首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Changes in the proteins, chlorophyll, virus content and activity of key enzymes of viral RNA biosynthesis were investigated in the light- and dark-green regions of tobacco leaves systemically infected with tobacco mosaic virus. The protein content was increased to 118 % in the dark-green islands in contrast to 60 % in the light-green regions when compared with the control healthy leaves. The comparative analysis of soluble proteins from healthy and light- or dark-green regions of leaves by means of SDS-PAGE revealed that the main soluble proteins are equal in pattern but differ in quantity. The contents of chlorophylls did not differ from healthy tissues in the dark-green islands but were considerably lower in the light-green regions. The content of virus in light-green tissues was about 10 times higher than in the dark-green islands. The activities of key enzymes of oxidative pentosephosphate cycle -- glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase -- did not differ from healthy tissues in the dark-green islands but were considerably higher in the light-green tissues when compared with healthy control. Similar relationships were observed for ribonuclease, phosphomonoesterase and phosphodiesterase activities. The biosynthesis of viral RNA in the dark-green islands is probably restricted by the steady (or reduced) activities of key enzymes of these metabolic pathways.  相似文献   

2.
Uptake of abscisic acid from the culture medium by discs of healthy and tobacco mosaic virus-infected tobacco leaves was measured. Small (two to five-fold) increases in abscisic acid concentration in discs caused increases in rates of [3H]uridine and [3H]adenine incorporation into total nucleic acid, virus RNA and host ribosomal RNA. Net accumulation of virus RNA was also enhanced by abscisic acid. This evidence for stimulation of RNA synthesis is compared with previous reports showing inhibition of RNA synthesis in other tissues. It is suggested that the increase in endogenous abscisic acid caused by tobacco mosaic virus infection may be at least partly responsible for observed increases in rates of RNA synthesis after infection.Abbreviations ABA abscisic acid - TMV tobacco mosaic virus  相似文献   

3.
After infection ofNicotiana tabacum cv. Samsun with tobacco mosaic virus (TMV) crude extracts from dark-green spots of upper leaves had a more strongly marked inhibitory effect upon TMV addedin vitro than crude extracts from the surrounding light-green tissue. Likewise, crude extracts from leaves ofNicotiana tabacum cv. Samsun showing recovery after infection with tobacco ringspot virus (TRV) were seen to have a marked inhibitory effect on TMV addedin vitro. The results obtained suggest that virus inhibitors are produced after virus infections not only in hypersensitive hosts but also in systemic hosts. Necrotizing processes are not an indispensable prerequisite of the production of virus-induced virus inhibitors.  相似文献   

4.
The fine structure and photosynthetic cost of structural leaf variegation   总被引:1,自引:0,他引:1  
The leaves of some plants display an optical patchiness on their upper side, displaying light- and dark-green areas with high and low reflectance, respectively. In this investigation, we studied the fine structure of the corresponding sectors and we asked whether the lost reflected light entails a photosynthetic cost to these leaves. Four species, i.e. Arum italicum, Ranunculus ficaria, Cyclamen hederifolium and Cyclamen persicum were investigated. Scanning electron microscope examination revealed that epidermal cells of light-green sectors of all species are more bulgy than corresponding cells of neighboring dark-green leaf sectors. The comparative anatomical study revealed that (i) epidermis thickness of the light-green areas and the number of mesophyll cell layers does not differ from those of the adjacent dark-green leaf sectors and (ii) palisade cells of light-green sectors are slightly larger and more loosely arranged, allowing a much higher percentage of intercellular air spaces. The latter histological feature seems to provide the structural basis for the different optical properties between the two leaf sectors. Contrary to expectations, net photosynthetic rates (expressed on a leaf area basis) were similar in the light-green and the dark-green areas of the two cyclamen species. Yet, in C. persicum net photosynthesis was higher in the light-green areas, if expressed on a dry mass basis. The small size of the light-green spots in the rest of the test plants precluded CO2 assimilation measurements, yet maximum linear photosynthetic electron transport rates displayed no differences between the two sectors in all plants. Thus, the assumption of a photosynthetic cost in the light-green areas was not confirmed. On the contrary, a higher construction cost was evident in the dark-green areas of three species, displaying a significantly higher specific leaf mass, without any photosynthetic benefit. The results on net photosynthesis were compatible with leaf optical properties and pigment levels. Thus, in spite of the considerably higher reflectance of the light-green areas and their lower (yet normal for a green leaf) chlorophyll levels, corresponding differences in absorptance were slight. In addition, dry mass-based pigment contents in dark-green areas were higher, while chlorophyll a/b (in two species) and carotenoid/chlorophyll ratios (in three species) were lower, pointing to a shade adaptation in these sectors. We conclude that in variegated leaves of this kind, dark-green areas are more costly to build and probably less photosynthetically active. We argue that the high pigment contents of dark-green areas establish steep light gradients in the corresponding mesophyll, rendering deeper chloroplast layers more shade adapted.  相似文献   

