首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present results from an extensive molecular dynamics simulation study of water hydrating the protein Ribonuclease A, at a series of temperatures in cluster, crystal, and powder environments. The dynamics of protein hydration water appear to be very similar in crystal and powder environments at moderate to high hydration levels. Thus, we contend that experiments performed on powder samples are appropriate for discussing hydration water dynamics in native protein environments. Our analysis reveals that simulations performed on cluster models consisting of proteins surrounded by a finite water shell with free boundaries are not appropriate for the study of the solvent dynamics. Detailed comparison to available x-ray diffraction and inelastic neutron-scattering data shows that current generation force fields are capable of accurately reproducing the structural and dynamical observables. On the time scale of tens of picoseconds, at room temperature and high hydration, significant water translational diffusion and rotational motion occur. At low hydration, the water molecules are translationally confined but display appreciable rotational motion. Below the protein dynamical transition temperature, both translational and rotational motions of the water molecules are essentially arrested. Taken together, these results suggest that water translational motion is necessary for the structural relaxation that permits anharmonic and diffusive motions in proteins. Furthermore, it appears that the exchange of protein-water hydrogen bonds by water rotational/librational motion is not sufficient to permit protein structural relaxation. Rather, the complete exchange of protein-bound water molecules by translational displacement seems to be required.  相似文献   

2.
3.
Hydration dynamics near a model protein surface   总被引:1,自引:0,他引:1       下载免费PDF全文
The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering (QENS) and molecular dynamics (MD) simulation for both the completely deuterated and completely hydrogenated leucine monomer. The NALMA-water system and the QENS data together provide a unique study for characterizing the dynamics of different hydration layers near a prototypical hydrophobic side chain and the backbone of which it is attached. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational and rotational water dynamics at the highest solute concentrations are found to be highly suppressed as characterized by long residential time and slow diffusion coefficients. The analysis of the more dilute concentration solutions models the first hydration shell with the 2.0 M spectra. We find that for outer layer hydration dynamics that the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis of the first hydration shell water dynamics shows spatially heterogeneous water dynamics, with fast water motions near the hydrophobic side chain, and much slower water motions near the hydrophilic backbone. We discuss the hydration dynamics results of this model protein system in the context of protein function and protein-protein recognition.  相似文献   

4.
The dynamic properties of water in the hydration shell of hemoglobin have been studied by means of dielectric permittivity measurements and nuclear magnetic resonance spectroscopy. The temperature behavior of the complex permittivity of hemoglobin solutions has been measured at 3.02, 3.98, 8.59, and 10.80 GHz. At a temperature of 298 K the average rotational correlation time tau of water within a hydration shell of 0.5-nm thickness is determined from the activation parameters to be 68 +/- 10 ps, which is 8-fold the corresponding value of bulk water. Solvent proton magnetic relaxation induced by electron-nuclear dipole interaction between hemoglobin bound nitroxide spin labels and water protons is used to determine the translational diffusion coefficient D(T) of the hydration water. The temperature dependent relaxation behavior for Lamor frequencies between 3 and 90 MHz yields an average value D(298K) = (5 +/- 2) x 10(-10)m2 s-1, which is about one-fifth of the corresponding value of bulk water. The decrease of the water mobility in the hydration shell compared to the bulk is mainly due to an enhanced activation enthalpy.  相似文献   

5.
Dynamics of hydration water at the surface of a lysozyme molecule is studied by computer simulations at various hydration levels in relation with water clustering and percolation transition. Increase of the translational mobility of water molecules at the surface of a rigid lysozyme molecule upon hydration is governed by the water-water interactions. Lysozyme dynamics strongly affect translational motions of water and this dynamic coupling is maximal at hydration levels, corresponding to the formation of a spanning water network. Anomalous diffusion of hydration water does not depend on hydration level up to monolayer coverage and reflects spatial disorder. Rotational dynamics of water molecules show stretched exponential decay at low hydrations. With increasing hydration, we observe appearance of weakly bound water molecules with bulklike rotational dynamics, whose fraction achieves 20-25% at the percolation threshold.  相似文献   

