首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Renin release elicited by i.v. injection of loop-diuretics was used to study the effects of angiotensin II (AII) on intrarenal hemodynamics. The vasoconstrictive action of intrarenally synthesized AII predominates in the efferent glomerular arteriole. Such a vasoconstrictive effect could affect blood flow in the vasa recta which stem from efferent arterioles of juxtamedullary glomeruli. Renin secretion and renal inner medullary blood flow (tissue clearance of 133Xe) were simultaneously measured before and after frusemide-induced renin release. The relationship between renin secretion and renal inner medullary blood flow was inverse. Changes in renal medullary blood flow may be physiological determinants of medullary osmolality and renal concentration ability. The intrarenal role of AII in urinary concentration recovery after frusemide was examined. Inhibition of renin release by propranolol or AII-blockade (by saralasin or Hoe 409) delayed recovery of urinary osmolality. In the conscious rat, propranolol slowed down recovery of the cortico-papillary gradient for sodium. Its vasoconstrictive action on the efferent glomerular arteriole might enable the renin-angiotensin system to participate in the control of renal excretion of salt and water.  相似文献   

2.
The role of the renin--angiotensin system in the regulation of blood pressure in dogs and in human subjects was assessed by the use of the nonapeptide converting enzyme inhibitor (CEI), permitting the following conclusions: 1) In the normal, sodium replete dog, the renin--angiotensin system plays little role in the regulation of blood pressure. 2) As sodium depletion progresses, the renin--angiotensin system becomes increasingly important in the maintenance of blood pressure. In the markedly hypovolemic animal, blocking the conversion of angiotensin I to angiotensin II leads to prolonged hypotension of shock-like levels. 3) The renin--angiotensin system is responsible for the initiation of renovascular hypertension. Blood pressure does not rise during chronic renal artery constriction when the generation of angiotensin II is prevented by the CEI. Although angiotensin II is essential for the initiation of the elevated blood pressure, the renin--angiotensin system plays a decreasing role in the maintenance of the chronic hypertension as sodium and water are retained, and plasma volume increases. 4) In congestive failure induced in the conscious dog by circulatory impairment, the renin--angiotensin--aldosterone system plays an essential role in the compensatory response. During chronic administration of the CEI, the animal cannot compensate even for a relatively mild degree of constriction, and remains hypotensive. In the dog with congestive failure, as in the dog with renovascular hypertension, plasma renin activity (PRA) and plasma aldosterone are elevated early in the syndrome; during this phase, injection of the nonapeptide produces a marked drop in blood pressure. With the retention of sodium and water, and expansion of plasma and extravascular fluid volumes, PRA and plasma aldosterone return to control levels in the new steady state. The inhibitor no longer produces a drop in blood pressure. Thus, the sequential changes in the renin--angiotensin--aldosterone system are remarkably similar in renovascular hypertension and congestive failure. 5) In the normal, salt replete human subject the renin--angiotensin system plays little role in the regulation of blood pressure either in the recumbent or upright posture. However, with relatively mild sodium depletion, the CEI transiently lowers blood pressure even in the recumbent subject. In the absence of angiotensin II such sodium-depleted subjects are unable to compensate when tilted upright, and faint within minutes.  相似文献   

3.
The immediate short-term effect on plasma renin activity of intravenous injection of propranolol was studied in 31 normal subjects and 166 hypertensive patients. In patients with essential hypertension and normal subjects plasma renin activity fell considerably within 15 minutes; the fall was directly proportional to initial plasma renin levels. In contrast, in patients with renal hypertension the fall was much less pronounced or totally absent. These differences in response to propranolol provide, though presently only on a group basis, a biochemical means of differentiating between patients with renal hypertension and those with essential hypertension. The observations also indicate that, unlike normal subjects and patients with essential hypertension, in patients with renal hypertension sympathetic activity plays no part in the control of basal plasma renin levels.  相似文献   