5.
Summary Multiplication of TMV-strains vulgare (light-green/dark-green mosaic symptoms) and flavum (severe yellow/green mosaic) had different effects on the ribosomal RNA of tobacco leaf chloroplasts. Vulgare inhibited chloroplast ribosomal RNA synthesis while having no effect on cytoplasmic ribosomal RNA synthesis (Fig. 2). Flavum inhibited chloroplast ribosomal RNA synthesis more severely than vulgare, and caused an earlier degradation of chloroplast ribosomal RNA than in control or vulgare-infected leaves (Fig. 1). Flavum also inhibited cytoplasmic ribosomal RNA synthesis. A connection between these differing effects on chloroplast ribosomal RNA metabolism and severity of visible symptoms is suggested, and discussed in relation to a possible influence on symptoms of denatured virus coat protein.Abbreviations TMV Tobacco Mosaic Virus - RNA Ribonucleic acid - DNA Deoxyribonucleic acid - m millions (in molecular weight values)  相似文献   

6.
Abscisic acid (ABA) accumulation has been analyzed in irrigated and water-stressed wild-type and the vtc-1 mutant of Arabidopsis thaliana, which shows an ascorbate deficiency in leaves of approximately 60%. The amounts of ABA increased progressively up to 2.3-fold in water-stressed wild-type plants, whereas levels were kept at low levels in the irrigated plants. In contrast, initial increases followed by a sharp decrease of abscisic acid levels were observed in water-stressed vtc-1 mutants. Furthermore, the levels of this phytohormone increased up to fivefold in irrigated mutants. This differential accumulation of ABA in the mutant strongly correlated with the ascorbate redox state, but not with ascorbate levels. Changes in ABA levels in leaves paralleled those of chloroplasts. Immunolocalization studies showed a differential ABA accumulation in chloroplasts of vtc-1 mutants, which displayed the highest ABA labeling in irrigated plants. Our results indicate an altered pattern of ABA accumulation in the vtc-1 mutant compared to the wild type, under both irrigated conditions and water-stress conditions, which is strongly dependent on the ascorbate redox state.  相似文献   

7.
Roots of Acer pseudoplatanus seedlings grown in liquid nutrient medium contained much lower levels of both free and bound abscisic acid than did leaves. The levels of free abscisic acid were similar in young expanding and of mature leaves, but lower in older senscing leaves. Growing plants under long days or short days did not influence the levels of free and bound abscisic acid in leaves. However, under both long days and short days, levels of bound abscisic acid were lower at the end of the dark period than 8 h later during the light period. Phaseic acid was also detected during the light period but never at the end of the dark period.Abbreviations ABA abscisic acid - PA phaseic acid - SD short day - GLC gas-liquid chromatography - LD long day  相似文献   

8.
Hormonal system status has been analyzed in leaf disks of hypersensitive tobacco Nicotiana tabacum L. variety Samsun NN during the development of resistance to tobacco mosaic virus (TMV) induced by synthetic coenzyme Q10 (ubiquinone 50). The absolute and relative content of abscisic acid (ABA), indoleacetic acid (IAA), and cytokinins (CKs) was determined after the exposure of leaves to Q10 solution and the subsequent TMV infection. In plants not treated with Q10, CK content increased about 2.5 times 1 day after TMV infection, while a significant increase in the ABA level and a decrease in the IAA level were observed only after 2 days. In the dynamics, Q10 treatment had a protective antiviral effect, significantly decreased the ABA level, and increased the IAA level in sensitized plants compared to nonsensitized ones.  相似文献   

