首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gerhard Zotz   《Acta Oecologica》2005,28(3):306-312
Since the response to differences in resource availability is most pronounced in smaller individuals of vascular epiphytes such as Werauhia sanguinolenta Cogn. et Marchal (Bromeliaceae), I expected variation in growth and survival of small individuals to play an important role in the dynamics of entire populations. Four annual censuses (2002–2005) of three study populations, which were located across the isthmus of Panama, allowed me to construct stage transition matrices, and to conduct growth analysis and elasticity analysis. Differences between populations were highly consistent through time, but, contrary to expectations, hardly related to the comportment of smaller plants. For example, although average mortality rates were highest at the driest site, close to the Pacific, small plants were not predominantly affected. Similarly, although the highest relative growth rates (RGR) of individuals and the highest population growth rates (λ) were found in the population with the highest moisture input, which was located close to the Atlantic coast, this was not due to a particularly strong stimulation of RGR in small plants. Elasticity analysis indicated rather small differences in the importance of the three demographic processes growth, survival, and reproduction for population growth in the three populations, but invariably identified the survival of large tanks as the single most important process determining λ.  相似文献   

2.
Satu Ramula 《Oecologia》2014,174(4):1255-1264
Invaders generally show better individual performance than non-invaders and, therefore, vital rates (survival, growth, fecundity) could potentially be used to predict species invasiveness outside their native range. Comparative studies have usually correlated vital rates with the invasiveness status of species, while few studies have investigated them in relation to population growth rate. Here, I examined the influence of five vital rates (plant establishment, survival, growth, flowering probability, seed production) and their variability (across geographic regions, habitat types, population sizes and population densities) on population growth rate (λ) using data from 37 populations of an invasive, iteroparous herb (Lupinus polyphyllus) in a part of its invaded range in Finland. Variation in vital rates was often related to habitat type and population density. The performance of the populations varied from declining to rapidly increasing independently of habitat type, population size or population density, but differed between regions. The population growth rate increased linearly with plant establishment, and with the survival and growth of vegetative individuals, while the survival of flowering individuals and annual seed production were not related to λ. The vital rates responsible for rapid population growth varied among populations. These findings highlight the importance of both regional and local conditions to plant population dynamics, demonstrating that individual vital rates do not necessarily correlate with λ. Therefore, to understand the role of individual vital rates in a species ability to invade, it is necessary to quantify their effect on population growth rate.  相似文献   

3.
In mountainous areas, native and non-native plants will be exposed to climate change and increased disturbance in the future. Non-native plants may be more successful than natives in disturbed areas and thus be able to respond quicker to shifting climatic zones. In 2009, monitoring plots were established for populations of a non-native species (Linaria dalmatica) and a closely related native species (Castilleja miniata) on an elevation gradient in the Greater Yellowstone Ecosystem, USA. Population data were collected twice during the growing season for 3 years and used to calculate population vital rates for both species, and to construct population dynamics models for L. dalmatica. Linaria dalmatica vital rates were more associated with climatic/environmental factors than those of C. miniata. Population dynamics models for L. dalmatica showed no trend in population growth rate (λ) vs. elevation. The highest λ corresponded with the lowest vegetation and litter cover, and the highest bare ground cover. All populations with λ < 1 corresponded with the lowest measured winter minimum temperature. There was a negative association between λ and number of weeks of adequate soil moisture, and a weak positive association between λ and mean winter minimum temperature. Variance in vital rates and λ of L. dalmatica suggest broad adaptation within its current range, with the potential to spread further with or without future changes in climate. There is evidence that λ is negatively affected by persistent soil moisture which promotes the growth of other plant species, suggesting that it might expand further if other species were removed by disturbance.  相似文献   

4.
Abstract Significant differentiation in relative growth rate (RGR) was found among three ecologically contrasting populations of Agrostis stolonifera. Under low nitrogen conditions the sand dune population had the highest mean RGR. The plastic response in RGR to different levels of nitrogen supply was significantly higher in the inland meadow population than in the polder and sand dune populations. The (colonizing) polder population tended to have the highest variation for RGR. Variation in RGR within populations was mainly environmentally determined, although in the polder population significant effects of genotype and of genotype × nitrogen level were found. The repeatability for RGR in this population proved to be different from zero under both nitrogen conditions. Root/shoot ratios of the three populations were not different from each other, independent of the level of nitrogen supply. Correlations between RGR and survival of genotypes within the populations were not significant, which points at the influence of genotype × environment interactions or the possibility that genotypic differences in RGR do not necessarily indicate an adaptation to any habitat, not even the home site.  相似文献   