6.
Dielectric measurements have been carried out on partially hydrated collagen in the frequency ranges 100 kHz–5 MHz, 100 MHz–1 GHz, and 8–23 GHz. In the low-frequency range, a dispersion was observed around 100 kHz which results from inhomogeneous conductivity of the samples. A dielectric relaxation was observed aroud 0.3 GHz using time-domain-spectroscopy techniques. This relaxation can be considered to originate from mobile side chains. Microwave measurements indicate that the water relaxation may extend into the 10-GHz region. An apparent discrepancy between the main water relaxation time and the average rotational correlation time of water as measured by nmr line widths was resolved by the assumption that a fraction of the water molecules is bound to the collagen with residence times on the order of 10?6 sec, whereas the remainder of the water is only weakly bound and exhibits rotational rates on the order of 10?10 sec.  相似文献   

7.
Protein-water dynamics in mixtures of water and a globular protein, bovine serum albumin (BSA), was studied over wide ranges of composition, in the form of solutions or hydrated solid pellets, by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption isotherm (ESI) measurements were performed at room temperature. The crystallization and melting events were studied by DSC and the amount of uncrystallized water was calculated by the enthalpy of melting during heating. The glass transition of the system was detected by DSC for water contents higher than the critical water content corresponding to the formation of the first sorption layer of water molecules directly bound to primary hydration sites, namely 0.073 (grams of water per grams of dry protein), estimated by ESI. A strong plasticization of the T(g) was observed by DSC for hydration levels lower than those necessary for crystallization of water during cooling, i.e. lower than about 0.3 (grams of water per grams of hydrated protein) followed by a stabilization of T(g) at about -80°C for higher water contents. The α relaxation associated with the glass transition was also observed in dielectric measurements. In TSDC a microphase separation could be detected resulting in double T(g) for some hydration levels. A dielectric relaxation of small polar groups of the protein plasticized by water, overlapped by relaxations of uncrystallized water molecules, and a separate relaxation of water in the crystallized water phase (bulk ice crystals) were also recorded.  相似文献   

8.
Molecular rotational correlation times are of interest for many studies carried out in solution, including characterization of biomolecular structure and interactions. Here we have evaluated the estimates of protein effective rotational correlation times from their translational self-diffusion coefficients measured by pulsed-field gradient NMR against correlation times determined from both collective and residue-specific (15)N relaxation analyses and those derived from 3D structure-based hydrodynamic calculations. The results show that, provided the protein diffusive behavior is coherent with the Debye-Stokes-Einstein model, translational diffusion coefficients provide rapid estimates with reasonable accuracy of their effective rotational correlation times. Effective rotational correlation times estimated from translational diffusion coefficients may be particularly beneficial in cases where i) isotopically labelled material is not available, ii) collective backbone (15)N relaxation rates are difficult to interpret because of the presence of flexible termini or loops, or iii) a full relaxation analysis is practically difficult because of limited sensitivity owing to low protein concentration, high molecular mass or low temperatures.  相似文献   

9.
A practical method is described for determining some characteristics of the spectrum of proton mobilities in a hydrated system from the frequency dependence of the nuclear magnetic resonance (NMR) relaxation processes. The technique is applied to water in association with agarose and gelatin. The results for agarose are consistent with the hypothesis that a fraction of the protons is distributed over states of reduced mobility and exchanges rapidly with the remaining fraction which is attributed to water in the normal state. No variation in the characteristics of the modified fraction could be detected for water concentrations in the range 1.2-50 g H2O/g agarose. Within the modified fraction, higher mobilities are more common than low mobilities; at 1.2 g H2O/g agarose, not more than 10% of the proton population has mobilities more than 100 times smaller than normal. The modified proton fraction is tentatively identified with agarose hydroxyl protons and possibly water molecules bound to the polymer. Proton states with mobilities intermediate between water and ice have also been detected in hydrated gelatin. As in agarose, higher mobilities are the most common. In contrast to agarose, the characteristics of the modified proton states are markedly dependent on water concentration. They are tentatively attributed to gelatin protons coupled for spinlattice relaxation with those of the bulk phase by exchange and spin diffusion.  相似文献   

