首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tic40 is a component of the protein import apparatus of the inner envelope of chloroplasts, but its role in the import mechanism has not been clearly defined. The C terminus of Tic40 shares weak similarity with the C-terminal Sti1 domains of the mammalian Hsp70-interacting protein (Hip) and Hsp70/Hsp90-organizing protein (Hop) co-chaperones. Additionally, Tic40 may possess a tetratricopeptide repeat (TPR) protein-protein interaction domain, another characteristic feature of Hip/Hop co-chaperones. To investigate the functional importance of different parts of the Tic40 protein and to determine whether the homology between Tic40 and co-chaperones is functionally significant, different Tic40 deletion and Tic40:Hip fusion constructs were generated and assessed for complementation activity in the Arabidopsis Tic40 knock-out mutant, tic40. Interestingly, all Tic40 deletion constructs failed to complement tic40, indicating that each part removed is essential for Tic40 function; these included a construct lacking the Sti1-like domain (DeltaSti1), a second lacking a central region, including the putative TPR domain (DeltaTPR), and a third lacking the predicted transmembrane anchor region. Moreover, the DeltaSti1 and DeltaTPR constructs caused strong dominant-negative, albino phenotypes in tic40 transformants, indicating that the truncated Tic40 proteins interfere with the residual chloroplast protein import that occurs in tic40 plants. Remarkably, the Tic40:Hip fusion constructs showed that the Sti1 domain of human Hip is functionally equivalent to the Sti1-like region of Tic40, strongly suggesting a co-chaperone role for the Tic40 protein. Supporting this notion, yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated the in vivo interaction of Tic40 with Tic110, a protein believed to recruit stromal chaperones to protein import sites.  相似文献   

2.
The protein import translocon at the inner envelope of chloroplasts (Tic complex) is a heteroligomeric multisubunit complex. Here, we describe Tic40 from pea as a new component of this complex. Tic40 from pea is a homologue of a protein described earlier from Brassica napus as Cim/Com44 or the Toc36 subunit of the translocon at the outer envelope of chloroplasts, respectively (Wu, C., Seibert, F. S., and Ko, K. (1994) J. Biol. Chem. 269, 32264-32271; Ko, K., Budd, D., Wu, C., Seibert, F., Kourtz, L., and Ko, Z. W. (1995) J. Biol. Chem. 270, 28601-28608; Pang, P., Meathrel, K., and Ko, K. (1997) J. Biol. Chem. 272, 25623-25627). Tic40 can be covalently connected to Tic110 by the formation of a disulfide bridge under oxidizing conditions, indicating its close physical proximity to an established translocon component. The Tic40 protein is synthesized in the cytosol as a precursor with an N-terminal cleavable chloroplast targeting signal and imported into the organelle via the general import pathway. Immunoblotting and immunogold-labeling studies exclusively confine Tic40 to the chloroplastic inner envelope, in which it is anchored by a single putative transmembrane span.  相似文献   

3.
Teng YS  Su YS  Chen LJ  Lee YJ  Hwang I  Li HM 《The Plant cell》2006,18(9):2247-2257
An Arabidopsis thaliana mutant defective in chloroplast protein import was isolated and the mutant locus, cia5, identified by map-based cloning. CIA5 is a 21-kD integral membrane protein in the chloroplast inner envelope membrane with four predicted transmembrane domains, similar to another potential chloroplast inner membrane protein-conducting channel, At Tic20, and the mitochondrial inner membrane counterparts Tim17, Tim22, and Tim23. cia5 null mutants were albino and accumulated unprocessed precursor proteins. cia5 mutant chloroplasts were normal in targeting and binding of precursors to the chloroplast surface but were defective in protein translocation across the inner envelope membrane. Expression levels of CIA5 were comparable to those of major translocon components, such as At Tic110 and At Toc75, except during germination, at which stage At Tic20 was expressed at its highest level. A double mutant of cia5 At tic20-I had the same phenotype as the At tic20-I single mutant, suggesting that CIA5 and At Tic20 function similarly in chloroplast biogenesis, with At Tic20 functioning earlier in development. We renamed CIA5 as Arabidopsis Tic21 (At Tic21) and propose that it functions as part of the inner membrane protein-conducting channel and may be more important for later stages of leaf development.  相似文献   