9.
Suboptimal nitrogen nutrition, leaf aging, and prior exposure to water stress all increased stomatal closure in excised cotton (Gossypium hirsutum L.) leaves supplied abscisic acid (ABA) through the transpiration stream. The effects of water stress and N stress were partially reversed by simultaneous application of kinetin (N6-furfurylaminopurine) with the ABA, but the effect of leaf aging was not. These enhanced responses to ABA could have resulted either from altered rates of ABA release from symplast to apoplast, or from some post-release effect involving ABA transport to, or detection by, the guard cells. Excised leaves were preloaded with [14C]ABA and subjected to overpressures in a pressure chamber to isolate apoplastic solutes in the exudate. Small quantities of 14C were released into the exudate, with the amount increasing greatly with increasing pressure. Over the range of pressures from 1 to 2.5 MPa, ABA in the exudate contained about 70% of the total 14C, and a compound co-chromatographing with phaseic acid contained over half of the remainder. At a low balancing pressure (1 MPa), release of 14C into the exudate was increased by N stress, prior water stress, and leaf aging. Kinetin did not affect 14C release in leaves of any age, N status, or water status. Distribution of ABA between pools can account in part for the effects of water stress, N stress, and leaf age on stomatal behavior, but in the cases of water stress and N stress there are additional kinetinreversible effects, presumably at the guard cells.Abbreviations and symbols ABA abscisic acid - PA phaseic acid - w water potential  相似文献   

10.
Metabolism and distribution of xylem-fed ABA were investigated in leaves of maize (Zea mays) and Commelina communis when water stress and xylem pH manipulation were applied. 3H-ABA was fed to excised leaves via the transpiration stream. Water stress was applied through either a previous soil-drying before leaves were excised, or a quick dehydration after leaves were fed with ABA. Xylem-delivered ABA was metabolised rapidly in the leaves (half-life 0.7 h and 1.02 h for maize and Commelina respectively), but a previous soil-drying or a post-feeding dehydration significantly extended the half-life of fed ABA in both species. In the first few hours after ABA was fed into the detached leaves, percentages of applied ABA remaining unmodified were always higher in leaves which received water stress treatments than in control leaves. However the percentage decreased to below the control levels several hours later in leaves which received a previous soil-drying treatment prior to excision, but had then been rehydrated by the xylem-feeding process itself. One possible explanation for this could be a changed pattern of compartmentalisation for xylem-carried ABA. A post-feeding dehydration treatment also changed the distribution of xylem-fed ABA within the leaves: more ABA was found in the epidermis of Commelina leaves which had been dehydrated rapidly after ABA had been fed, compared to the controls. The levels of xylem-delivered ABA remaining unmodified increased as the pH of the feeding solution increased from 5 to 8. The results support the hypothesis that water stress and a putative stress-induced xylem pH change may modify stomatal sensitivity to ABA by changing the actual ABA content of the leaf epidermis.  相似文献   

11.
Metabolism of abscisic acid (ABA) was studied after wilting and upon recovery from water stress in individual, detached leaves of Phaseolus vulgaris L. (red kidney bean). Loss of turgor was correlated with accumulation of ABA and its metabolites, resulting in a 10-fold increase in the level of phaseic acid (PA) and a doubling of the level of conjugated ABA. The level of conjugated ABA in turgid leaves was no higher than that of the free acid. These results indicate that accumulation of ABA in wilted leaves resulted from a stimulation of ABA synthesis, rather than from a release from a conjugated form or from inhibition of the metabolism of ABA. The rate of synthesis of ABA was at its maximum between 2.5 and 5 h after turgor was lost, and slackened there-after. In wilted leaves, the rate of conversion of ABA to PA climbed steadly until it matched the rate of synthesis, after about 7.5 h. Upon rehydration of sections from wilted leaves, the rate of synthesis of ABA dropped close to zero within about 3 h, while the rate of conversion to PA accelerated. Formation of PA was two to four times faster than in sections maintained in the wilted condition; it reached a rate sufficient to convert almost one-half of the ABA present in the tissue to PA within 1 h. In contrast, the alternate route of metabolism of ABA, synthesis of conjugated ABA, was not stimulated by rehydration. The role of turgor in the stimulation of the conversion of ABA to PA was investigated. When leaves that had been wilted for 5 h were rehydrated to different degrees, the amount of ABA which disappeared, or that of PA which accumulated during the next 3 h, did not depend linearly on the water potential of the rehydrated leaf. Rather, re-establishment of the slightest positive turgor was sufficient to result in maximum stimulation of conversion of ABA to PA.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - PA phaseic acid - leaf leaf water potential - osmotic pressure  相似文献   