10.
1H NMR relaxation studies of protein-polysaccharide mixtures   总被引:1,自引:0,他引:1  
NMR water proton relaxation was used to characterize the structure of plant proteins and plant protein-polysaccharide mixtures in aqueous solutions. The method is based on the mobility determination of the water molecules in the biopolymer environment in solutions through relaxation time measurements. Differences of conformation between pea globulin and alpha gliadin seem to control the water molecules mobility in their environment. As deduced from the study of complexes, the electrostatic interactions may also play a major role in the water molecule motions. The phase separation induced under specific conditions seems to promote the translational diffusion of structured water molecules whereas the rotational motion was more restricted.  相似文献   

11.
12.
Hydration is essential for the structural and functional integrity of globular proteins. How much hydration water is required for that integrity? A number of techniques such as X-ray diffraction, nuclear magnetic resonance (NMR) spectroscopy, calorimetry, infrared spectroscopy, and molecular dynamics (MD) simulations indicate that the hydration level is 0.3-0.5 g of water per gram of protein for medium sized proteins. Hydrodynamic properties, when accounted for by modeling proteins as ellipsoids, appear to give a wide range of hydration levels. In this paper we describe an alternative numerical technique for hydrodynamic calculations that takes account of the detailed protein structures. This is made possible by relating hydrodynamic properties (translational and rotational diffusion constants and intrinsic viscosity) to electrostatic properties (capacitance and polarizability). We show that the use of detailed protein structures in predicting hydrodynamic properties leads to hydration levels in agreement with other techniques. A unified picture of protein hydration emerges. There are preferred hydration sites around a protein surface. These sites are occupied nearly all the time, but by different water molecules at different times. Thus, though a given water molecule may have a very short residence time (approximately 100-500 ps from NMR spectroscopy and MD simulations) in a particular site, the site appears fully occupied in experiments in which time-averaged properties are measured.  相似文献   

13.
Hydration water is essential for a protein to perform its biological function properly. In this study, the dynamics of hydration water around F-actin and myosin subfragment-1 (S1), which are the partner proteins playing a major role in various cellular functions related to cell motility including muscle contraction, was characterized by incoherent quasielastic neutron scattering (QENS). The QENS measurements on the D2O- and H2O-solution samples of F-actin and S1 provided the spectra of hydration water, from which the translational diffusion coefficient (DT), the residence time (τT), and the rotational correlation time (τR) were evaluated. The DT value of the hydration water of S1 was found to be much smaller than that of the hydration water of F-actin while the τT values were similar between S1 and F-actin. On the other hand, the τR values of the hydration water of S1 was found to be larger than that of the hydration water of F-actin. It was also found that the DT and τR values of the hydration water of F-actin are similar to those of bulk water. These results suggest a significant difference in mobility of the hydration water between S1 and F-actin: S1 has the typical hydration water, the mobility of which is reduced compared with that of bulk water, while F-actin has the unique hydration water, the mobility of which is close to that of bulk water rather than the typical hydration water around proteins.  相似文献   