4.
The transport of proteins into the plastid is a process that faces changing cellular needs such as the situation found in different plant organs or developing tissues. The plastid translocon must therefore be responsive to the changing cell environment to deliver efficiently different arrays of structurally diverse proteins. Although the Tic40-related envelope proteins appear to be translocon components designed to address the varying needs of protein translocation, details of their involvement remain elusive. This study was thus designed to combine plant-based experiments and yeast mitochondrion-based approaches for unveiling clues related to how the Tic40 components may behave during the protein translocation process. The main findings related to how Tic40 proteins may work are: 1) natural fluctuations are apparent in developing tissues, in different organs of the same plant, and in different species; 2) transgenic Arabidopsis seedlings can tolerate functionally a wide range of variations in Tic40 levels, from partial suppression to excessive production; 3) the Tic40 proteins themselves exhibit configurational changes in their association with yeast mitochondria in response to different carbon sources; 4) the presence of Tic40 proteins in yeast mitochondria influences regulatory aspects of the mitochondrial translocon; and 5) the Tic40 proteins associate with mitochondrial translocon components involved in regulatory-like events. The combined data provide evidence that Tic40 proteins possess modulating capabilities.  相似文献   

5.
The vast majority of chloroplast proteins are synthesized in precursor form on cytosolic ribosomes. Chloroplast precursor proteins have cleavable, N-terminal targeting signals called transit peptides. Transit peptides direct precursor proteins to the chloroplast in an organelle-specific way. They can be phosphorylated by a cytosolic protein kinase, and this leads to the formation of a cytosolic guidance complex. The guidance complex--comprising precursor, hsp70 and 14-3-3 proteins, as well as several unidentified components--docks at the outer envelope membrane. Translocation of precursor proteins across the envelope is achieved by the joint action of molecular machines called Toc (translocon at the outer envelope membrane of chloroplasts) and Tic (translocon at the inner envelope membrane of chloroplasts), respectively. The action of the Toc/Tic apparatus requires the hydrolysis of ATP and GTP at different levels, indicating energetic requirements and regulatory properties of the import process. The main subunits of the Toc and Tic complexes have been identified and characterized in vivo, in organello and in vitro. Phylogenetic evidence suggests that several translocon subunits are of cyanobacterial origin, indicating that today's import machinery was built around a prokaryotic core.  相似文献   

6.
7.
Toc34, a 34-kDa integral membrane protein, is a member of the Toc (translocon at the outer-envelope membrane of chloroplasts) complex, which associates with precursor proteins during protein transport across the chloroplast outer membrane. Here we report the 2.0 A resolution crystal structure of the cytosolic part of pea Toc34 in complex with GDP and Mg2+. In the crystal, Toc34 molecules exist as dimers with features resembling those found in a small GTPase in complex with a GTPase activating protein (GAP). However, gel filtration experiments revealed that dimeric and monomeric forms of Toc34 coexisted in phosphate saline buffer solution at pH 7.2. Mutation of Arg 128, an essential residue for dimerization, to an Ala residue led to the formation of an exclusively monomeric species whose GTPase activity is significantly reduced compared to that of wild type Toc34. These results, together with a number of structural features unique to Toc34, suggest that each monomer acts as a GAP on the other interacting monomer.  相似文献   

8.
9.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

10.
The DnaK chaperone system, consisting of DnaK, DnaJ, and GrpE, remodels and refolds proteins during both normal growth and stress conditions. CbpA, one of several DnaJ analogs in Escherichia coli, is known to function as a multicopy suppressor for dnaJ mutations and to bind nonspecifically to DNA and preferentially to curved DNA. We found that CbpA functions as a DnaJ-like co-chaperone in vitro. CbpA acted in an ATP-dependent reaction with DnaK and GrpE to remodel inactive dimers of plasmid P1 RepA into monomers active in P1 DNA binding. Additionally, CbpA participated with DnaK in an ATP-dependent reaction to prevent aggregation of denatured rhodanese. The cbpA gene is in an operon with an open reading frame, yccD, which encodes a protein that has some homology to DafA of Thermus thermophilus. DafA is a protein required for the assembly of ring-like particles that contain trimers each of T. thermophilus DnaK, DnaJ, and DafA. The E. coli YccD was isolated because of its potential functional relationship to CbpA. Purified YccD specifically inhibited both the co-chaperone activity and the DNA binding activity of CbpA, suggesting that YccD modulates the activity of CbpA. We named the product of the yccD gene CbpM for CbpA modulator.  相似文献   

11.
An anion channel of the chloroplast envelope was previously shown to be involved in protein import. Some gating characteristics of the channel are presented. The pore size of the channel is estimated to be around 6.5 A. Antibodies raised to Tic110 completely inactivate the protein import-related channel. These observations suggest that the channel is associated with the Tic machinery and can function as the protein conducting channel of the inner envelope membrane.  相似文献   

