首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The immunocytochemical location of neuropeptide Y (NPY)-like immunoreactivity (LI) within the neuronal structures of the rat gastrointestinal (GI) tract was investigated with the indirect immunofluorescence method. NPY immunoreactive neurons were found throughout all regions of the GI tract with the largest number in the duodenum. NPY immunoreactive perikarya were mainly located in the submucosal ganglia. NPY labeled processes were extensively seen in the submucosal and myenteric plexuses, smooth muscles, muscularis mucosa, mucosa and surrounding blood vessels. Following 6-hydroxydopamine (6-OHDA) treatment, NPY immunoreactive nerve fibers around blood vessels disappeared completely and the reactive fibers in other regions were reduced in number. NPY immunoreactive nerve cell bodies in the ganglionic plexuses, however, were not affected by 6-OHDA treatment. Serial sections of the coeliac ganglion showed that NPY-LI was present in cell bodies which also displayed tyrosine hydroxylase (TH) immunoreactivity. Our results suggest that NPY is abundantly contained in both adrenergic and non-adrenergic neurons of the gut and may play an important role in the regulation of the GI tract.  相似文献   

2.
We have used specific antisera against protein-conjugated -aminobutyric acid (GABA) and rat-brain glutamic acid decarboxylase (GAD) in immunocytochemical preparations to study the distribution of putatively GABAergic neurons in the fused thoracic ganglion of the crab Eriphia spinifrons. In the thoracic neuromeres, about 2000 neurons with somata arranged in clusters or located singly in the cell cortex exhibited both GABA-like and GAD-like immunoreactivity. In addition, more than a hundred cells showed only GABA-like immunoreactivity. Fibrous immunoreactive staining to GAD and GABA was distributed throughout the neuropil of the thoracic ganglion, and several fiber tracts contained immunoreactive processes. Sets of serially homologous neurons exhibited GABA-like and GAD-like immunoreactivity in the thoracic neuromeres. Especially prominent were one medial and four ventro-lateral clusters of somata, together with thirteen individually recognized cells in each neuromere. Six of these cells in the ventro-medial cell cortex may be the somata of inhibitory motoneurons. The leg nerves contained three immunoreactive fibers, corresponding to the previously described common inhibitory motoneuron and the two specific inhibitors. The results present further evidence for GABA being the neurotransmitter of all inhibitory leg motorneurons, and suggest its presence and role as a neurotransmitter in a considerable number of interneurons in the thoracic ganglion of the crab.  相似文献   

3.
Summary Trigeminal ganglion cells supplying the cornea were traced with intra-axonally transported horseradish peroxidase and, subsequently studied for the presence of substance P-like immunoreactivity. Approximately 0%–30% of trigeminal ganglion cells contained immunoreactive substance P. These cells were of a small size (15–50 m in diameter) and were distributed throughout the ganglion. The ganglion cells supplying the cornea were of a relatively small size as well but were confined to the anteromedial part of the ganglion. Some of these cells were found to contain immunoreactive substance P.  相似文献   

4.
The distribution of the P2X5 purinoceptor in the enteric nervous system of the mouse was studied by immunohistochemistry. P2X5 receptor immunoreactivity was widely distributed in myenteric and submucosal plexuses throughout the gastrointestinal tract. In myenteric plexuses, immunoreactivity for the P2X5 receptor was observed in nerve fibres that enveloped ganglion cell bodies, and possibly on glial cell processes. P2X5 receptor immunoreactivity was colocalised with vasoactive intestinal peptide and surrounded ganglion cells that contained calretinin, calbindin or nitric oxide synthase. In the submucous plexus, P2X5 receptor immunoreactivity occurred throughout the cytoplasm and on the surface membranes of the nerve cells. Double-labelling studies showed that 22%, 9%, 6% and 68% of P2X5 receptor-immunoreactive neurones were also immunoreactive for calretinin, calbindin, nitric oxide synthase and vasoactive intestinal peptide, respectively. Thus, the P2X5 receptor subunit is expressed in specific functional groups of neurones. P2X2 and P2X3 receptors were also present in the mouse enteric plexuses but no immunoreactivity for P2X1, P2X4 or P2X6 receptors was found.  相似文献   

