首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

A DEAE-Sephadex column chromatography step utilized to purify human Factor VII consistently yields a protein peak between the factor VII activity peak and prothrombin, factor X and factor IX activity peak (S.P. Bajaj, S.I. Rapaport, and S.F. Brown: J. Biol. Chem. 251., 253-259, 1981). We now report that this protein peak contains protein C and protein S. Preparative disc polyacryla-mide gel electrophoresis of the proteins in this peak 'permitted a complete separation of protein C from protein S. Protein C at this step usually contained approximately 5-10% of Factor X, which could be removed by a goat anti-human Factor X antibody column. For a typical preparation, starting with 10L of plasma, the yield of Protein C was 5 mg and of protein S was 4 mg. Both proteins  相似文献   

2.
The major human vitamin K-dependent proteins were purified from plasma using immunoadsorbents made with antibodies specific for each protein. Monoclonal antibodies to Factor VII, Factor IX, Factor X, Protein C, and Protein S were prepared from mice immunized with isolated vitamin K-dependent antigens. Purified monoclonal antibodies and a purified burro polyclonal anti-prothrombin immunoglobulin were individually coupled to Sepharose and used in a tandem series of columns to purify each of the vitamin K-dependent proteins from eluates of barium citrate precipitates of plasma. The proteins were eluted from the columns by sodium thiocyanate and retained functional activity following dialysis. Prothrombin, Factor VII, Factor IX, Factor X and Protein C were essentially homogeneous as judged by NaDodSO4-PAGE; Protein S was isolated as a Protein S-C4b binding protein complex. These results indicate the utility of monoclonal antibody immunoadsorbents for purifying the human vitamin K-dependent proteins and represent a considerable simplification over other purification schemes.  相似文献   

3.
The apparent molecular weight of functional protein S in citrated plasma was observed to be between 115,000 and 130,000 as measured by sedimentation equilibrium in the air-driven ultracentrifuge. The molecular weight of the functional protein decreased to approximately 62,000 when copper ions were added to the plasma. This suggested the presence of a protein S-binding protein in plasma, which was confirmed by gel filtration experiments. Frontal analysis of plasma indicated that functional protein S could exist in as many as three forms. Addition of copper ions to plasma reduced the number of forms to one. In order to isolate the binding protein, plasma was fractionated first on a column of immobilized iminodiacetic acid that had been equilibrated with copper ions. The proteins that eluted in a 0.6 M NaCl wash were passed over a column of protein S immobilized on agarose beads. A protein, eluted in the 0.6 M NaCl wash, was observed to bind to protein S in gel filtration experiments. When added to plasma depleted of both protein S and the binding protein, the binding protein was observed to enhance the anticoagulant activity of activated protein C only in the presence of protein S. Protein S-binding protein was also observed to enhance the rate of factor Va inactivation by activated protein C and protein S.  相似文献   

4.
A review is given of preparative methods for the isolation of the vitamin K-dependent clotting factors II, VII, IX, X and clotting inhibitor protein C, all derived from human plasma. Factor II, activated factor VII and activated protein C are also obtained from recombinant animal cells. The methods for their purification are described. The problem of difference in posttranslational modifications between plasma derived and recombinant protein is discussed with regard to therapeutic proteins.  相似文献   

5.
6.
The simultaneous isolation of three enzymes from the southern copperhead snake venom (Agkistrodon contortrix contortrix; ACC) is described. The first step is a chromatography of crude venom on a Mono S cation-exchange column at pH 6.5. A fibrin clot promoting enzyme (fiprozyme) that preferentially releases fibrinopeptide B from fibrinogen is isolated from the fraction not binding to the Mono S by a further three-step process. The procedure involves affinity chromatography on Blue Sepharose, gel chromatography on Sephacryl S-200 and metal–chelate chromatography on Chelating Sepharose. Protein C activator and phospholipase coelute from the Mono S column. They are separated by a gel chromatography on Sephacryl S-200. After this step two enzymes are obtained: a highly purified protein C activator applicable in methods for determination of functional level of protein C (a plasma regulator of hemostasis) and an electrophoretically pure enzyme with the activity of phospholipase A2.  相似文献   