4.
A review of some recent laboratory findings indicates definite disturbances in aldosterone metabolism and regulation in patients with mild essential hypertension: (a) a significant mean increase in plasma aldosterone concentration in patients with mild and stable essential hypertension, in contrast to the absence of any difference in patients with labile borderline essential hypertension when in a normotensive phase, compared with control subjects; and (b) a significant mean decrease in metabolic clearance rate of aldosterone, associated with a 12% decrease in hepatic blood flow and an increased binding of aldosterone to a transcortin-like plasma globulin. The secretion rate of 18-hydroxy-11-deoxycorticosterone is above the upper range of normal in 60% of patients with mild, uncomplicated essential hypertension. The incidence of low-renin hypertension, when age and race are taken into account, is much lower than previously assumed. Unless measurements are repeated over a long period, one or two low values of plasma renin cannot be considered a permanent marker indicating a special category of patients with essential hypertension. Tonin, a new enzyme discovered by Boucher, which forms angiotensin II directly from a plasma protein, from the tetradecapeptide substrate and from angiotensin I, is present in most tissues, but in highest concentration in the submaxillary gland. This enzyme is under the control of beta-adrenergic receptors.  相似文献   

5.
The crude rat and bovine synaptosomal lysate from brain can hydrolyze angiotensin I (AI) to des-Leu angiotensin I (AI-dL) and no further. This cytosolic enzyme has a specificity for angiotensin-related sequences, R-His-Pro-Phe-His-Leu and therefore named angiotensin-related carboxypeptidase (ARC). These studies led to the biosynthesis and purification of AI-dL in order to determine if it can provoke a drinking response. This nonapeptide is a potent dipsogen when injected into the cerebroventricles of rats. The drinking response probably requires a second hydrolysis to angiotensin II (AII) since both captopril and saralasin can inhibit this response.  相似文献   

6.
Effect of angiotensin II on RNA synthesis by isolated nuclei   总被引:5,自引:0,他引:5  
R Re  M Parab 《Life sciences》1984,34(7):647-651
Peptide hormones are known to bind to cell surface receptors as the first step in the generation of their effects on target tissues. However, it remains uncertain whether internalized hormone might also play a role in the production of longterm or trophic effects of peptide hormones. Because the peptide hormone angiotensin II appears to be internalized by target cells, we studied the effect of this peptide on isolated hepatic nuclei. At both 5 X 10(-7)M and 5 X 10(-9)M, angiotensin II significantly increased RNA synthesis. This effect was not mimicked by Sar1-Ala8-angiotensin II (saralasin) or the unrelated nonapeptide teprotide.  相似文献   

7.
Forty hypertensive patients were studied to examine the assumption that the angiotensin pressor dose reflects endogenous renin activity. Peripheral renin activity was assayed by the method of Boucher et al.4 Sensitivity to the infusion of synthetic angiotensin II was determined as suggested by Kaplan and Silah.1Sixteen patients with essential hypertension with normal renal angiography required 3.8 ng. angiotensin/kg./min. to raise the diastolic pressure 20 mm. Hg. All but one were sensitive to angiotensin infusion of less than 5 ng./kg./min. Renin activity was normal in all except in one sensitive subject. Angiotensin infusion response and mean renin activity in 13 patients with essential hypertension with abnormal renal angiography were similar to that of the first group. The pressor dose in 11 renovascular hypertensives was 9.8 ng./kg./min. All but three had elevated plasma renin activity.Our results suggest that: (1) the angiotensin infusion test is suitable for differentiating patients with true renovascular hypertension from those with essential hypertension with or without associated renal artery disease; (2) the angiotensin pressor dose correlates with the level of peripheral venous renin activity (p < 0.01).  相似文献   

