首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Determination of the decay rate of nitrifying bacteria   总被引:9,自引:0,他引:9  
The growth and decay of nitrifying organisms determines the amount of nitrifying bacteria in activated sludge systems. The growth rate of the nitrifying organisms is reasonable, well defined, and studied, while the decay rate is still rather uncertain. Experiments in previous studies were over periods up to 14 days and obtained results were not confirmed. Contradicting decay rates of nitrifiers in different bacterial communities is reported. No differentiation between ammonia and nitrite oxidizers was made. Therefore, in this studyper day the decay rate of the nitrifying organisms was studied. The starvation condition (aerobic, anoxic, or anaerobic), temperature, type of bacterial community, and the presence of higher organisms are the main aspects that were investigated. A simple and reliable method (adapted from previous studies) for determining the decay rate of nitrifying organisms under different starvation conditions and different temperatures was developed. The test procedure has been used for determining the decay rate of ammonium and nitrite oxidizing bacteria in an enriched nitrifying culture and in activated sludge. The test was successfully applied at starvation periods up to 30 days. The decay rate of the enriched culture of nitrifiers was very low compared to values for nitrifiers in activated sludge. The decay rate of the nitrifiers in activated sludge was found to be to 0.2, 0.1, and 0.06 per day for aerobic, anoxic, and anaerobic conditions, respectively. The decay rate of ammonia oxidizers and nitrite oxidizers was the same at the corresponding conditions.  相似文献   

2.
We developed a novel single-stage autotrophic nitrogen-removal process comprised of two composite immobilized biomass layers—one of nitrifying bacteria and one of sulfur-denitrifying bacteria and elemental sulfur—in a Fe-Ni fibrous slag matrix. Nitrification and consumption of dissolved oxygen occurred in the outer part and sulfur denitrification in the anoxic inner part of the composite matrix, thus realizing autotrophic nitrogen removal in a single reactor. The complete conversion of ammonia into N2 in a single reactor was demonstrated in both batch-mode incubation and continuous-feed operation. The spatial profiles of the ammonia-oxidizing bacteria and denitrifying bacteria were evaluated by real-time PCR, targeting their functional genes, and stratification of these two types was observed in the matrix after several months of incubation. This process does not require any specific reactor type or conditions and thus has the potential to be applied to many different wastewater treatment processes due to its simplicity in both operation and construction.  相似文献   

3.
Nitrification during biological filtration is being used more and more in drinking water production to remove ammonia, which can be the source of several water quality problems during distribution. In this process, ammonia is converted into nitrite and then into nitrate by fixed autotrophic nitrifying bacteria. The purpose of this work was to develop a technique to estimate fixed nitrifying biomass (sum of ammonia- and nitrite-oxidizing populations). The quantification of autotrophic nitrifying biomass was determined by potential nitrifying activity measurement. The production of oxidized forms of inorganic nitrogen (nitrates and nitrites) was measured after an incubation of 2 cm3 of colonized solid support in the presence of a 5-ml nitrifier medium containing 10 mg N-NH4 L−1 for 30 min at 32°C. The production rate of oxidized nitrogen in optimal conditions was measured and converted into nitrifying biomass by using the maximum specific oxidizing activity. This technique was shown to be appropriate for conditions encountered in the biological filters used in drinking water production and sufficiently simple to be used for routine measurements. Journal of Industrial Microbiology & Biotechnology (2000) 24, 161–166. Received 28 July 1999/ Accepted in revised form 11 November 1999  相似文献   

4.
The effects of the addition of powered particles of kaolin to nitrifying activated sludge systems were studied. Kaolin was added to a nitrifying activated sludge reactor, during the operational phase, to observe the effects of this clay on reactor performance. The results were compared to those obtained from a similar unit operated without kaolin. The settling properties of the sludges from both units were similar (sludge volume index (SVI) of 14.5 ml/g VSS; zone settling velocity (ZSV) of 7.5 m/h), but the specific nitrifying activities of ammonia and nitrite oxidizing processes were enhanced up to 75% and 50%, respectively, when kaolin was added. The mechanism of action of kaolin was not clear. Additional ammonia, nitrite and nitrate adsorption tests showed that these compounds were not adsorbed by kaolin. This demonstrated that no beneficial effect was caused by adsorption of either substrates or products. Short-term activity tests also showed that the stimulating effects of kaolin on specific activity were not immediate. The effects of kaolin when nitrifying units were operated under unfavorable conditions were also evaluated: In a second set of experiments, a nitrifying unit was operated with low levels of dissolved oxygen (DO), with and without kaolin. The presence of kaolin exerted practically no effect on ammonia oxidation but nitrite oxidation slightly diminished. In a third set of experiments, a nitrifying unit was subjected to pH shocks (9, 10 and 11) over 3 h with pH then restored to 7.8. A pH shock of 11 caused a decrease of 60% in nitrifying activity for 12 days. When kaolin was added to this unit the efficiency of the system was completely restored in 4 days. Therefore, kaolin might be useful to restore damaged units.  相似文献   