5.
The present study describes substance P-like immunoreactivity in the ciliary ganglia of monkey (Macaca fascicularis) and cat. About 60% of neurons in the monkey ciliary ganglion and 40% in the cat ciliary ganglion were substance P-like immunoreactive, ranging from faint to moderate staining. Substance P-like immunoreactivity was located in cell bodies, dendritic profiles and axons. In the monkey, substance P-like immunoreactive pericellular arborisations were associated with about 0.5%–3% of the ganglion cells, which were either negatively, faintly or moderately stained. An electron-microscopic study demonstrated the presence of either substance P-like immunoreactive positive or negative axon terminals synapsing or closely associated with positive dendritic profiles in both the monkey and cat ciliary ganglia. The results suggest that substance P plays an important role in the ciliary ganglion, perhaps as a modulator or transmitter.  相似文献   

6.
Hill SR  Orchard I 《Peptides》2003,24(10):1511-1524
The gut tissues and associated nervous system of the African migratory locust, Locusta migratoria, were found to contain FMRFamide-like immunoreactive (FLI) material throughout the five larval instars and 2 weeks into the adult stage in both males and females. FMRFamide-like immunoreactivity associated with the locust gut was described using camera lucida techniques. FMRFamide-like immunoreactivity is observed in the frontal connectives, recurrent nerve, and oesophageal nerves; projections from the ingluvial ganglion onto the anterior midgut, and from the proctodeal nerve onto the hindgut and posterior midgut; in the neuropils of the frontal ganglion, hypocerebral ganglion and ingluvial ganglia; 30 cell bodies in the frontal ganglion; multipolar sensory cells on the foregut; and endocrine-like cells in the gastric caecae and midgut. Radioimmunoassay (RIA) was used to determine the quantities of FLI material in foreguts, gastric caecae, anterior and posterior midguts, and hindgut of first-fifth instar larvae, 1-3- and 14-17-day male and female adult locusts. As expected, as the tissue size (assessed by total protein content) increases, so does the amount of FLI material in each tissue. Normalizing for tissue size reveals significant differences in FLI content among the stages for each tissue tested. Reversed phase-high pressure liquid chromatography (RP-HPLC) followed by RIA has identified four groups of FLI fractions present in the gut, and different members of these groups are present in the various gut tissues.  相似文献   

7.
FMRFamide immunoreactivity was detected in all regions of the Limulus nervous system, including the brain (6.5 +/- 0.6 pg FMRFamide/mg), cardiac ganglion (2.06 +/- 0.67 pg FMRFamide/mg), and ventral nerve cord (5.8 +/- 0.7 pg FMRFamide/mg). The distribution of immunoreactive FMRFamide (irFMRFamide) was mapped by immunofluorescence and the distribution corresponded to regional RIA data. A good proportion of the CNS and cardiac ganglion neuropile contained irFMRFamide, and fluorescent cell bodies were observed in several areas. High performance liquid chromatography (HPLC) was employed to separate and characterize the FMRFamide-like peptides from extracts of Limulus brains. HPLC fractions were analyzed using coincidental radioimmunoassay and bioassay (the radula protractor muscle of Busycon contrarium). There appear to be at least three FMRFamide-like peptides in the Limulus brain, including one similar to clam FMRFamide. FMRFamide acts on Limulus heart in a biphasic manner at relatively high concentrations (10(-5)M), but has no effect on the activity of the isolated ventral nerve cord. These data suggest that in Limulus FMRFamide-like peptides are acting as neurotransmitters, or neuromodulators.  相似文献   