5.
Invasive plants often occupy large ranges in the introduced region and consequently, local population dynamics vary in ways that affect the potential for biological control. We used matrix models to describe how density and population growth rate of Centaurea solstitialis varies in time and space. Matrix models were parameterized with data collected over 4 years from invasions at the coast, interior valleys and Sierra Nevada Mountains in California (USA). Asymptotic population growth rates (λ) varied dramatically across all populations and years (0.24–6.45), density varied by an order of magnitude and had a measurable effect on survival and λ in all populations. We used simulations to estimate the degree to which a biocontrol agent would need to reduce plant survival to control the weed. Because seedling survival was dependent on density, an agent that reduced seedling density had the effect of increasing the probability that the remaining plants survived to flowering. Interestingly, this meant that in the highest density populations the plant had the largest compensatory response to agent attack and experienced decline (λ ≤ 1.0) only after heavy losses (≥90%) to the agent. Conversely, in populations where density was so low that it had only a weak effect on survival, the agent was able to control the plant (λ ≤ 1.0) at much lower levels of attack (≤50%). In other words, the impact of a biocontrol agent is predicted to be lower where the plant reaches its highest densities because the surviving plants, now experiencing less intraspecific competition, are more likely to survive to flowering and produce more seeds. This may also be true for other invasive species in which strong density dependent processes are operating. For this reason, prospective agents ought to target density-independence vital rates.  相似文献   

6.
Understanding variation in plant vital rates (survival, growth, and reproduction) and population demographic parameters for rare plant taxa facilitates effective management for long-term persistence. We evaluated demographics of the rare plant Astragalus peckii (Fabaceae), a state-listed Threatened plant in Oregon, USA, with particular emphasis on how a microlepidopteran herbivore, Sparganothis tunicana, impacted vital rates and population growth. Stage-based transition matrix models were used to compute population growth rate (λ) and elasticity from 2006 to 2009 at two populations: Bull Flat, which was located in the main population center; and Chiloquin, a naturally isolated population. Population growth at Bull Flat was stable to slightly declining (λ = 0.96, 95 % CI 0.91–1.00) whereas at Chiloquin, the isolated population, population growth was increasing (λ = 1.20, 95 % CI 1.15–1.24). Microlepidopteran herbivory was associated with different plant responses in each population. At Bull Flat, plant survival was lower with greater herbivore presence. At Chiloquin, reproduction was reduced in plants when herbivores were active earlier in the growing season. Despite these effects on plant vital rates, we found lower population growth only during one transition period at Bull Flat when we compared matrices with and without herbivory. In addition to herbivory, we also address the potential role precipitation plays as a contributor to site differences and temporal variation within sites. Overall, we illustrate how two populations can have different responses to the same disturbance factor and highlight implications for management of different populations across the landscape.  相似文献   

7.
Abandonment of traditional land-use practices can have strong effects on the abundance of species occurring in agricultural landscapes. However, the precise mechanisms by which individual performance and population dynamics are affected are still poorly understood. To assess how abandonment affects population dynamics of Succisa pratensis we used data from a 4-year field study in both abandoned and traditionally grazed areas in moist and mesic habitats to parameterize integral projection models. Abandoned populations had a lower long-term stochastic population growth rate (λ S = 0.90) than traditionally managed populations (λ S = 1.08), while λ S did not differ between habitat types. The effect of abandonment differed significantly between years and had opposed effects on different vital rates. Individuals in abandoned populations experienced higher mortality rates and lower seedling establishment, but had higher growth rates and produced more flower heads per plant. Population viability analyses, based on a population survey of the whole study area in combination with our demographic models, showed that 32 % of the populations face a high risk of extinction (>80 %) within 20 years. These results suggest that immediate changes in management are needed to avoid extinctions and further declines in population sizes. Stochastic elasticity analyses and stochastic life table response experiments indicated that management strategies would be most effective if they increase survival of small plants as well as seedling establishment, while maintaining a high seed production. This may be achieved by varying the grazing intensity between years or excluding grazers when plants are flowering.  相似文献   