5.
Kinetic investigations on growth parameters of nitrifying and COD oxidizing bacteria were carried out with recourse to a three stage reciprocating jet bioreactor system using real life wastewater. The system employed in this investigation essentially consisted of separate aerobic oxidation stage along with nitrification stage and anaerobic denitrification stage with facility for biomass recirculation whenever necessary. Steady-state COD oxidation reactor performance was assessed for various values of residence time. Yield coefficient and decay coefficient of COD oxidizing biomass were obtained as 0.3329 kg BM/kg COD and 0.0032 (1/h) respectively.It was observed that COD oxidizing bacteria co-existed with nitrifying bacteria during nitrification process due to the nature of wastewater used. Steady-state nitrification reactor performance was also assessed for various residence time values. Exact concentration of nitrifying and COD oxidizing biomass in the nitrification reactor was then estimated with the help of kinetic growth parameters of COD oxidizing biomass and extent of COD oxidation achieved in nitrification reactor. This further enabled evaluation of corrected kinetic growth parameters estimated as 0.4272 kg BM/kg NH 4 + -N and 0.00626 (1/h) for nitrifier biomass yield coefficient and decay coefficient respectively.  相似文献   

6.
In this research study a nitrifying/autotrophic denitrifying system was used for the post-treatment of an effluent coming from an anaerobic digester treating the wastewater produced in a fish canning industry. The nitrifying reactor achieved 100% of ammonia oxidation into nitrate. The effluent from this unit was fed to the autotrophic denitrifying reactor which treated a maximum sulphide loading rate (SLR) of 200 mg S2?/L d with removal percentages of 100% and 30% for sulphide and nitrate, respectively. The low nitrate removal efficiency is attributed to sulphide limitations.The operational costs of this system were estimated as 0.92 €/kg Nremoved, lower than those for conventional nitrification/denitrification processes. For nitrogen removal the SHARON/anammox processes is the cheapest option. However the combination of nitrification and autotrophic denitrification (using elemental sulphur) processes would present a better operational stability compared to the SHARON/anammox system.  相似文献   

7.
This paper describes both qualitative and quantitative aspects of simultaneous autotrophic nitrification and heterotrophic denitrification by, respectively, the nitrifierNitrisomonas europaea and either of the denitrifiersPseudomonas denitrificans orParacoccus denitrificans co-immobilized in double-layer gel beads. The system is based on the establishment of well-defined oxic and anoxic zones within the cell supports and on physical separation of the nitrifying and denitrifying populations. Nitrification and denitrification rates were obtained from measured bulk concentrations and head-space analysis. The latter analyses showed that ammonia was primarily converted into molecular nitrogen. Nitrous oxide was not detected. High nitrogen removal rates (up to 5.1 mmol N m–3 gel s–1) were achieved in continuous reactors under aerobic conditions. The overall rate of nitrogen removal was controlled by the nitrifying step. The approach followed is, in principle, also suitable to the coupling of other oxidative and reductive bioprocesses having complementary metabolic routes. Two-stage bioconversion processes can be thus conducted as if single-staged, which results in more compact reactor systems.  相似文献   

8.
水体氮素污染日益严重,如何经济、高效地去除水体氮素已成为研究热点。近年来,研究人员已从不同环境中分离到许多同时具有异养硝化和好氧反硝化功能的菌株,此类菌生长迅速,可在好氧条件下同时实现硝化和反硝化的过程,并可用于脱除有机污染物,是一类应用潜力巨大的脱氮菌。目前,异养硝化-好氧反硝化菌的脱氮途径和机制主要是通过测定氮循环中间产物或终产物、测定相关酶活性、注释部分氮循环相关基因及参考自养硝化菌和缺氧反硝化菌的氮循环途径等进行研究,其完整的氮素转化途径和氮代谢机制还需要进一步明确。总结了目前异养硝化-好养反硝化菌的脱氮相关酶系及其编码基因的研究进展,以期为异养硝化-好氧反硝化菌的理论研究及其在污水脱氮处理上的应用提供参考。  相似文献   