8.
Hypertensive cardiac hypertrophy is associated with the accumulation of collagen in the myocardial interstitium. Previous studies have demonstrated that this myocardial fibrosis accounts for impaired myocardial stiffness and ventricular dysfunction. Although cardiac fibroblasts are responsible for the synthesis of fibrillar collagen, the factors that regulate collagen synthesis in cardiac fibroblasts are not fully understood. We investigated the effects of angiotensin II on cardiac collagen synthesis in cardiac fibroblasts. Cardiac fibroblasts of 10 week old spontaneously hypertensive rats and age-matched Wistar-Kyoto rats were prepared and maintained in culture medium supplemented with 10% fetal calf serum. The expression of mRNA of the renin-angiotensin system (renin, angiotensinogen, angiotensin converting enzyme) was determined by using a ribonuclease protection assay. Basal collagen synthesis in cardiac fibroblasts from spontaneously hypertensive rats was 1.6 fold greater than that in the cell of Wistar-Kyoto rats. Angiotensin II stimulated collagen synthesis in cardiac fibroblasts in a dose-dependent manner. The responsiveness of collagen production to angiotensin II was significantly enhanced in cardiac fibroblasts from spontaneously hypertensive rats (100 nM angiotensin II resulted in 185 ± 18% increase above basal levels, 185 ± 18 versus 128 ± 19% in Wistar-Kyoto rats p < 0.01). This effect was receptor-specific, because it was blocked by the competitive inhibitor saralasin and MK 954. These results indicate that collagen production was enhanced in cardiac fibroblasts from spontaneously hypertensive rats, that angiotensin II had a stimulatory effect on collagen synthesis in cardiac fibroblasts, and that cardiac fibroblasts from spontaneously hypertensive rats were hyper-responsive to stimulation by angiotensin II.Level of angiotensin and renin mRNA expressed in ventricles, and angiotensinogen mRNA expressed in fibroblasts from SHR were higher than those from WKY.These findings suggest that the cardiac renin-angiotensin system may play an important role in collagen accumulation in hypertensive cardiac hypertrophy.  相似文献   

9.
Summary Isolated glomeruli of the rainbow trout have been exposed in vitro to125I-angiotensin II (0.88 × 10–9 M) and binding sites located by light-microscopic autoradiography. These studies provide evidence of specific binding of angiotensin II by glomeruli. Binding was significantly inhibited by excess (10–5 M) unlabelled angiotensin II, but a high degree of non-specific binding also occurred. The mammalian competitive antagonist, saralasin (3 × 10–7 M) did not influence125I-angiotensin II binding to fish glomeruli. Intense binding of125I-angiotensin II was noted at the vascular pole of some glomeruli.  相似文献   

10.
To investigate whether dopamine plays a role in the regulation of aldosterone secretion during long-term blockade of the renin-angiotensin system, we studied the effect of metoclopramide, a competitive antagonist of dopamine, in 6 patients with essential hypertension chronically treated with the angiotensin converting enzyme inhibitor enalapril. All but one of these patients received a diuretic in addition to enalapril. Six hours after the daily morning dose of enalapril (10-40 mg p.o.) a 10 mg bolus dose of metoclopramide was injected intravenously. In one patient a hypotensive episode developed following metoclopramide administration. In the 5 other patients plasma aldosterone significantly rose within 30 min after metoclopramide from 51 +/- 8.7 to 128.2 +/- 29.2 pg/ml. This metoclopramide-induced release of aldosterone occurred in the absence of concomitant changes in circulating angiotensin 11, potassium and ACTH levels. Metoclopramide given during chronic blockade of the renin-angiotensin system caused anxiety and agitation in 2 patients. The increase in plasma aldosterone following competitive dopamine blockade in the face of chronic angiotensin converting enzyme inhibition, unchanged plasma potassium and ACTH levels strongly suggests that in hypertensive patients, dopamine exerts a direct inhibitory effect on aldosterone secretion.  相似文献   