14.
Translational diffusion of a fluorescent sterol probe was measured in the plasma membranes of protoplasts isolated from cortical cells of the primary root of maize seedlings. The apparent lateral diffusion coefficient was typically observed to be nearly insensitive to temperature, while the mobile fraction increased with increasing temperature. These fluorescence photobleaching recovery (FPR) measurements were compared with the electron paramagnetic resonance (EPR) spectra of the methyl ester of 13-doxyl palmitic acid in membranes of corn root tissue in situ. The complex spectra observed with this probe were analyzed as weighted sums of simpler spectra of various order parameters and rotational correlation times. The reconstituted spectra calculated from the model show that EPR also detects a mobile (less ordered, fluid) fraction, distinguished by the order parameter S=0.1 to 0.2, which becomes more abundant as temperature increases and is qualitatively comparable to the mobile fraction determined by the FPR method. The observed results on the mobile fractions and the diffusion rates for translational (FPR) as well as rotational (EPR) motions are interpreted in terms of membrane organization, thus providing information on the population and structural patterns of the coexisting domains with a special emphasis on the response of the membrane to temperature changes.This work was supported in part by grants from the Ministry of Science and Technology of the Republic of Slovenia and the International Research Program of the U.S. Department of Agriculture (USDA-JF 814-51) to M.S., and by grants from the Competitive Grants Program of the U.S. Department of Agriculture (88-37264-3807 and 90-37264-5471) to E.A.N.  相似文献   

15.
Dynamics of uncrystallized water and protein was studied in hydrated pellets of the fibrous protein elastin in a wide hydration range (0 to 23 wt.%), by differential scanning calorimetry (DSC), thermally stimulated depolarization current technique (TSDC) and dielectric relaxation spectroscopy (DRS). Additionally, water equilibrium sorption–desorption measurements (ESI) were performed at room temperature. The glass transition of the system was studied by DSC and its complex dependence on hydration water was verified. A critical water fraction of about 18 wt.% was found, associated with a reorganization of water in the material. Three dielectric relaxations, associated to dynamics related to distinct uncrystallized water populations, were recorded by TSDC and DRS. The low temperature secondary relaxation of hydrophilic polar groups on the protein surface triggered by hydration water for almost dry samples contains contributions from water molecules themselves at higher water fractions (ν relaxation). This particular relaxation is attributed to water molecules in the primary and secondary hydration shells of the protein fibers. At higher temperatures and for water fraction values equal to or higher than 10 wt.%, a local relaxation of water molecules condensed within small openings in the interior of the protein fibers was recorded. The evolution of this relaxation (w relaxation) with hydration level results in enhanced cooperativity at high water fraction values, implying the existence of “internal” water confined within the protein structure. At higher temperatures a relaxation associated with water dynamics within clusters between fibers (p relaxation) was also recorded, in the same hydration range.  相似文献   

16.
The observation of the spin-echo decay in a long time domain has revealed that there exist at least three different fractions of non- (or slowly) exchanging water in the rat gastrocnemius muscle. These fractions of water are characterized with different nuclear magnetic resonance (NMR) relaxation times and are identified with the different parts of tissue water. The water associated with the macromolecules was found to be approximately 8% of the total tissue water and not to exchange rapidly with the rest of the intracellular water. The transverse relaxation time (T2) of the myoplasm is 45 ms which is roughly a 40-fold reduction from that of a dilute electrolyte solution. This fraction of water accounts for 82% of the tissue water. The reduced relaxation time is shown neither to be caused by fast exchange between the hydration and myoplasmic water nor by the diffusion of water across the local magnetic field gradients which arise from the heterogeneity in the sample. About 10% of the tissue water was resolved to be associated with the extracellular space, the relaxation time of which is approximately four times that of the myoplasm. Mathematical treatments of the proposed mechanisms which may be responsible for the reduction of tissue water relaxation times are given in this paper. The results of our study are consistent with the notion that the structure and/or motions of all or part of the cellular water are affected by the macromolecular interface and this causes a change in the NMR relaxation rates.  相似文献   