12.
Endosymbiotic theory suggests that plastids originated from a photosynthetic bacterium that was engulfed by a primitive eukaryotic cell. In consequence, the chloroplast genome remains affected by this ancestral event, although it is reduced in size and the number of constituent genes. Most parts of the plastid genome have been transferred to the host cell nuclear genome and are nuclear-encoded. Thus, chloroplast proteins are synthesized in the cytosol as precursors with N-terminal extensions called transit peptides. The evolution of import machinery was required to transfer transit peptides to the stroma. Until the present, two protein complexes have been found to mediate the import process: the Toc (outer) and Tic (inner) envelope membrane translocons. The evolutionary origin of many Tic and Toc proteins has been established, but not for the Tic110 subunit. Tic110 binds signal peptides and serves as a scaffold for the recruitment of stromal components. In this study, we analyzed hydrophobic clusters, protein folds, and protein structure homology and we conclude that Tic110 is composed of fourteen repeated motifs related to HEAT-repeats. The explanation for the presence of such repeats in Tic110 is that membrane arrangement is found in separate domains and their probable function in the chloroplast import process is discussed.  相似文献   

13.
A subunit of the preprotein translocon of the outer envelope of chloroplasts (Toc complex) of 64 kD is described, Toc64. Toc64 copurifies on sucrose density gradients with the isolated Toc complex. Furthermore, it can be cross-linked in intact chloroplasts to a high molecular weight complex containing both Toc and Tic subunits and a precursor protein. The 0 A cross-linker CuCl(2) yields the reversible formation of disulfide bridge(s) between Toc64 and the established Toc complex subunits in purified outer envelope membranes. Toc64 contains three tetratricopeptide repeat motifs that are exposed at the chloroplast cytosol interface. We propose that Toc64 functions early in preprotein translocation, maybe as a docking protein for cytosolic cofactors of the protein import into chloroplasts.  相似文献   

14.
M Bott  D Ritz    H Hennecke 《Journal of bacteriology》1991,173(21):6766-6772
Mitochondrial cytochrome c is a water-soluble protein in the intermembrane space which catalyzes electron transfer from the cytochrome bc1 complex to the terminal oxidase cytochrome aa3. In Bradyrhizobium japonicum, a gene (cycM) which apparently encodes a membrane-anchored homolog of mitochondrial cytochrome c was discovered. The apoprotein deduced from the nucleotide sequence of the cycM gene consists of 184 amino acids with a calculated Mr of 19,098 and an isoelectric point of 8.35. At the N-terminal end (positions 9 to 31), there was a strongly hydrophobic domain which, by forming a transmembrane helix, could serve first as a transport signal and then as a membrane anchor. The rest of the protein was hydrophilic and, starting at position 72, shared about 50% sequence identity with mitochondrial cytochrome c. The heme-binding-site motif Cys-Gly-Ala-Cys-His was located at positions 84 to 88. A B. japonicum cycM insertion mutant (COX122) exhibited an oxidase-negative phenotype and apparently lacked cytochrome aa3 in addition to the CycM protein. The wild-type phenotype with respect to all characteristics tested was restored by providing the cycM gene in trans. The data supported the conclusion that the assembly of cytochrome aa3 depended on the prior incorporation of the CycM protein in the cytoplasmic membrane.  相似文献   

15.
Hsp40 co-chaperones, characterized by the presence of a highly conserved J domain, are involved in nearly all aspects of protein synthesis, folding, and secretion. Within the lumen of the endoplasmic reticulum, these chaperones are also involved in reverse translocation and degradation of misfolded proteins. We describe here the cloning and characterization of a novel Hsp40 chaperone, which we named HEDJ. Epitope-tagged HEDJ was demonstrated by confocal microscopy to be localized to the endoplasmic reticulum. Protease susceptibility, glycosidase treatment, and detergent solubility assays demonstrated that the molecule was luminally oriented and membrane-associated. In vitro experiments demonstrated that the J domain interacted with the endoplasmic reticulum-associated Hsp70, Bip, in an ATP-dependent manner and was capable of stimulating its ATPase activity. HEDJ mRNA expression was detected in all human tissues examined. Highly homologous sequences were found in mouse, Drosophila, and Caenorhabditis elegans data bases. These results suggest potential roles for HEDJ in protein import, folding, or translocation within the endoplasmic reticulum.  相似文献   