12.
Sindelár L  Sindelárová M 《Planta》2002,215(5):862-869
Changes in glucose-6-phosphate dehydrogenase (G6P DH; EC 1.1.1.49) activity caused by infection of tobacco ( Nicotiana tabacum L.) leaves with potato virus Y (PVY), cucumber mosaic virus, potato virus X, tobacco rattle virus and turnip mosaic virus, the subcellular localisation of G6P DH isozymes in mesophyll protoplasts derived from healthy and PVY-infected tobacco leaves, as well as G6P DH control and the relationship of its isozymes with the degree of tobacco resistance to PVY multiplication, were studied. The activities of G6P DH were markedly increased in locally and systemically infected leaves and the time courses of the activity linearly correlated with those of virus multiplication. In leaves infected with PVY, the activity time courses of the crude and the partially purified G6P DH were coincident. This probably indicates the involvement of coarse regulation of the enzyme. PVY content linearly correlated with enhanced G6P DH activity in leaf discs derived from susceptible, tolerant and resistant cultivars of tobacco. The increased activity of the enzyme in infected protoplasts and plant tissues was predominantly caused by the increased activity of chloroplastic isozymes. This was confirmed by the specific staining of isozymes after electrophoretic separation of chloroplastic proteins of tobacco leaves. These findings enable the degree of resistance to virus multiplication to be quantified for the use of gene manipulation and breeding.  相似文献   

13.
Leaf water potentials of Phaseolus vulgaris L. plants exposed to a -3.0 bar root medium were reduced to between -7 and -9 bars within 25 min and remained constant for the next several hours. This treatment led to considerable variation between leaves in both abscisic-acid (ABA) content and Rs, although the two were well correlated after a 5-h treatment. There was an apparent 7-fold increase in leaf ABA levels necessary to initiate stomatal closure when plants were exposed to a -3.0 bar treatment, but when plants were exposed to a -5.0 bar stress Rs values increased prior to any detectable rise in ABA levels. To explain these seemingly contradictory results, we suggest that the rate of ABA synthesis in the leaf, rather than the total ABA content, determines the status of the stomatal aperture.Abbreviations ABA abscisic acid - PEG polyethylene glycol - Rs stomatal diffusion resistance of lower leaf surface - leaf water potential  相似文献   

14.
Levels of free and conjugated abscisic acid (ABA) were determined in leaves and roots of intact bean (Phaseolus vulgaris L., cv. Mondragone) seedlings under chilling (3C) and drought as well as during recovery from stress. Abscisic acid-glucose ester (ABAGE) was the only conjugate releasing free ABA after alkaline hydrolysis of the crude aqueous extracts. During the first 20–30 h chilled plants rapidly dehydrated and wilted without any change in ABA and ABAGE levels. Subsequently, leaf and root ABA levels increased and plants regained turgor. ABAGE concentration showed a slight increase in leaves but not in roots. Upon recovery from chilling a transient, but significant, rise in leaf ABA content was observed, while no appreciable change in ABAGE was found. Drought triggered ABA accumulation in leaves and roots, while a rise in ABAGE content was detected only in leaf tissues. Recovery from stress caused a drop in ABA levels without a correspondent increase in ABAGE concentration. We conclude that ABAGE is not a source of free ABA during either chilling or water stress and that only a small proportion of the ABA produced under stress is metabolised to ABAGE during recovery.Abbreviations ABA = abscisic acid - ABAGE = abscisic acid-glucose ester - DW = dry weight - FW = fresh weight - RIA = radioimmunoassay - RWC = relative water content - w = water potential - o = osmotic potential - p = turgor potential  相似文献   