9.
羧酶体(Carboxysome)是一种具有CO2浓缩功能的"类细胞器",它存在于自养型脱氮细菌中,可增强细菌的自养生长能力。硝化细菌、厌氧氨氧化细菌和部分反硝化细菌都是重要的自养型脱氮细菌,探明其羧酶体的组成、结构和功能,将有助于揭示自养型脱氮菌的生长规律,进而强化生物脱氮过程。基于文献阅读和相关研究,本文对自养型细菌中羧酶体在组成、结构、功能和检测等方面的研究进展进行综述,以期为自养生物脱氮过程的深入理解和优化改进提供参考。  相似文献   

10.
The separation and accurate quantification of active biomass components in activated sludge is of paramount importance in models, used for the management and design of waste water (WW) treatment plants. Accurate estimates of microbial population concentrations and the direct, in situ determination of kinetic parameters could improve the calibration and validation of existing models of biological nutrient removal activated sludge systems. The aim of this study was to obtain correlations between heterotrophic active biomass (Z(BH)) concentrations predicted by mathematical models and quantitative information obtained by Fluorescent in situ hybridizations (FISH). Respirometric batch test were applied to mixed liquors drawn from a well-defined parent anoxic/aerobic activated sludge system to quantify the Z(BH) concentrations. Similarly fluorescent labeled, 16S rRNA-targeted oligonucleotide probes specific for ammonia and nitrite oxidizers were used in combination with DAPI staining to validate the Z(BH) active biomass component in activate sludge respirometric batch tests. For the direct enumeration and simultaneous in situ analysis of the distribution of nitrifying bacteria, in situ hybridization with oligonucleotide probes were used. Probes (NSO 1225, NSR 1156, and NIT3) were used to target the nitrifiers and the universal probe (EUB MIX) was used to target all Eubacteria. Deducting the lithoautotrophic population from the total bacteria population revealed the Z(BH) population. A conversion factor of 8.49 x 10(-11) mg VSS/cell was applied to express the Z(BH) in terms of COD concentration. Z(BH) values obtained by molecular probing correlated closely with values obtained from the modified batch test. However, the trend of consistently poor correspondence of measured and theoretical concentrations were evident. Therefore, the focus of this study was to investigate alternative technology, such as FISH to validate or replace kinetic parameters which are invariably incorporated into models.  相似文献   

11.
Lab-scale ideal mixed, aerated reactors were employed to test the influence of carbon dioxide (CO(2)) on the growth rate of a nitrifier community. The buffer medium used did not contain any carbon sources. Reactors were inoculated alternatively with sludge from a nitrifying membrane assisted bioreactor, reflecting autotrophic material, or with sludge from a plant having denitrification and nitrification steps, which reflects mixed heterotrophic and autotrophic material. CO(2) was added as a gas with the intake air supply. Nitrification rates were related to the CO(2) in the intake air as well as to the total inorganic carbon in the medium. The batch experiments show a relationship between CO(2) concentration and growth rate. The optimum growth rate occurred at 5 mg CO(2)/L, corresponding to 0.4% (V/V) CO(2) in the inlet air. Different CO(2) optima for autotrophic and mixed sludges were found. In the case of the autotrophic sludge, the observed optimum growth rate was about 0.47/d and the optimum for the mixed sludge was about 0.75/d. Higher CO(2) concentrations lead to a decreasing growth rate. The first part of the kinetic graph can be described by Monod kinetics. Overall, the resulting graph can be described by Haldane kinetics.  相似文献   

12.
A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO(3)(-)-N mg of mixed-liquor volatile suspended solids (MLVSS)(-1) h(-1) to a steady-state value of 0.06 mg of NO(3)(-)-N mg of MLVSS(-1) h(-1) over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [(13)C]methanol to biomark the DNA of the denitrifiers. The extracted [(13)C]DNA and [(12)C]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [(13)C]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [(12)C]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [(14)C]methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.  相似文献   

13.
The recently developed denitrifying ammonium oxidation (DEAMOX) process combines the anammox reaction with autotrophic denitrifying conditions using sulfide as an electron donor for the production of nitrite from nitrate within an anaerobic biofilm. This paper compares a quasisteady-state performance of this process for treatment of baker's yeast wastewater under intermittent and continuous feeding and increasing nitrogen loading rate (NLR) from 300 till 858 mg N/L/d. The average total nitrogen removal slightly decreased on increasing the NLR: from 86 to 79% (intermittent feeding) and from 87 to 84% (continuous feeding). The better performance under continuous feeding was due to a more complete nitrate removal in the former case whereas the ammonia removal was similar for both feeding regimes under the comparable NLR. A possible explanation can be that, during continuous feeding (simultaneous supply of nitrate and sulfide), there were less mass transfer limitations for sulfide oxidizing denitrifiers presumably located in the outer layer of sludge aggregates. On the contrary, the ammonia oxidisers presumably located inside the aggregates apparently suffered from nitrite mass transfer limitations under both the feedings. The paper further describes some characteristics of the DEAMOX sludge.  相似文献   