8.
Antibodies directed against the Met-enkephalin-related hexapeptide, Met-enk Arg6, have been used in radioimmunoassays in the characterization of material in rat brain, and bovine striatum, colon, and adrenal medulla. Met-enk Lys6 reacted 0.27 relative to Met-enk Arg6, but Leu-enk Arg6 and C-terminal extensions or deletions of Met-enk Arg6 showed less than 0.02 immunoreactivity. In rat brain, the concentration of Met-enk Arg6-like immunoreactivity was less than 20 pmol X g-1 in all regions, but after trypsinization of tissue extracts there were up to 80-fold increases in immunoreactivity as a result of cleavage of C-terminally extended forms. The tryptic product eluted as Met-enk Arg6 on gel filtration. In control extracts of rat brain there were at least three immunoreactive forms of Met-enk Arg6; one eluted in the position of the hexapeptide standard on gel filtration and HPLC while the others had properties of N-terminally extended forms. In bovine striatum and colon the hexapeptide-like material predominated; but in bovine adrenal extracts, there were relatively low concentrations of the hexapeptide and, instead, the dominant immunoreactive forms corresponded to two components that were probably N-terminally extended variants. Trypsin again produced marked increases in immunoreactivity. HPLC studies indicated that Met-enk Arg6Phe7- and Met-enk Arg6Gly7Leu8-like immunoreactive peptides were important substrates in bovine brain for the production of hexapeptide immunoreactivity after trypsin. The differences in the patterns of immunoreactive forms in bovine adrenal, colon, and brain are consistent with tissue variations in the pathways of posttranslational processing of the precursor molecules.  相似文献   

9.
Two molecular variants of gonadotropin-releasing hormone (GnRH) have been previously characterized in the brain of amphibians, i.e., mammalian GnRH (mGnRH) and chicken GnRH-II (cGnRH-II). The aim of the present study was to identify the molecular forms of gonadotropin-releasing hormone and to localize gonadotropin-releasing hormone-containing elements in the spinal cord of the frog Rana ridibunda using highly specific antisera against mGnRH and cGnRH-II. High-performance liquid chromatography (HPLC) analysis combined with radioimmunoassay (RIA) detection revealed that frog spinal cord extracts contained both mGnRH and cGnRH-II. Immunohistochemical labeling revealed that the frog spinal cord was devoid of GnRH-containing cell bodies. In contrast, numerous GnRH-immunoreactive fibers were observed throughout the entire length of the cord. mGnRH immunoreactivity was only detected in the rostral region of the cord and consisted of varicose processes located in the vicinity of the central canal. cGnRH-II-positive fibers were found throughout the spinal cord, the density of immunoreactive processes decreasing gradually toward the caudal region. Two main cGnRH-II-positive fiber tracts with a rostrocaudal orientation were observed: a relatively dense fiber bundle surrounding the central canal, and a more diffuse plexus in the white matter. In addition, short, varicose cGnRH-II-positive processes with a radial orientation were present throughout the gray matter. These fibers were particularly abundant ventromedially and formed a diffuse network that ramified laterally to end in the vicinity of motoneurons. Taken together, these data indicate that the frog spinal cord, like the frog brain, contains two forms of GnRH. The presence of numerous cGnRH-II-immunoreactive fibers in the ventral horn suggests that cGnRH-II may influence the activity of a subpopulation of motoneurons.  相似文献   

10.
The origin of nitric oxide synthase-containing nerve fibers in rat celiac-superior mesenteric ganglion was examined using retrograde tracing techniques combined with the immunofluorescence method. Fluoro-Gold was injected into the celiac-superior mesenteric ganglion. Neuronal cell bodies retrogradely labeled with Fluoro-Gold in the thoracic spinal cord, the dorsal root ganglia at the thoracic level, the nodose ganglion, and the intestine from the duodenum to the proximal colon were examined for nitric oxide synthase immunoreactivity. About 60% of sympathetic preganglionic neurons in the intermediolateral nucleus projecting to the celiac-superior mesenteric ganglion were immunoreactive for nitric oxide synthase, as were approximately 27% of nodose ganglion neurons and about 65% of dorsal root ganglion neurons projecting to the cceliac-superior mesenteric ganglion. Neurons projecting to the celiac-superior mesenteric ganglion were found in the myenteric plexus of the small and large intestine. In the proximal colon, about 23% of such neurons were immunoreactive for nitric oxide synthase. However, in the small intestine, no immunoreactivity was found in these neurons.  相似文献   