11.
Obesity, especially visceral obesity, is strongly associated with arterial hypertension. Indeed, obesity hypertension has to be considered as the most common form of essential hypertension. However, the exact nature of the relationship between obesity and increased blood pressure remains poorly understood. Involvement of renin-independent mechanisms has been suggested in adrenal stimulation of aldosterone secretion in obese patients. This investigation examined the plasma levels of renin, aldosterone, insulin, and HDL and LDL in obese hypertensive and obese normotensive women. The group of hypertensive obese women showed significantly reduced plasma levels of renin and increased aldosterone/renin quotient (ARQ) compared to obese normotensive women. Plasma aldosterone levels were not significantly different between hypertensive and normotensive obese women. In addition, plasma levels of LDL-cholesterol in the hypertensive obese group were significantly increased in comparison to the obese normotensive group. No differences were observed in HDL-cholesterol or total cholesterol/HDL-C ratios between the two groups. We therefore examined the effect of LDL on angiotensin II-stimulated aldosterone release from human adrenocortical H295R cells. Treatment of adrenocortical cells with LDL led to a sensitization towards stimulation by angiotensin II, dramatically increasing angiotensin II-induced aldosterone production, so the increased aldosterone/renin ratio observed in the hypertensive group may be due to the enhanced LDL levels in these patients and/or other adipocyte-derived mineralocorticoid-stimulating factors.  相似文献   

12.
Angiotensins in plasma of hypertensive rats and human   总被引:5,自引:0,他引:5  
Sim MK  Qui XS 《Regulatory peptides》2003,111(1-3):179-182
The plasma levels of des-aspartate-angiotensin I (DAA-I) in three models of hypertensive rats and hypertensive subjects were determined and compared with their normotensive controls. The rationale for the study was based on our earlier findings showing that DAA-I is a physiological angiotensin peptide that is involved in the pathophysiology of the cardiovascular system. The determination was carried out by the technique of capillary electrophoresis. Plasma level of angiotensin I, angiotensin II, and angiotensin III was also determined as a measurement of the status of the renin-angiotensin system in the different models of hypertension. DAA-I was found to be significantly lower in the spontaneously hypertensive rats (SHR) (46.6 +/- 2.5 pmol/l compared to 66.1 +/- 3.4 pmol/l for the normotensive control Wistar Kyoto rats), renal hypertensive rats (54.2 +/- 5.1 pmol/l compared to 72 +/- 2.5 pmol/l for the normotensive control Sprague-Dawley rats), and essential human hypertensive subjects (15.2 +/- 0.9 pmol/l compared to 19.5 +/- 2.5 pmol/l for the normotensive adult), whilst plasma concentration of angiotensin I and angiotensin II is reflective of the state of the renin-angiotensin system in the particular model of hypertension. When the SHR and human hypertensive subjects were treated with an angiotensin converting enzyme (ACE) inhibitor, the plasma level of DAA-I increased significantly. These findings suggest that the low plasma level of DAA-I could be a characteristic defect of the renin-angiotensin system in the two genetic models of hypertension (SHR and human essential hypertensive subjects). The increase of the nonapeptide following ACE inhibitor treatment could be an important hitherto unrecorded contributory factor to the effectiveness of ACE inhibitors in combating heart pathology.  相似文献   

13.
Methods for the measurement of renin and renin substrate by radioimmunoassay have been described. One method of measuring renin is based on the zero-order reaction velocity of angiotensin I formation when serum is incubated with an excess of hog substrate. This method was compared with a bioassay which has been described previously (A. B. Gould, L. T. Skeggs, and J. R. Kahn, 1966, Lab. Invest.15, 1802–1813) and with another radioimmunoassay which determines renin concentration from the rate of angiotensin I formation with endogenous substrate by using the integrated form of the Michaelis-Menten equation and the kinetic constants. Similar results were obtained by these three methods when 30 samples of serum from 15 normotensive people were assayed. No evidence was found to suggest any interference by activators or inhibitors in human serum. The mean recovery of human renin added to serum in 27 experiments was 93.5 ± 10.7% (SD). In addition, the kinetic analysis of human serum showed no difference in the rate of angiotensin formation, at comparable substrate levels, in sera from normotensive people (including women taking oral contraceptives) and patients with essential hypertension.  相似文献   