8.
Demographic studies of imperiled populations can aid managers in planning conservation actions. However, applicability of findings for a single population across a species’ range is sometimes questionable. We conducted long-term studies (8 and 9 years, respectively) of 2 populations of the lizard Phrynosoma cornutum separated by 1000 km within the historical distribution of the species. The sites were a 15-ha urban wildlife reserve on Tinker Air Force Base (TAFB) in central Oklahoma and a 6000-ha wildland site in southern Texas, the Chaparral Wildlife Management Area (CWMA). We predicted a trade-off between the effect of adult survival and fecundity on population growth rate (λ), leading to population-specific contributions of individual vital rates to λ and individualized strategies for conservation and management of this taxon. The CWMA population had lower adult survival and higher fecundity than TAFB. As predicted, there was a trade-off in the effects of adult survival and fecundity on λ between the two sites; fecundity affected λ more at CWMA than at TAFB. However, adult survival had the smallest effect on λ in both populations. We found that recruitment in P. cornutum most affected λ at both sites, with hatchling survival having the strongest influence on λ. Management strategies focusing on hatchling survival would strongly benefit both populations. As a consequence, within the constraint of the need to more accurately estimate hatchling survival, managers across the range of species such as P. cornutum could adopt similar management priorities with respect to stage classes, despite intra-population differences in population vital rates.  相似文献   

9.
Identifying mechanisms of population change is fundamental for conserving small and declining populations and determining effective management strategies. Few studies, however, have measured the demographic components of population change for small populations of mammals (<50 individuals). We estimated vital rates and trends in two adjacent but genetically distinct, threatened brown bear (Ursus arctos) populations in British Columbia, Canada, following the cessation of hunting. One population had approximately 45 resident bears but had some genetic and geographic connectivity to neighboring populations, while the other population had <25 individuals and was isolated. We estimated population‐specific vital rates by monitoring survival and reproduction of telemetered female bears and their dependent offspring from 2005 to 2018. In the larger, connected population, independent female survival was 1.00 (95% CI: 0.96–1.00) and the survival of cubs in their first year was 0.85 (95% CI: 0.62–0.95). In the smaller, isolated population, independent female survival was 0.81 (95% CI: 0.64–0.93) and first‐year cub survival was 0.33 (95% CI: 0.11–0.67). Reproductive rates did not differ between populations. The large differences in age‐specific survival estimates resulted in a projected population increase in the larger population (λ = 1.09; 95% CI: 1.04–1.13) and population decrease in the smaller population (λ = 0.84; 95% CI: 0.72–0.95). Low female survival in the smaller population was the result of both continued human‐caused mortality and an unusually high rate of natural mortality. Low cub survival may have been due to inbreeding and the loss of genetic diversity common in small populations, or to limited resources. In a systematic literature review, we compared our population trend estimates with those reported for other small populations (<300 individuals) of brown bears. Results suggest that once brown bear populations become small and isolated, populations rarely increase and, even with intensive management, recovery remains challenging.  相似文献   

10.
We investigated population growth rate (λ) for a Merriam's wild turkey (Meleagris gallopavo merriami) population in the northern Black Hills, South Dakota, USA. We constructed and evaluated a females-only matrix population model. Our estimate of asymptotic λ, derived from estimates of vital rates obtained from 2016–2018 was 0.74 (95% CI = 0.60, 0.88), which indicates that the vital rates were inadequate to sustain the population. Elasticity values were highest for changes in adult survival probability followed by, in order, changes in juvenile survival, yearling survival, and adult reproduction. We could only achieve stable or growing populations (i.e., λ ≥ 1) by increasing the probability of adult and yearling survival (holding all other vital rates constant). Estimated adult survival rate in the work reported here was lower than values reported for other populations in the Black Hills; therefore, managing for increased female survival (≥0.68) may be the most practical strategy for promoting wild turkey population growth in this system. We recommend no female harvest during any open turkey season.  相似文献   