15.
Barley (Hordeum vulgare L.) and tomato Lycopersicon esculentum Mill.) were grown hydroponically and examined 2, 5, and 10 d after being deprived of nitrogen (N) supply. Leaf elongation rate declined in both species in response to N stress before there was any reduction in rate of dryweight accumulation. Changes in water transport to the shoot could not explain reduced leaf elongation in tomato because leaf water content and water potential were unaffected by N stress at the time leaf elongation began to decline. Tomato maintained its shoot water status in N-stressed plants, despite reduced water absorption per gram root, because the decline in root hydraulic conductance with N stress was matched by a decline in stomatal conductance. In barley the decline in leaf elongation coincided with a small (8%) decline in water content per unit area of young leaves; this decline occurred because root hydraulic conductance was reduced more strongly by N stress than was stomatal conductance. Nitrogen stress caused a rapid decline in tissue NO 3 - pools and in NO 3 - flux to the xylem, particularly in tomato which had smaller tissue NO 3 - reserves. Even in barley, tissue NO 3 - reserves were too small and were mobilized too slowly (60% in 2 d) to support maximal growth for more than a few hours. Organic N mobilized from old leaves provided an additional N source to support continued growth of N-stressed plants. Abscisic acid (ABA) levels increased in leaves of both species within 2 d in response to N stress. Addition of ABA to roots caused an increase in volume of xylem exudate but had no effect upon NO 3 - flux to the xylem. After leaf-elongation rate had been reduced by N stress, photosynthesis declined in both barley and tomato. This decline was associated with increased leaf ABA content, reduced stomatal conductance and a decrease in organic N content. We suggest that N stress reduces growth by several mechanisms operating on different time scales: (1) increased leaf ABA content causing reduced cell-wall extensibility and leaf elongation and (2) a more gradual decline in photosynthesis caused by ABA-induced stomatal closure and by a decrease in leaf organic N.Abbreviation and symbols ABA abscisic acid - ci leaf internal CO2 concentration - Lp root hydraulic conductance  相似文献   

16.
We studied the effects of drought on leaf conductance (g) and on the concentration of abscisic acid (ABA) in the apoplastic sap of Lupinus albus L. leaves. Withholding watering for 5d resulted in complete stomatal closure and in severe leaf water deficit. Leaf water potential fully recovered immediately after rewatering, but the aftereffect of drought on stomata persisted for 2d. ABA and sucrose were quantified in pressurized leaf xylem extrudates. We assumed that the xylem sucrose concentration is negligible and hence that the presence of sucrose in leaf extrudates indicated that they were contaminated by phloem. To eliminate this interference, the concentration of ABA in leaf apoplast was estimated by extrapolation to zero sucrose concentration, using the regression between ABA and sucrose concentrations. The estimated apoplastic ABA concentration increased by 100-fold with soil drying and did not return to pre-stress values immediately following rewatering. g was closely related to the concentration of ABA in leaf apoplast. Furthermore, the feeding of exogenous ABA to leaves detached from well-watered plants brought about the same degree of depression in g as resulted from the drought-induced increase in ABA concentration. We therefore conclude that the observed changes in the concentration of ABA in leaf apoplast were quantitatively adequate to explain drought-induced stomatal closure and the delay in stomatal reopening following rewatering.  相似文献   

17.
It is well known that endogenous abscisic acid (ABA) levels increase rapidly in response to drought stress and that this induces stomatal closure. In Arabidopsis thaliana, ABA levels increased rapidly in the leaves and roots when intact wild-type whole plants were exposed to drought stress. However, if the leaves and roots were separated and exposed to drought independently, the ABA level increased only in the leaves. These results suggest that, under our experimental conditions, ABA is synthesized mainly in the leaves in response to drought stress and that some of the ABA accumulated in the leaves is transported to the roots. Tracer experiments using isotope-labeled ABA indicate that the movement of ABA from leaves to roots is activated by water deficit in the roots. We also demonstrate that the endogenous ABA level in the leaves increased only when the leaves themselves were exposed to drought stress, suggesting that leaves play a major role in the production of ABA in response to acute water shortage.  相似文献   