11.
The distribution of proctolin in the central nervous system of the hemipteran bug, Triatoma infestans, was studied by immunohistochemistry using the sensitive avidin‐biotin technique combined with nickel salt intensification of the reaction product. Proctolin was present in cells and fibers of the brain and ganglia. In the brain, protocerebral proctolin‐immunoreactive cell bodies were found in the pars intercerebralis, the optic lobes, and the lateral soma rind. The deutocerebrum showed positive somata in relation to the antennal motor center and the tritocerebrum had intense immunoreactive fibers but few positive cells. Proctolin‐immunoreactive cell bodies of different sizes were observed in the subesophageal ganglion. Large cell bodies were found mainly rostrally and beaded positive processes were present around the ventral border of the esophageal foramen and in the rostrolateral neuropil of this ganglion. Small‐ to medium‐sized positive somata were found in the posterior part of the prothoracic ganglion; some of these cells were sending immunoreactive processes to the central neuropil. The meso‐metathoracic‐abdominal ganglionic mass showed positive cells in all the neuromeres, where some of them were large and had thick immunoreactive granules. The results show that the labeling pattern of proctolin‐like immunoreactivity in Triatoma i. appears to be widespread and unique for its central nervous system. It is suggested that proctolin may serve neuroendocrine, integrative, and motor functions in the brain of T. infestans. J. Morphol. 240:39–47, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
Summary Bombesin-like and gastrin-releasing peptide (GRP)-like immunoreactivities were localized in nerves of the guinea-pig small intestine and celiac ganglion with the use of antibodies raised against the synthetic peptides. The anti-bombesin serum (preincubated to avoid cross reactivity with substance P) and the anti-GRP serum revealed the same population of neurons. Preincubation of the antibombesin serum with bombesin abolished the immunoreactivity in nerves while absorption of the anti-GRP serum with either bombesin or the 14–27 C-terminal of GRP only reduced the immunoreactivity. The immunoreactivity was abolished by incubation with GRP 1–27.Immunoreactive nerves were found in the myenteric plexus, circular muscle, submucous plexus and in the celiac ganglion. Faintly reactive nerve cell bodies were found in the myenteric ganglia (3.2% of all neurons) but not in submucous ganglia. After all ascending and descending pathways in the myenteric plexus had been cut, reactive terminals disappeared in the myenteric plexus, circular muscle (including the deep muscular plexus) and the submucous plexus on the anal side. After the mesenteric nerves were cut no changes were observed in the intestinal wall but the reactive fibres in celiac ganglia disappeared. It is deduced that GRP/bombesin-immunoreactive nerve cell bodies in myenteric ganglia project from the myenteric plexus to other myenteric ganglia situated further anally (average length 12 mm), anally to the circular muscle (average length 9 mm), anally to submucous ganglia (average length 13 mm) and external to the intestine to the celiac ganglia.It is concluded that the GRP/bombesin-reactive neurons in the intestinal wall represent a distinct population of enteric neurons likely to be involved in controlling motility and in the coordination of other intestinal functions.  相似文献   

13.
Summary Somatostatin-like immunoreactivity was localized in nerve cell bodies and nerve terminals in the cat coeliac ganglion. Two types of somatostatin-immunoreactive cell bodies were revealed, the first being large (diameter 35 m), numerous and weakly labelled, where—as the second was considerably smaller (diameter 10.4 m), sparsely distributed and heavily stained. The immunoreactive nerve terminals were in synaptic contact with many immunonegative large neurons and dendrites. However, in a few cases, somatostatin-immunoreactive nerve terminals could also be observed on the surface of lightly stained neurons. Transection of vagal or mesenteric nerve failed to affect the distribution or density of somatostatin-like immunoreactive nerve terminals. These results demonstrate the existence of a synaptic input to the principal neurons of the coeliac ganglion of the cat by somatostatin-containing nerve terminals and suggest that this peptide may act as a neuromodulator or neurotransmitter. It is proposed that somatostatin-positive neurons provide intrinsic projections to other somatostatin-positive and to somatostatin-negative neurons throughout the coeliac ganglion, thereby creating a complex interneuronal system.  相似文献   