14.
A denitrifying microbial consortium was enriched in an anoxically operated, methanol-fed sequencing batch reactor (SBR) fed with a mineral salts medium containing methanol as the sole carbon source and nitrate as the electron acceptor. The SBR was inoculated with sludge from a biological nutrient removal activated sludge plant exhibiting good denitrification. The SBR denitrification rate improved from less than 0.02 mg of NO3-N mg of mixed-liquor volatile suspended solids (MLVSS)−1 h−1 to a steady-state value of 0.06 mg of NO3-N mg of MLVSS−1 h−1 over a 7-month operational period. At this time, the enriched microbial community was subjected to stable-isotope probing (SIP) with [13C]methanol to biomark the DNA of the denitrifiers. The extracted [13C]DNA and [12C]DNA from the SIP experiment were separately subjected to full-cycle rRNA analysis. The dominant 16S rRNA gene phylotype (group A clones) in the [13C]DNA clone library was closely related to those of the obligate methylotrophs Methylobacillus and Methylophilus in the order Methylophilales of the Betaproteobacteria (96 to 97% sequence identities), while the most abundant clone groups in the [12C]DNA clone library mostly belonged to the family Saprospiraceae in the Bacteroidetes phylum. Oligonucleotide probes for use in fluorescence in situ hybridization (FISH) were designed to specifically target the group A clones and Methylophilales (probes DEN67 and MET1216, respectively) and the Saprospiraceae clones (probe SAP553). Application of these probes to the SBR biomass over the enrichment period demonstrated a strong correlation between the level of SBR denitrification and relative abundance of DEN67-targeted bacteria in the SBR community. By contrast, there was no correlation between the denitrification rate and the relative abundances of the well-known denitrifying genera Hyphomicrobium and Paracoccus or the Saprospiraceae clones visualized by FISH in the SBR biomass. FISH combined with microautoradiography independently confirmed that the DEN67-targeted cells were the dominant bacterial group capable of anoxic [14C]methanol uptake in the enriched biomass. The well-known denitrification lag period in the methanol-fed SBR was shown to coincide with a lag phase in growth of the DEN67-targeted denitrifying population. We conclude that Methylophilales bacteria are the dominant denitrifiers in our SBR system and likely are important denitrifiers in full-scale methanol-fed denitrifying sludges.  相似文献   

15.
Polyhydroxyalkanoates (PHA) are good candidates to plastics because of their material properties similar to conventional plastics and complete biodegradability. The use of activated sludge can be a cheaper alternative to pure cultures for PHA production. In this study, effect of nitrogen limitation during acclimatization period of biomass on production of polyhydroxyalkanoate was investigated. Activated sludge was selected in two sequencing batch reactors operated with and without nitrogen limitation. Batch tests were performed to examine polymer productions of activated sludges acclimatized to different nitrogen regimes. Responses of biomass to different organic loading rates, organic acids, and carbon to nitrogen (C/N) ratios were studied by determining specific polymer storage rate, polymer storage yield, and sludge polymer content of biomasses. Results obtained from batch experiments showed that concentrations of polymer accumulated by two different sludges increased directly with initial substrate concentration. Observed highest polymer yields for the biomasses enriched with and without nitrogen deficiency were 0.69 g COD PHA g(-1) COD S and 0.51 g COD PHA g(-1) COD S, and corresponding polymer contents of biomasses were 43.3% (g COD PHA g(-1) COD X) and 38.3% (g COD PHA g(-1) COD X), respectively. Polymer yields for both biomasses decreased with substrate shift however, biomass enriched with nitrogen deficiency adapted well to acetate-propionate mixture. The results presented in this study showed that polymer storage ability of biomass was improved more under dynamic conditions with nitrogen deficiency when compared to that without nitrogen deficiency. Limiting ammonia availability during batch experiments also caused higher polymer production by suppressing growth, as well as during enrichment of biomass.  相似文献   

16.
The starvation process of a high-rate partial nitrification system during 30 days and its controlled recovery were studied in an activated sludge pilot plant. Four ammonium-starved reactors under anoxic, aerobic and two different alternating aerobic/anoxic conditions were evaluated. The highest and the lowest decay rates of ammonia oxidizing bacteria (AOB) were obtained under full aerobic (0.24 d−1) and full anoxic (0.11 d−1) conditions, respectively. The evolution of biomass activity correlated well with the AOB quantification using FISH technique. AOB fractions lower than 1% were measured in the four reactors after 23 days of starvation. The recovery of the system was achieved in only 5 days using a nitrogen loading rate (NLR) control loop, obtaining the same conditions than before the long-term starvation period with a NLR of 1.2 g N L−1 d−1 and 98% of nitrite accumulation in the effluent.  相似文献   