11.
Tropical late‐successional tree species are at high risk of local extinction due to habitat loss and fragmentation. Population‐growth rates in fragmented populations are predicted to decline as a result of reduced fecundity, survival and growth. We examined the demographic effects of habitat fragmentation by comparing the population dynamics of the late‐successional tree Poulsenia armata (Moraceae) in southern Mexico between a continuous forest and several forest fragments using integral projection models (IPMs) during 2010–2012. Forest fragmentation did not lead to differences in population density and even resulted in a higher population‐growth rate (λ) in fragments compared to continuous forests. Habitat fragmentation had drastic effects on the dynamics of P. armata, causing the population structure to shift toward smaller sizes. Fragmented populations experienced a significant decrease in juvenile survival and growth compared to unaltered populations. Adult survival and growth made the greatest relative contributions to λ in both habitat types during 2011–2012. However, the relative importance of juvenile survival and growth to λ was highest in the fragmented forest in 2010–2011. Our Life Table Response Experiment analysis revealed that positive contributions of adult fecundity explained most of the variation of λ between both habitats and annual periods. Finally, P. armata has a relatively slow speed of recovery after disturbances, compromising persistence of fragmented populations. Developing a mechanistic understanding of how forest fragmentation affects plant population dynamics, as done here, will prove essential for the preservation of natural areas.  相似文献   

12.
Habitat fragmentation and loss affect population stability and demographic processes, increasing the extinction risk of species. We studied Anolis heterodermus populations inhabiting large and small Andean scrubland patches in three fragmented landscapes in the Sabana de Bogotá (Colombia) to determine the effect of habitat fragmentation and loss on population dynamics. We used the capture‐mark‐recapture method and multistate models to estimate vital rates for each population. We estimated growth population rate and the most important processes that affect λ by elasticity analysis of vital rates. We tested the effects of habitat fragmentation and loss on vital rates of lizard populations. All six isolated populations showed a positive or an equilibrium growth rate (λ = 1), and the most important demographic process affecting λ was the growth to first reproduction. Populations from landscapes with less scrubland natural cover showed higher stasis of young adults. Populations in highly fragmented landscapes showed highest juvenile survival and growth population rates. Independent of the landscape's habitat configuration and connectivity, populations from larger scrubland patches showed low adult survivorship, but high transition rates. Populations varied from a slow strategy with low growth and delayed maturation in smaller patches to a fast strategy with high growth and early maturation in large patches. This variation was congruent with the fast‐slow continuum hypothesis and has serious implications for Andean lizard conservation and management strategies. We suggest that more stable lizard populations will be maintained if different management strategies are adopted according to patch area and habitat structure.  相似文献   

13.
Highly variable patterns in temperature and rainfall events can have pronounced consequences for small mammals in resource-restricted environments. Climatic factors can therefore play a crucial role in determining the fates of small mammal populations. We applied Pradel's temporal symmetry model to a 21-year capture–recapture dataset to study population dynamics of the pinyon mouse (Peromyscus truei) in a semi-arid mixed oak woodland in California, USA. We examined time-, season- and sex-specific variation in realized population growth rate (λ) and its constituent vital rates, apparent survival and recruitment. We also tested the influence of climatic factors on these rates. Overall monthly apparent survival was 0.81 ± 0.004 (estimate ± SE). Survival was generally higher during wetter months (October–May) but varied over time. Monthly recruitment rate was 0.18 ± 0.01, ranging from 0.07 ± 0.01 to 0.63 ± 0.07. Although population growth rate (λ) was highly variable, overall monthly growth rate was close to 1.0, indicating a stable population during the study period (λ ± SE = 0.99 ± 0.01). Average temperature and its variability negatively affected survival, whereas rainfall positively influenced survival and recruitment rates, and thus the population growth rate. Our results suggest that seasonal rainfall and variation in temperature at the local scale, rather than regional climatic patterns, more strongly affected vital rates in this population. Discerning such linkages between species' population dynamics and environmental variability are critical for understanding local and regional impacts of global climate change, and for gauging viability and resilience of populations in resource-restricted environments.  相似文献   