7.
C4b-binding protein was purified from human plasma in high yield by a simple procedure involving barium citrate adsorption and two subsequent chromatographic steps. Approx. 80% of plasma C4b-binding protein was adsorbed on the barium citrate, presumably because of its complex-formation with vitamin K-dependent protein S. The purified C4b-binding protein had a molecular weight of 570 000, as determined by ultracentrifugation, and was composed of about eight subunits (Mr approx. 70 000). Uncomplexed plasma C4b-binding protein was purified from the supernatant after barium citrate adsorption. On sodium dodecyl sulphate/polyacrylamide-gel electrophoresis in non-reducing conditions and on agarose-gel electrophoresis it appeared as a doublet, indicating two forms differing slightly from each other in molecular weight and net charge. The protein band with the higher molecular weight in the doublet corresponded to the C4b-binding protein purified from the barium citrate eluate. Complex-formation between protein S and C4b-binding protein was studied in plasma, and in a system with purified components, by an agarose-gel electrophoresis technique. Protein S was found to form a 1:1 complex with the higher-molecular-weight form of C4b-binding protein, whereas the lower-molecular-weight form of C4b-binding protein did not bind protein S. The KD for the C4b-binding protein-protein S interaction in a system with purified components was approx. 0.9 X 10(-7) M. Rates of association and dissociation at 37 degrees C were low, namely about 1 X 10(3) M-1 . S-1 and 1.8 X 10(-4)-4.5 X 10(-4) S-1 respectively. In human plasma free protein S and free higher-molecular-weight C4b-binding protein were in equilibrium with the C4b-binding protein-protein S complex. Approx. 40% of both proteins existed as free proteins. From equilibrium data in plasma a KD of about 0.7 X 10(-7) M was calculated for the C4b-binding protein-protein S interaction.  相似文献   

8.
Identification and isolation of vitamin K-dependent proteins by HPLC   总被引:1,自引:0,他引:1  
Six of the seven known vitamin K-dependent proteins found in plasma were chromatographed on a large-pore propylsilane column using aqueous trifluoroacetic acid/acetonitrile gradients. Prothrombin and Factor VII coeluted, the others were readily resolved. The technique has been used to monitor the purification of protein C and protein S using immobilized anti-protein S. Preliminary evidence is presented which is suggestive of the existence of additional vitamin K-dependent proteins in plasma.  相似文献   

9.
A systematic purification scheme is presented for the isolation of six vitamin K-dependent coagulation factors from bovine plasma in a functionally and biochemically pure state. The vitamin K-dependent proteins concentrated by the ordinary barium citrate adsorption were first separated into four fractions, fractions A, B, C, and D, by DEAE-Sephadex A-50 chromatography. From the pooled fraction A, protein S, factor IX, and prothrombin were purified by column chromatography on Blue-Sepharose CL-6B. Heparin-Sepharose chromatography of the pooled fraction B provided mainly pure factor IX, in addition to homogeneous prothrombin. A high degree of resolution of protein C and prothrombin from the pooled fraction C was obtained with a Blue-Sepharose column. This dye-ligand chromatographic procedure was also very effective for the separation of protein Z and factor X contained in the pooled fraction D. Thus, these preparative procedures allowed high recovery of milligram and gram quantities of six vitamin K-dependent proteins from 15 liters of plasma in only two chromatographic steps, except for protein S, which required three (the third step was rechromatography on Blue-Sepharose CL-6B).  相似文献   