14.
In the rat small intestine, neurotrophin-3 immunoreactivity was identified in ganglion cells and in processes mostly innervating the mucosa and occasionally the muscle layer and vasculature. The vast majority of neurotrophin-3 immunoreactive neurons contained vasoactive intestinal polypeptide (VIP), but not substance P or related tachykinin (SP/TK). Neurotrophin receptors visualized by pan-trk immunoreactivity were found in numerous ganglion cells of both plexuses and in nerve processes in the intestinal wall. Pan-trk submucosal neurons contained VIP (36%) or SP/TK-IR (47%). Pan-trk myenteric neurons contained VIP-IR (57%) or SP/TK (27%). Our data suggest that neurotrophin-3 and neurotrophin receptors may be involved in the maintenance of enteric neuronal circuits, transmission and phenotypic expression.  相似文献   

15.
Using immunocytochemical methods we describe the localization of serotonin and the SALMFamide peptide, S1 (GFNSALMFamide), during embryonic and larval development of the echinoid Dendraster excentricus. Anti-SI immunoreactivity first appears in the apical ganglion in late gastrulae at the same time as anti-serotonin immunoreactivity. Initially, anti-S1 immunoreactivity is restricted to fibres of the neuropile, but in later feeding stages, cell bodies are also immunoreactive. Anti-S1 immunoreactivity appears as 2–4 cells in the oral ganglion of early prism stage larvae, whereas anti-serotonin immunoreactivity does not occur in the oral ganglion until the 8-arm stage. Anti-S1 immunoreactivity also occurs in diffuse fibres in the oesophagus and in a single fibre encircling the pyloric sphincter of the gut. A reticular network associated with the apical surface of the epithelial cells of the vestibule of the adult rudiment was anti-S1 immunoreactive. In double-labelling experiments, anti-serotonin and anti-S1 immunoreactivity co-localize in the neuropile of the apical ganglion. The distribution of S1, in association with putative sensory cells in the apical and oral ganglia and with muscles of the oesophagus and gut, suggests S1 may have diverse functions in the larval nervous system. The distribution of anti-S1 immunoreactivity in echinoid embryos and larvae supports the proposal that SALMFamide-like peptides are widely shared in echinoderms and potentially have a fundamental role in neural function.  相似文献   

16.
Summary The trigeminal ganglion of rat and guinea pig was studied for the presence of immunoreactive substance-P using fluorescence, light and electronmicroscopy. In untreated animals substance P containing cells, with a diameter of 15 to 50 m, were distributed throughout the ganglion and comprised 10–30% of all ganglion cells. Colchicine, injected intraventricularily to inhibit intra-axonal transport, had no effect on the number of substance P cells; but when the drug was injected directly into the posterior root of the ganglion, the proprotion of these cells increased to as much as 50%. In the electron microscope, immunoreactive substance-P was confined to ganglion cells classified as B type according to the arrangement of subcellular organelles, and to unmyelinated nerve fibers. Subcellularily the immunoreactivity appeared in cytoplasmic vesicles, as well as dispersed in the nerve fibers and the perikarya of neurons. The great number of substance P immunoreactive ganglion cells suggests that they do not comprise a well defined subpopulation of the B-cells.However, the immunoreactivity was restricted to a distinct ultrastructural type of neurons with unmyelinated nerve fibers, suggesting that they also may share some distinct functions.  相似文献   