17.
J Andrasko 《Biophysical journal》1975,15(12):1235-1243
The dependence of the spin-lattice relaxation time in the rotating frame (T1rho) on radio frequency (RF) field strength and temperature has been studied for agarose gels in order to investigate molecular motion. The results indicate the presence of slow motions with a correlation time of ca. 5-10(-6) s at room temperature. This interaction is responsible for the short spin-spin relaxation times (T2) for water protons in agarose gels and is ascribed to firmly bound water. The fraction of bound water is estimated to about 0.003 for a 7.3% agarose gel. The motion of the more mobile protons in agarose-water systems can not be characterized by single correlation time. This fraction is presumably composed of water in different motional states and some of the agarose hydroxyl protons. Higher mobilities are the most common.  相似文献   

18.
When introduced into water, some molecules and ions (solutes) enforce the hydrogen-bonded network of neighboring water molecules that are thus restrained from thermal motions and are less mobile than those in the bulk phase (structure-making or positive hydration effect), and other solutes cause the opposite effect (structure-breaking or negative hydration effect). Using a method of microwave dielectric spectroscopy recently developed to measure the rotational mobility (dielectric relaxation frequency) of water hydrating proteins and the volume of hydration shells, the hydration of actin filament (F-actin) has been studied. The results indicate that F-actin exhibits both the structure-making and structure-breaking effects. Thus, apart from the water molecules with lowered rotational mobility that make up a typical hydration shell, there are other water molecules around the F-actin which have a much higher mobility than that of bulk water. No such dual hydration has been observed for myoglobin studied as the representative example of globular proteins which all showed qualitatively similar dielectric spectra. The volume fraction of the mobilized (hyper-mobile) water is roughly equal to that of the restrained water, which is two-thirds of the molecular volume of G-actin in size. The dielectric spectra of aqueous solutions of urea and potassium-halide salts have also been studied. The results suggest that urea and I(-) induce the hyper-mobile states of water, which is consistent with their well-known structure-breaking effect. The molecular surface of actin is rich in negative charges, which along with its filamentous structure provides a structural basis for the induction of a hyper-mobile state of water. A possible implication of the findings of the present study is discussed in relation to the chemomechanical energy transduction through interaction with myosin in the presence of ATP.  相似文献   

19.
Self-diffusion coefficient measurements of water in untreated ovarian eggs of Rana pipiens using nuclear magnetic resonance indicate that cytoplasmic water has reduced translational mobility compared with pure water. Using a simple two-state model, we find that ~67% is “relatively immobile.” Consideration of the nuclear magnetic resonance spin-lattice and spin-spin relaxation times indicates that the decreased mobility can largely be ascribed to hydration. Our value for the self-diffusion coefficient (6.8 × 10?6 cm2/sec) is lower than those reported by other investigators using isotopic water exchange techniques on frog eggs chemically treated to remove the membrane. However, the results reported here are in agreement with unpublished data on untreated frog eggs implying that chemical treatment has modified the cytoplasm in some manner.  相似文献   

20.
J S Clegg 《Cell biophysics》1984,6(3):153-169
Cysts of the crustacean Artemia are a useful model for studies on intracellular water because they are capable of essentially complete and reversible desiccation. We have used a variety of techniques on this system, the present work being an attempt to estimate the density of intracellular water (rho w). The density of individual cysts was evaluated from sedimentation velocity. Heptane displacement methods were used to determine the volume of a known mass of cysts, from which the density was calculated. The two methods produce comparable results. It was shown that the densities and water contents of large masses of cysts accurately reflect those of individual cysts. Cyst densities (rho c) were determined over the entire range of water content from 0 to 0.63 weight fraction of water (Wf), and temperature dependence was measured for 0.61 Wf over 2-41 degrees C. The following refer to 25 degrees C. No marked change was detected in rho c until the water content exceeded 0.15 Wf, at which rho c decreased as a linear function of Wf to maximum water content. However, the cyst does not behave ideally in the sense that the densities of the nonaqueous components and added water are not additive as a function of Wf. The partial specific volume of water in cysts at maximum hydration was estimated to be 3% larger than that of pure water. These observations are compared with density measurements on other systems, and with previous findings on the physical properties of water in this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号