14.
Angiotensin II has been identified immunohistochemically in the ovaries of both rats and humans. Here we present evidence that angiotensin II (an extremely vasoactive agent in a wide range of tissues) may be involved in the regulation of the major steroidogenic enzyme in the ovary, cholesterol side chain cleavage cytochrome P-450 (P-450scc), as well as of basic fibroblast growth factor (bFGF), which has been implicated as an angiogenic factor in the bovine corpus luteum. We have used primary cultures of bovine luteal cells to examine the effect of angiotensin II and its receptor antagonist, saralasin, on expression of mRNA encoding bFGF as well as on progesterone production and the expression of mRNA encoding cholesterol side chain cleavage cytochrome P-450 (P-450scc). Neither angiotensin II nor saralasin when added alone to the culture medium had any effect on basal progesterone production. Luteinizing hormone (LH) caused a 15-fold increase in progesterone accumulation after 24 h of exposure which was reduced to 5-fold in the presence of angiotensin II. This appeared to be receptor-mediated in that although saralasin alone had no effect on LH-stimulated progesterone accumulation, it significantly reversed the inhibition by angiotensin II. This pattern was mirrored by the levels of mRNA encoding P-450scc, i.c., LH induced the highest levels of expression of this message, these levels were reduced by angiotensin II, and saralasin partially overcame this reduction. Levels of mRNA encoding bFGF were elevated by both LH and angiotensin II. Treatment with saralasin, however, resulted in complete inhibition of bFGF mRNA expression in the presence of both LH and angiotensin II. These results suggest a role for angiotensin II to mediate the action of LH as a regulator of bFGF expression and hence, potentially, angiogenesis. Local production of angiotensin II might also contribute to the refractoriness of luteal progesterone secretion to LH at the time of luteal regression.  相似文献   

15.
In renal artery stenosis severe enough to cause hypertension, angiotensin II maintains glomerular filtration rate (GFR) both in the initial high renin phase of hypertension and later when plasma levels are normal. Angiotensin II also maintains GFR in less severe stenosis, which does not cause hypertension. This homeostatic action of angiotensin II to maintain GFr has minimal effects on blood flow. In renal-wrap hypertension, plasma renin levels are elevated for longer than after renal artery stenosis, but in other respects this initial phase of the hypertension is similar to that after renal artery stenosis. GFR is reduced, the rate of development of hypertension is accelerated by angiotensin II, and angiotensin II maintains the glomerular filtration fraction. Renal resistance is markedly increased owing to both compression of the kidney by the hypertrophying renal capsule and to angiotensin II. Thus angiotensin II apparently plays a primarily homeostatic role in renovascular hypertension to maintain glomerular ultrafiltration. It is suggested that the angiotensin II may be formed intrarenally and may act on sites other than resistance blood vessels.  相似文献   

16.
Circulating levels of renin, angiotensin I, and angiotensin II were increased in six patients with chronic renal failure and hypertension uncontrolled by dialysis and hypotensive drugs. Lower and often normal levels were found in 10 patients whose blood pressure was controlled by dialysis treatment. For a variety of reasons all patients were subjected to bilateral nephrectomy. The logarithm of the decrease in plasma concentrations of renin and angiotensin II was significantly related to the fall of blood pressure after operation. Plasma renin concentration correlated significantly with blood angiotensin I concentration and with plasma angiotensin II in samples taken before and after nephrectomy. Renin, angiotensin I, and angiotensin II were measurable in samples of blood taken 48 hours or more after the operation.  相似文献   