16.
We describe the identification of the first immunophilin associated with the photosynthetic membrane of chloroplasts. This complex 40 kDa immunophilin, designated TLP40 (thylakoid lumen PPIase), located in the lumen of the thylakoids, was found to play a dual role in photosynthesis involving both biogenesis and intraorganelle signalling. It originates in a single-copy nuclear gene, is made as a precursor of 49.2 kDa with a bipartite lumenal targeting transit peptide, and is characterized by a structure including a cyclophilin-like C-terminal segment of 20 kDa, a predicted N-terminal leucine zipper and a potential phosphatase-binding domain. It can exist in different oligomeric conformations and attach to the inner membrane surface. It is confined predominantly to the non-appressed thylakoid regions, the site of protein integration into the photosynthetic membrane. The isolated protein possesses peptidyl-prolyl cis-trans isomerase protein folding activity characteristic of immunophilins, but is not inhibited by cyclosporin A. TLP40 also exerts an effect on dephosphorylation of several key proteins of photosystem II, probably as a constituent of a transmembrane signal transduction chain. This first evidence for a direct role of immunophilins in a photoautotrophic process suggests that light-mediated protein phosphorylation in photosynthetic membranes and the role of the thylakoid lumen are substantially more complex than anticipated.  相似文献   

17.
18.

Background  

The function and structure of protein translocons at the outer and inner envelope membrane of chloroplasts (Toc and Tic complexes, respectively) are a subject of intensive research. One of the proteins that have been ascribed to the Tic complex is Tic62. This protein was proposed as a redox sensor protein and may possibly act as a regulator during the translocation process. Tic62 is a bimodular protein that comprises an N-terminal module, responsible for binding to pyridine nucleotides, and a C-terminal module which serves as a docking site for ferredoxin-NAD(P)-oxido-reductase (FNR). This work focuses on evolutionary analysis of the Tic62-NAD(P)-related protein family, derived from the comparison of all available sequences, and discusses the structure of Tic62.  相似文献   

19.
ErbB2 degradation mediated by the co-chaperone protein CHIP   总被引:12,自引:0,他引:12  
ErbB2 overexpression contributes to the evolution of a substantial group of human cancers and signifies a poor clinical prognosis. Thus, down-regulation of ErbB2 signaling has emerged as a new anti-cancer strategy. Ubiquitinylation, mediated by the Cbl family of ubiquitin ligases, has emerged as a physiological mechanism of ErbB receptor down-regulation, and this mechanism appears to contribute to ErbB2 down-regulation induced by therapeutic anti-ErbB2 antibodies. Hsp90 inhibitory ansamycin antibiotics such as geldanamycin (GA) induce rapid ubiquitinylation and down-regulation of ErbB2. However, the ubiquitin ligase(s) involved has not been identified. Here, we show that ErbB2 serves as an in vitro substrate for the Hsp70/Hsp90-associated U-box ubiquitin ligase CHIP. Overexpression of wild type CHIP, but not its U-box mutant H260Q, induced ubiquitinylation and reduction in both cell surface and total levels of ectopically expressed or endogenous ErbB2 in vivo, and this effect was additive with that of 17-allylamino-geldanamycin (17-AAG). The CHIP U-box mutant H260Q reduced 17-AAG-induced ErbB2 ubiquitinylation. Wild type ErbB2 and a mutant incapable of association with Cbl (ErbB2 Y1112F) were equally sensitive to CHIP and 17-AAG, implying that Cbl does not play a major role in geldanamycin-induced ErbB2 down-regulation. Both endogenous and ectopically expressed CHIP and ErbB2 coimmunoprecipitated with each other, and this association was enhanced by 17-AAG. Notably, CHIP H260Q induced a dramatic elevation of ErbB2 association with Hsp70 and prevented the 17-AAG-induced dissociation of Hsp90. Our results demonstrate that ErbB2 is a target of CHIP ubiquitin ligase activity and suggest a role for CHIP E3 activity in controlling both the association of Hsp70/Hsp90 chaperones with ErbB2 and the down-regulation of ErbB2 induced by inhibitors of Hsp90.  相似文献   

20.
Structural determinants of lateral gate opening in the protein translocon   总被引:4,自引:0,他引:4  
Gumbart J  Schulten K 《Biochemistry》2007,46(39):11147-11157
The heterotrimeric SecY/Sec61 complex is a protein-conducting channel that provides a passage for proteins across the membrane as well as a means to integrate nascent proteins into the membrane. While the first function is common among membrane protein channels and transporters, the latter is unique. Insertion of nascent membrane proteins, one transmembrane segment at a time, by SecY likely occurs through a lateral gate in the channel. Molecular dynamics simulations have been used to investigate the mechanism of gate opening. Opening and closing the gate under different conditions allowed us to identify structural elements that resist opening as well as those that aid closure. SecE, considered to act as a clamp keeping the lateral gate closed, was found to play no such role. Loosening of the plug by lateral gate opening, a potential step in channel gating, was also observed. The simulations revealed that lipids on time scales of up to 1 micros do not flood channels with an open lateral gate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号