10.
The protein, HPr, a necessary component of the phosphoenolpyruvate phosphotransferase system (PTS) in bacteria, was purified from Streptococcus salivarius by column chromatography. The purified preparation gave only one band when analyzed by sodium dodecylsulfate gel electrophoresis or by isoelectric focusing in polyacrylamide gel (pI = 4.85). However, electrophoresis in Tris-containing buffers under non-denaturing conditions revealed 2 bands that could be phosphorylated by PEP in the presence of enzyme I of the PTS or by ATP with the HPr kinase. Homogeneous preparations of these 2 forms could be obtained by preparative electrophoresis. Each preparation exhibited only 1 band when analyzed by electrophoresis under non-denaturing conditions, indicating that the doublet observed before preparative electrophoresis was not an electrophoretic artefact. The electrophoretic mobility of each protein was not modified following heat-treatment at 100 degrees C for 20 min or storage at -40 degrees C for several months. Both HPr proteins catalyzed in vitro the PEP-dependent phosphorylation of glucose, but at a rate slightly lower than that observed with a preparation of HPr containing both forms of the protein. Both forms were also able to transfer the phosphate group from PEP to the other specific PTS proteins known in S salivarius. Rabbit polyclonal antibodies directed against each form reacted with both proteins. The presence of the 2 forms of HPr was detected in fresh cellular extracts of S salivarius; however, their intracellular ratio varied according to growth conditions. A doublet was also found in many other streptococcal species tested (S mutans, S sobrinus, S sanguis, S thermophilus, S bovis, S rattus) and also in L lactis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
The prothrombin-converting activity of Factor Xa was enhanced by thrombin-stimulated Factor V-deficient platelets and supplementary extraneous Factor Va, and also by thrombin-stimulated normal human platelets. Both extraneous Factor Va and intra-platelet Factor Va were equally inactivated by a gamma-carboxyglutamic acid-containing plasma protease, activated protein C. However, a relatively larger amount of activated protein C was required for efficient inactivation of platelet-associated Factor Va as compared with the amount of activated protein C needed for inactivation of phospholipid vesicle-associated Factor Va. Protein S, another gamma-carboxyglutamic acid-containing plasma protein, increased the rate of the inactivation of platelet-associated Factor Va about 25-fold. This stimulating effect was observed only slightly with the thrombin-modified protein S. Thus, it was concluded that protein S is essential for the process of inactivation of platelet-associated Factor Va by activated protein C.  相似文献   

12.
Protein S is a vitamin K dependent protein of unknown function, which is present in mammalian plasma. It was isolated from bovine plasma by barium citrate adsorption and elution, ammonium sulfate fractionation, and column chromatography on DEAE-Sephadex, heparin-agarose, and polyhomoarginine-Sepharose. Bovine Protein S (Mr 64,200) is a single-chain glycoprotein with an amino-terminal sequence of Ala-Asn-Thr-Leu-Leu-. It contains 7.0% carbohydrate and 10 residues of gamma-carboxyglutamic acid per mol of protein. Human Protein S (Mr 69,000) is also a single-chain glycoprotein with an amino-terminal sequence of Ala-Asn-Ser-Leu-Leu-. It contains 7.8% carbohydrate and 10 residues of gamma-carboxyglutamic acid per mol of protein. These results indicate that Protein S from bovine or human plasma shows many similarities to the other vitamin K dependent proteins present in plasma.  相似文献   

13.
Human complex-forming glycoprotein, heterogeneous in charge (protein HC) has previously been isolated from urine and immunochemically shown to be present in low and high molecular weight forms in blood plasma (Tejler, L., and Grubb, A. O. (1976) Biochim. Biophys. Acta 439, 82-94). In the present work, the major low and high molecular weight forms of the protein were isolated from plasma by immunosorption followed by gel chromatography. The plasma low molecular weight protein HC and the urinary protein had similar, if not identical, molecular weight, amino acid composition, NH2-terminal and carboxyl-terminal amino acid sequences and electrophoretic mobility. The low molecular weight plasma protein HC carried a yellow chromophore like the urinary protein, but its molar extinction coefficient at 280 nm was lower and its charge heterogeneity less pronounced than that of urinary protein HC. The plasma high molecular weight protein HC had a hydrodynamic volume which was greater than that of monomeric IgA but smaller than that of dimeric IgA. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the isolated high molecular weight protein followed by electrophoretic blotting and immunochemical analysis demonstrated that the protein contained four polypeptide chains: two light immunoglobulin chains (Mr = 23,000), one IgA alpha-chain (Mr = 54,000), and one chain with Mr approximately 90,000 which carried both alpha-chain and protein HC antigenic determinants. Whether the protein HC X IgA complex is a functionally significant part of the humoral immune system cannot be decided without further experimentation, but the complex was found to be completely absent from the blood plasma of patients with a selective deficiency of IgA-secreting immunocytes. The isolated low and high molecular weight plasma protein HC components were used as standard proteins in the construction of a quantitative crossed immunoelectrophoretic assay for the simultaneous quantitation of the two major protein HC components in blood plasma. The plasma concentrations of the low and high molecular weight protein HC components were measured by this method in 13 healthy Caucasians. The results for the low molecular weight protein HC were: mean, 20.3 mg/liter, S.D., 3.2 mg/liter, range, 13.6-26.0 mg/liter; and for the protein HC X IgA complex: mean, 293 mg/liter, S.D., 176 mg/liter, range, 36-620 mg/liter.  相似文献   