17.
The limited antifibrotic effect of therapeutic angiotensin blockade, the fact that angiotensin blockade dramatically elevates renin levels, and recent evidence that renin has an angiotensin-independent, receptor-mediated profibrotic action led us to hypothesize that combining renin receptor inhibition and ANG II blockade would increase the antifibrotic effect of angiotensin blockade alone. Using cultured nephritic glomeruli from rats with anti-Thy-1-induced glomerulonephritis, the maximally effective dose of enalaprilate was determined to be 10(-4) M, which reduced mRNAs for transforming growth factor (TGF)-β1, fibronectin (FN), and plasminogen activator inhibitor-1 (PAI-1) by 49, 65, and 56% and production of TGF-β1 and FN proteins by 60 and 49%, respectively. Disease alone caused 6.8-fold increases in ANG II levels that were reduced 64% with enalaprilate. In contrast, two- and threefold disease-induced increases in renin mRNA and activity were further increased 2- and 3.7-fold with 10(-4) M enalaprilate treatment. Depressing the renin receptor by 80% with small interfering (si) RNA alone reduced fibrotic markers in a manner remarkably similar to enalaprilate alone but had no effect on glomerular renin expression. Enalaprilate and siRNA combination therapy further reduced disease markers. Notably, elevated TGF-β1 and FN production was reduced by 73 and 81%, respectively. These results support the notion of a receptor-mediated profibrotic action of renin, suggest that the limited effectiveness of ANG II blockade may be due, at least in part, to the elevated renin they induce, and support our hypothesis that adding renin receptor inhibitor to ANG II blockade in patients may have therapeutic potential.  相似文献   

18.
Components of the renin-angiotensin system were studied in established cell culture lines of 3T3 and SV3T3 mouse fibroblasts. The renin content in 3T3 cells was significantly higher than in virus-transformed SV3T3 cells. With time after infection, renin decreased in Simian virus 40 transformed cells, while it increased steadily in mock-infected 3T3 cells. In contrast to renin, angiotensinase activity was higher in SV3T3 cells. Angiotensin II stimulated cell proliferation in 3T3 mouse fibroblasts and decreased their renin content in a dose-related manner. In contrast, saralasin, an angiotensin receptor antagonist, inhibited cell growth in 3T3 and SV3T3 cells and caused an increase of cellular renin concentration. The angiotensin fragments angiotensin (2-8) heptapeptide and angiotensin (4-8) pentapeptide had no effect on cell growth. A significant negative correlation was found between cell proliferation and renin levels in 3T3 and SV3T3 cells irrespective of the treatment. Our results indicate (1) that angiotensin II may be involved in cell growth regulation, (2) that a negative feedback exist between angiotensin II added and intracellular renin content, and (3) that virus infection causes a decrease in intracellular renin synthesis, while non-specific angiotensinase activity is increased under this condition.  相似文献   

19.
To examine the involvement of renin-angiotensin-aldosterone system in the etiology of oral contraceptive induced hypertension, normal women (Group I), normotensive (Group II) and hypertensive (Group III) women taking Ovulen (R) were infused with a competitive angiotensin II (AII) antagonist, [1-sarcosine, 8-isoleucine] angiotensin II. The angiotensin II antagonist was infused at a rate of 600 ng/kg/min for 30 min 1.5 hrs after intravenous injection of 40 mg of furosemide. Blood pressure was monitored and pre-infusion and post-infusion plasma renin activity (PRA) and plasma aldosterone concentration (PAC) were determined. Pre-infusion PRA and PAC showed no significant differences among these three groups. In response to the AII antagonist infusion blood pressure rose in Groups I and II, but blood pressure responses in Group III were variable. Four out of the total 6 subjects had pressor responses and only one subject had a significant blood pressure reduction. In both Groups I and II, PRA decreased and PAC rose after infusion of the antagonist. In Group III, PRA decreased to a lesser degree and PAC showed no consistent change. These data suggest that the renin-angiotensin-aldosterone system in hypertensive women or oral contraceptives is different from that of the normotensive users. However, the pathophysiology of oral contraceptive induced hypertension is not homogenous and angiotensinogenic hypertension is uncommon.  相似文献   

20.
The effect of angiotensin I on renal perfusion pressure, and on basal and isoprenaline stimulated renin secretion, was examined in the isolated perfused rat kidney. The increase in prefusion pressure associated with intrarenal infusion of angiotensin I suggested conversion of the peptide to angiotensin II within the kidney. Basal renin secretion and the stimulatory response to isoprenaline were significantly suppressed by angiotensin I. The converting enzyme inhibitor SQ 20,881, infused at 1,600 X dose of angiotensin I, partially reversed the vasoconstrictor effect of angiotensin I without altering the degree of suppression of renin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号