18.
Photoacclimation was studied in tobacco leaves (Nicotiana tabacum cv Xanthi) infected with two strains of tobacco mosaic virus (TMV) and grown under different light and nitrogen nutrition regimes. Photosynthetic acclimation measured by the quantum yield and the maximum rate in saturating light of CO2-saturated photosynthesis was impaired to a greater extent in tobacco leaves infected with TMV strain PV230 than in those infected with TMV strain PV42. Infection with TMV strain PV230 severely impaired photosynthetic acclimation at high light/low nitrogen and during transfer from low to high light. Expanding leaves showing chlorotic-mosaic symptoms had greatly reduced capacity to acclimate to high light compared with controls and with developed leaves without visible symptoms. We conclude that the failure of expanding leaves to acclimate was largely due to the destruction of chloroplasts in yellow areas of the tissue, accompanied by severe reduction in ribulose-1,5-bisphosphate carboxylase/oxygenase levels, and corresponding reduction in photosynthesis on a leaf-area basis. When corrected for areas of healthy green tissue, photoacclimation of infected leaves was the same as that of controls. Visible symptom development was greatest in high light/low nitrogen treatments. In developed leaves without visible symptoms, virus accumulation, which was as extensive as in expanding leaves, accelerated senescence and impaired photoacclimation during transfer from low light to high light. Generally, infection with TMV strain PV42 did not impair photosynthetic acclimation and even enhanced it in some treatments, even though virus accumulated to the same concentration as in PV230-infected leaves. These data show that TMV does not simply impair photoacclimation in tobacco by competing with chloroplasts for leaf nitrogen reserves. Rather, specific properties of severe strains, such as PV230, which lead to visible symptom development and patchy loss of photosynthetic activity in expanding leaves as well as general acceleration of chloroplast senescence in developed leaves, contribute to impaired photoacclimation, which is generally exacerbated by low nitrogen nutrition.  相似文献   

19.
The three tobacco (Nicotiana tabacum L.) S-adenosyl-L-methionine: o-diphenol-O-methyltransferases (OMTs; EC 2.1.1.6) were purified to homogeneity by affinity chromatography on adenosine-agarose. Amounts and catalytic actities of the enzymes were measured in tobacco leaves during the hypersensitive reaction to tobacco mosaic virus. The drastic increase in activity of each enzyme upon infection was shown to arise from the accumulation of enzymatic protein with constant specific enzymatic activity. Rates of OMT synthesis were determined from pulse-labeling experiments with L-[14C]leucine injected into the leaves. The specific radioactivities of the homogenous enzymes were compared in healthy and tobacco mosaic virus-infected tobacco. The results demonstrated that increase in OMT amounts is a consequence of de novo synthesis of the enzymes.Abbreviations DEAE diethylaminoethyl - OMT O-methyltransferase - SAM S-adenosyl-L-methionine - TMV tobacco mosaic virus  相似文献   

20.
Leaves of Nicotiana tabacum L. cv. Xanthi necroticum plants form local necrotic lesions at the site of infection by tobacco mosaic virus. During the first seven days post-inoculation, endogenous levels of 1-aminocyclopropane-1-carboxylic acid (ACC) and N-malonyl-ACC increased in the lesion area. The time course of ACC accumulation coincided with an increase in the endogenous cyanide level which began within two days after inoculation. Concomitantly, the activity of -cyanoalanine synthase, the main HCN detoxifying enzyme, decreased. Likewise, treatment of leaf discs of uninfected plants with ACC led to cyanide accumulation. Exogenously applied KCN caused necrotic spots on tobacco leaves very similar to the whitish centers of virus-induced local lesions. Possible implications of cyanide in cell death during TMV-induced lesion development are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号