14.
Summary Gamma-carboxyglutamic acid is an amino acid with a dicarboxylic acid side chain. This amino acid, with unique metal binding properties, confers metal binding character to the proteins into which it is incorporated. This amino acid has been discovered in blood coagulation proteins (prothrombin, Factor X, Factor IX, and Factor VII), plasma proteins of unknown function (Protein C, Protein S, and Protein Z), and proteins from calcified tissue (osteocalcin and bone-Gla protein). It has also been observed in renal calculi, atherosclerotic plaque, and the egg chorioallantoic membrane, among other tissues. Gamma-carboxyglutamic acid is synthesized by the post-translational modification of glutamic acid residues. This reaction, catalyzed by a hepatic carboxylase, requires reduced vitamin K, oxygen, and carbon dioxide. The function of -carboxyglutamic acid is uncertain. In prothrombin y-carboxyglutamic acid residues bound to metal ions participate as an intramolecular non-covalent bridge to maintain protein conformation. Additionally, these amino acids participate in the calcium-dependent molecular assembly of proteins on membrane surfaces through intermolecular bridges involving y-carboxyglutamic acid and metal ions.  相似文献   

15.
Mechanism of inhibition of activated protein C by protein C inhibitor   总被引:6,自引:0,他引:6  
Protein C inhibitor isolated from human plasma inhibited thrombin, factor Xa, trypsin and chymotrypsin as well as activated protein C, but had very little effect on urokinase and plasmin. The inhibition constants (K1) of protein C inhibitor for activated protein C, thrombin and factor Xa were 5.6 X 10(-8) M, 6.7 X 10(-8) M and 3.1 X 10(-7) M, respectively. The second-order rate constant for inhibition of activated protein C by the inhibitor increased about 30-fold in the presence of an optimal heparin concentration (5-10 units/ml). The inhibition of activated protein C by plasma protein C inhibitor was also accelerated by heparin. When activated protein C (Mr = 62,000) was incubated with protein C inhibitor (Mr = 57,000), enzyme-inhibitor complexes with apparent Mr = 102,000 and 88,000 were observed in the nonreduced and the reduced samples, respectively, on SDS-polyacrylamide gel electrophoresis. In addition to these complexes, a band of unbound enzyme and a band with Mr = 54,000 were detected. When 125I-labeled protein C inhibitor was exposed to activated protein C, the inhibitor band was converted to bands with apparent Mr = 102,000 and 54,000 in the nonreduced samples, as determined by autoradiography after gel electrophoresis in SDS. The band with Mr = 54,000 also appeared when the inhibitor reacted with other serine proteases. The activated protein C was released from the inactive complex by treatment with 1 M ammonia or hydroxylamine. This phenomenon was found by SDS-polyacrylamide gel electrophoresis to represent the dissociation of the enzyme-inhibitor complex by ammonia or hydroxylamine into the free enzyme and the proteolytically modified inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
A murine monoclonal antibody (designated H-11) produced by injecting mice with purified human protein C was found to bind several human vitamin K-dependent proteins. Using a solid-phase competitive radioimmunoassay with antibody immobilized onto microtiter plates, binding of 125I-labeled protein C to the antibody was inhibited by increasing amounts of protein C, prothrombin, and Factors X and VII over a concentration range of 1 X 10(-8) to 1 X 10(-6) M. Other vitamin K-dependent proteins including Factor IX and protein S did not inhibit or inhibited only at the highest concentration binding of radiolabeled protein C to the immobilized antibody. Chemical treatment of prothrombin with a variety of agents including denaturation by sodium dodecyl sulfate, reduction with mercaptoethanol followed by carboxymethylation with iodoacetic acid, citraconylation of lysine residues, removal of metal ion with EDTA, or heat decarboxylation did not destroy the antigenic site recognized by the antibody as measured by immunoblotting of prothrombin or prothrombin derivative immobilized onto nitrocellulose. Immunoblotting of purified vitamin K-dependent polypeptides with the monoclonal antibody following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrophoretic transfer to nitrocellulose indicated that the antigenic site was found on the light chains of protein C and Factor X. Chymotrypsin digestion of prothrombin and isolation on QAE-Sephadex of the peptide representing amino-terminal residues 1-44 of prothrombin further localized the antigenic site recognized by the monoclonal antibody to the highly conserved gamma-carboxyglutamic acid-containing domain. The exact location of the antigenic determinant for antibody H-11 was established using synthetic peptides. Antibody H-11 bound specifically to synthetic peptides corresponding to residues 1-12 of Factor VII and 1-22 of protein C. Comparison of protein sequences of bovine and human vitamin K-dependent proteins suggests that the sequence Phe-Leu-Glu-Glu-Xaa-Arg/Lys is required for antibody binding. The glutamic acid residues in this peptide segment are the first 2 gamma-carboxyglutamic acid residues near the amino-terminal end in the native proteins. Increasing concentrations of Ca2+, Mg2+, or Mn2+ partially inhibited binding of 125I-protein C to the antibody in a solid-phase assay system with half-maximal binding observed at divalent metal ion concentrations of 2, 4, and 0.6 mM, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
1. A purification procedure for factor VII (proconvertin) from human plasma is described. The procedure involves barium sulphate adsorption and elution. DEAE-Sephadex column chromatography, barium sulphate adsorption and elution, heparin-Sepharose column chromatography, preparative disc gel electrophoresis and finally adsorption with antiserum to prothrombin coupled to Sepharose and antiserum to albumin coupled to Sepharose. This procedure gave an approximately 8 . 10(5)-fold purification. 2. The factor VII obtained from the electrophoresis step was mainly a single-chain protein with an apparent molecular weight of 53000 +/- 2000. 3. After the final purification step, additional forms of factor VII, resulting from a fragmentation of the factor VII molecule were detected. 4. Amino acid composition data of the purified factor VII are given. 5. Antisera were raised in two different rabbits by injection of the purified factor VII. The antisera obtained gave a good titre against the factor VII activity and were not directed against any of the three other vitamin-K-dependent coagulation factors.  相似文献   