17.
Recent functional evidence suggests that intermediate conductance calcium-activated potassium channels (IK channels) occur in neurons in the small intestine and in mucosal epithelial cells in the colon. This study was undertaken to investigate whether IK channel immunoreactivity occurs at these and at other sites in the gastrointestinal tract of the rat. IK channel immunoreactivity was found in nerve cell bodies throughout the gastrointestinal tract, from the esophagus to the rectum. It was revealed in the initial segments of the axons, but not in axon terminals. The majority of immunoreactive neurons had Dogiel type II morphology and in the myenteric plexus of the ileum all immunoreactive neurons were of this shape. Intrinsic primary afferent neurons in the rat small intestine are Dogiel type II neurons that are immunoreactive for calretinin, and it was found that almost all the IK channel immunoreactive neurons were also calretinin immunoreactive. IK channel immunoreactivity also occurred in calretinin-immunoreactive, Dogiel type II neurons in the caecum. Epithelial cells of the mucosal lining were immunoreactive in the esophagus, stomach, small and large intestines. In the intestines, the immunoreactivity occurred in transporting enterocytes, but not in mucous cells. Immunoreactivity was at both the apical and basolateral surfaces. A small proportion of mucosal endocrine cells was immunoreactive in the duodenum, ileum and caecum, but not in the stomach, proximal colon, distal colon or rectum. There was immunoreactivity of vascular endothelial cells. It is concluded that IK channels are located on cell bodies and proximal parts of axons of intrinsic primary afferent neurons, where, from functional studies, they would be predicted to lower neuronal excitability when opened in response to calcium entry. In the mucosa of the small and large intestine, IK channels are probably involved in control of potassium exchange, and in the esophageal and gastric mucosa they are possibly involved in control of cell volume in response to osmotic challenge.  相似文献   

18.
Combined use of the intraaxonal retrograde transport of the fluorescent marker ‘true blue’ with substance P (SP) immunocytochemistry has been used to trace the nodose ganglion projections of SP-containing neurons of the aortic depressor nerve. It has been found that (1) SP immunoreactive (SP-I) cell bodies are clearly demonstrable in clusters in the rostral part of the nodose ganglion without the aid of colchicine pretreatment; (2) ‘true blue’ is retrogradely transported to the nodose ganglion following its application to the central cut end of the aortic nerve; (3) ‘true blue’ fluorescence and SP fluorescent immunoreactivity can be visualized in the same tissue section and certain cell bodies in the nodose ganglia contain both SP-I and retrogradely transported ‘true blue’. These results indicate that the aortic nerve which projects from the aortic arch baro- and/or chemoreceptors to brainstem vasomotor centers contains SP-I afferent fibers which emanate from the nodose ganglion.  相似文献   

19.
Trigeminal ganglion cells supplying the cornea were traced with intra-axonally transported horseradish peroxidase and, subsequently studied for the presence of substance P-like immunoreactivity. Approximately 0%-30% of trigeminal ganglion cells contained immunoreactive substance P. These cells were of a small size (15-50 micrometers in diameter) and were distributed throughout the ganglion. The ganglion cells supplying the cornea were of a relatively small size as well but were confined to the anteromedial part of the ganglion. Some of these cells were found to contain immunoreactive substance P.  相似文献   

20.
Summary Chains of segmental ganglia and various peripheral tissues from the leech (Hirudo medicinalis) were screened as whole-mount preparations for the presence of 5-hydroxytryptamine-like immunoreactivity. The gut was richly supplied with immunoreactive nerve fibres. Plexus of fibres, numerous of which were varicose, were found in the crop, with many immunopositive nerve cell bodies in the posterior region and a few in the anterior region. The intestine contained a few longitudinally oriented nerve fibres, while the rectum contained a dense network of non-varicose and varicose fibres. Fine immunopositive fibres were associated with the lateral blood vessel and reproductive organs. Many immunopositive nerve fibres ran in each of the paired connectives linking the segmental ganglia, and two fine varicose fibres were seen in Faivre's nerve. At least two immunopositive processes left each lateral segmental nerve and branched repeatedly, with many varicosities on the distal branches. The dorso-ventral and longitudinal body wall muscles both contained immunoreactive fibres, the plexus being more dense in the former muscle. The possible roles of the immunoreactive nerve fibres demonstrated in the various tissues of the leech have been discussed in relation to the known peripheral effects of serotoninergic neurone stimulation in the leech and to the actions of exogenously applied 5-hydroxytryptamine in these and other invertebrate tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号