17.
The autotrophic process for nitrogen removal has attracted worldwide attention in the field of wastewater treatment, and the performance of this process is greatly influenced by the size of granular sludge particles present in the system. In this work, the granular sludge was divided into three groups, i.e. large size (>?1.2 mm), medium size (0.6–1.2 mm) and small size (<?0.6 mm). The medium granular sludge was observed to dominate at high volumetric nitrogen loading rates, while offering strong support for good performance. Its indispensable contribution was found to originate from improved settling velocity (0.84?±?0.10 cm/s), high SOUR-A (specific oxygen uptake rate for ammonia oxidizing bacteria, 25.93 mg O2/g MLVSS/h), low SOUR-N (specific oxygen uptake rate for nitrite oxidizing bacteria, 3.39 mg O2/g MLVSS/h), and a reasonable microbial spatial distribution.  相似文献   

18.
In this work, the heterotrophic growth on the microbial products of autotrophs and the effecting factors were evaluated with both experimental and modeling approaches. Fluorescence in situ hybridization (FISH) analysis illustrated that ammonia oxidizers (AOB), nitrite oxidizers (NOB), and heterotrophs accounted for about 65%, 20%, and 15% of the total bacteria, respectively. The mathematical evaluation of experimental data reported in literature indicated that heterotrophic growth in nitrifying biofilm (30–50%) and granules (30%) was significantly higher than that of nitrifying sludge (15%). It was found that low influent ammonium resulted in a lower availability of soluble microbial products (SMP) and a slower heterotrophic growth, but high ammonium (>150 mg N L−1) feeding would lead to purely AOB dominated sludge with high biomass‐associated products contained effluent, although the absolute heterotrophic growth increased. Meanwhile, the total active biomass concentration increased gradually with the increasing solids retention time, whereas the factions of active AOB, NOB, and heterotrophs varied a lot at different solids retention times. This work could be useful for better understanding of the autotrophic wastewater treatment systems. Biotechnol. Bioeng. 2011; 108:804–812. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
The anammox bacteria were enriched from reject water of anaerobic digestion of municipal wastewater sludge onto moving bed biofilm reactor (MBBR) system carriers-the ones initially containing no biomass (MBBR1) as well as the ones containing nitrifying biomass (MBBR2). Duration of start-up periods of the both reactors was similar (about 100?days), but stable total nitrogen (TN) removal efficiency occurred earlier in the system containing nitrifying biomass. Anammox TN removal efficiency of 70% was achieved by 180?days in both 20?l volume reactors at moderate temperature of 26.0°C. During the steady state phase of operation of MBBRs the average TN removal efficiencies and maximum TN removal rates in MBBR1 were 80% (1,000?g-N/m(3)/day, achieved by 308?days) and in MBBR2 85% (1,100?g-N/m(3)/day, achieved by 266?days). In both reactors mixed bacterial cultures were detected. Uncultured Planctomycetales bacterium clone P4, Candidatus Nitrospira defluvii and uncultured Nitrospira sp. clone 53 were identified by PCR-DGGE from the system initially containing blank biofilm carriers as well as from the nitrifying biofilm system; from the latter in addition to these also uncultured ammonium oxidizing bacterium clone W1 and Nitrospira sp. clone S1-62 were detected. FISH analysis revealed that anammox microorganisms were located in clusters in the biofilm. Using previously grown nitrifying biofilm matrix for anammox enrichment has some benefits over starting up the process from zero, such as less time for enrichment and protection against severe inhibitions in case of high substrate loading rates.  相似文献   

20.

The moving bed biofilm reactor (MBBR), operated as a post carbon removal system, requires long start-up times in comparison to carbon removal systems due to slow growing autotrophic organisms. This study investigates the use of carriers seeded in a carbon rich treatment system prior to inoculation in a nitrifying MBBR system to promote the rapid development of nitrifying biofilm in an MBBR system at temperatures between 6 and 8 °C. Results show that nitrification was initiated by the carbon removal carriers after 22 h of operation. High throughput 16S-rDNA sequencing indicates that the sloughing period was a result of heterotrophic organism detachment and the recovery and stabilization period included a growth of Nitrosomonas and Nitrospira as the dominant ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) in the biofilm. Peripheral microorganisms such as Myxococcales, a rapid EPS producer, appear to have contributed to the recovery and stabilization of the biofilm.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号