ventricles (IVT). However, intravenous (IV) AII injections have not produced consistent results. The present studies were conducted to examine the effects of AII delivered by either route on the unit activity of supraoptic nucleus (SON) magnocellular neurons. Rats were prepared with intracranial cannulas to insure delivery of drugs to the left lateral ventricle and with polyethylene catheters in the left jugular vein, femoral vein, and femoral artery for systemic injections and arterial pressure recordings. A ventral approach permitted recording from the SON without violating the ventricular-SON partition. Magnocellular neurons were electrophysiologically identified. In the majority of identified cells, IVT AII increased activity. In others pressor doses of AII IV inhibited firing while blood pressure was elevated. After sino-aortic denervation, AII IV excited SON neurons. Based on latency, and the fact that lesioning the anteroventral third ventricle blocked the action of AII IVT, the results indicate that AII IVT acts on a periventricular site to influence SON magnocellular neurons. Furthermore, systemic AII may have two effects on SON neurons: a central excitatory action, and an inhibition due to a baroreceptor reflex.  相似文献   

19.
Experiments were performed to compare the possible effect of endogenous arginine vasopressin on renal hemodynamics between anesthetized, surgically stressed rats and conscious rats. Animals were instrumented with arterial and venous catheters as well as with a pulsed Doppler flow probe on the left renal artery. The rats were studied under the following conditions: (1) conscious and unrestrained; (2) anesthetized only; (3) anesthetized with minor surgical stress; and (4) anesthetized with major surgical stress. Two anesthetic agents were also compared, a mixture of ketamine (110 mg/kg i.m.) and acepromazine (1 mg/kg i.m.), and sodium pentobarbital (50 mg/kg i.p.). Baseline mean arterial blood pressure was significantly higher in pentobarbital-anesthetized rats following surgical stress compared with conscious animals, but blood pressure was not affected by ketamine-acepromazine anesthesia. After baseline measurements of blood pressure, heart rate, and renal blood flow, a specific V1-vasopressinergic antagonist (d(CH2)5Tyr(Me) arginine vasopressin, 10 mg/kg i.v.) was administered to each group. Mean arterial blood pressure, heart rate, and renal blood flow were monitored for an additional 15 min. Mean arterial blood pressure and renal blood flow decreased after V1 antagonism in ketamine-acepromazine-anesthetized rats with major surgical stress, but were not affected in pentobarbital-anesthetized animals. Heart rate and renal vascular resistance were not affected following V1 blockade with either anesthetic agent. These data suggest that arginine vasopressin plays a role in maintaining blood pressure and renal perfusion in ketamine-acepromazine-anesthetized rats following surgical stress, but does not have a significant effect on renal hemodynamics under pentobarbital anesthesia.  相似文献   

20.
M Vallejo  S L Lightman 《Life sciences》1986,38(20):1859-1866
The haemodynamic effects of intracerebroventricular (i.c.v.) administration of neuropeptide Y (NPY) in urethane-anaesthetized rats were studied. In Sprague-Dawley rats, NPY increased both blood pressure and heart rate in a dose-dependent manner. This response was unaffected by removal of the adrenal medullae or pretreatment with a specific vasopressin antagonist (180 ng/kg i.v.), but was abolished by phenoxybenzamine (1mg/kg i.v.). After pretreatment with propranolol (1mg/kg i.v.), the tachycardia was inhibited and the pressor response was of shorter duration than in controls. In 6-hydroxydopamine treated rats (two doses of 250 micrograms i.c.v., three days apart), NPY still elicited a pressor response and tachycardia, which were significantly higher than controls 15 minutes after the injection. Plasma levels of vasopressin were not altered by i.c.v. administration of NPY. However, in Brattleboro rats the peptide had no haemodynamic effects. Our results suggest that activation of sympathetic nervous system but not release of vasopressin or adrenal catecholamines into the bloodstream mediates the cardiovascular response to NPY. Central vasopressin pathways however may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号