18.
The effect of Factor VII antibody and an antibody to the apoprotein of tissue factor has been tested on the product formed between Factor VII, tissue factor and calcium ions. The antibody to the apoprotein of tissue factor neutralized tissue factor but had no effect on the extrinsic Factor X activator activity when Factor VII had been allowed to react with tissue factor before the addition of the antibody. The Factor VII antibody neutralized Factor VII and it also blocked the Factor X activator activity when Factor VII had been incubated with tissue factor and calcium ions prior to the addition of Factor VII antibody.Diisopropylfluorophosphate (DFP) was found to neutralize native purified Factor VII and Factor VII in human plasma. This inhibition of Factor VII was very slow and required high concentrations of DFP. However, when the Factor VII had been preincubated with tissue factor and calcium ions, the neutralization of Factor VII by DFP occurred rapidly, and at much lower concentration of DFP.  相似文献   

19.
Conclusive evidence is presented that a recently purified (Stenflo, J. (1976) J. Biol. Chem. 251, 355-363) vitamin K-dependent protein (arbitrarily referred to as Protein C) which is not related to prothrombin, Factors IX or X is also unrelated to Factor VII. It therefore appears to be a new, previously unrecognized vitamin K-dependent protein. In contrast to prothrombin, which binds to negatively charged phospholipid only in the presence of Ca2+ ions, Protein C, like the other vitamin K-dependent proteins, is a precursor of a serine esterase, presumably a protease, but it does not seem to be necessary for blood coagulation. Although the lipid-binding properties of Protein C may suggest that it is associated with membrane structures, its biological function remains unknown.  相似文献   

20.
Myxococcus xanthus protein C is a major spore surface protein.   总被引:4,自引:3,他引:1       下载免费PDF全文
Fruiting body formation in Myxococcus xanthus involves the aggregation of cells to form mounds and the differentiation of rod-shaped cells into spherical myxospores. The surface of the myxospore is composed of several sodium dodecyl sulfate (SDS)-soluble proteins, the best characterized of which is protein S (Mr, 19,000). We have identified a new major spore surface protein called protein C (Mr, 30,000). Protein C is not present in extracts of vegetative cells but appears in extracts of developing cells by 6 h. Protein C, like protein S, is produced during starvation in liquid medium but is not made during glycerol-induced sporulation. Its synthesis is blocked in certain developmental mutants but not others. When examined by SDS-polyacrylamide gel electrophoresis, two forms of protein C are observed. Protein C is quantitatively released from spores by treatment with 0.1 N NaOH or by boiling in 1% SDS. It is slowly washed from the spore surface in water but is stabilized by the presence of magnesium. Protein C binds to the surface of spores depleted of protein C and protein S. Protein C is a useful new marker for development in M. xanthus because it is developmentally regulated, spore associated, abundant, and easily purified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号