14.
Clonality is a widespread life history trait in flowering plants that may be essential for population persistence, especially in environments where sexual reproduction is unpredictable. Frequent clonal reproduction, however, could hinder sexual reproduction by spatially aggregating ramets that compete with seedlings and reduce inter‐genet pollination. Nevertheless, the role of clonality in relation to variable sexual reproduction in population dynamics is often overlooked. We combined population matrix models and pollination experiments to compare the demographic contributions of clonal and sexual reproduction in three Dicentra canadensis populations, one in a well‐forested landscape and two in isolated forest remnants. We constructed stage‐based transition matrices from 3 years of census data to evaluate annual population growth rates, λ. We used loop analysis to evaluate the relative contribution of different reproductive pathways to λ. Despite strong temporal and spatial variation in seed set, populations generally showed stable growth rates. Although we detected some pollen limitation of seed set, manipulative pollination treatments did not affect population growth rates. Clonal reproduction contributed significantly more than sexual reproduction to population growth in the forest remnants. Only at the well‐forested site did sexual reproduction contribute as much as clonal reproduction to population growth. Flowering plants were more likely to transition to a smaller size class with reduced reproductive potential in the following year than similarly sized nonflowering plants, suggesting energy trade‐offs between sexual and clonal reproduction at the individual level. Seed production had negligible effects on growth and tuber production of individual plants. Our results demonstrate that clonal reproduction is vital for population persistence in a system where sexual reproduction is unpredictable. The bias toward clonality may be driven by low fitness returns for resource investment in sexual reproduction at the individual level. However, chronic failure in sexual reproduction may exacerbate the imbalance between sexual and clonal reproduction and eventually lead to irreversible loss of sex in the population.  相似文献   

15.
Harrisia portoricensis is an endemic Caribbean cactus currently under threatened status. In this study we used population projection matrices to evaluate the conservation status of this species and we performed a systematic analysis of the effects of matrix dimensionality on the inferred demographic parameters. Results revealed that population growth rates (λ) were 0.946 and 0.961 for the 2007–2008 and 2008–2009 periods respectively, suggesting a declining population with limited persistence ability. Even when the highest elasticity values corresponded to the survival of adults, numerical simulations suggested that increases in either seedling establishment or fecundity could render λ > 1. Our empirical-based analysis using raw demographic data revealed a clear trend for λ values to decrease with increasing matrix dimension. Stasis and fecundity elasticities were also found to decrease whereas retrogression and growth elasticitites increased with increasing matrix dimension. These results are roughly insensitive to the method used to create matrices of different dimensions. For H. portoricensis, large matrices with narrow classifications were required to minimize variations in λ, highlighting the need for large data sets to assess the convergence of results with matrix dimensionality. Our combined results emphasize that under current scenarios the ability of H. portoricensis for population growth is severely limited. Any management strategy designed for the conservation of this species should consider long-term monitoring of populations as well as programs that enhance seedling establishment and adult survival.  相似文献   

16.
Wild horses (Equus caballus) are a non‐native species occupying over 2800 km2 of the nationally significant Australian Alps National Parks. We estimated key demographic parameters (fecundity, adult and juvenile survival and annual finite population growth rate) over 3 years and related these to horse body condition and available food for three populations under natural conditions, and found a trend consistent with food limitation. The populations were independent, with different site characteristics and occupied areas, identified by land managers, as areas of concern about possible conservation impacts. Annual fecundity and juvenile survival varied across sites averaging between 0.21 and 0.31 female young per adult female, and 0.83 and 0.90 per annum, respectively, and annual adult survival was consistent across sites averaging 0.91 per annum. One population was increasing (λ = 1.09 year?1; 95% CI 1.04–1.14) and two populations were stable (λ ~ 1.0 year?1). Mean body condition of horses was positively correlated with mean pasture biomass rank. Across the three populations, fecundity, recruitment, body condition and annual finite population growth rate were lowest when mean pasture biomass rank was lowest and conversely highest when pasture rank was highest. We conclude that food limitation appears to be operating across these three sites. We used our results to assess the sensitivity of annual finite rate of increase (λ) to changes in key demographic parameters and found that λ was most sensitive to a change in adult survival, with the second most sensitive parameter being fecundity. Thus, if the aim of management is to reduce the size of the wild horse population then targeting adult survival is most important, followed by fecundity. Finally, we estimated the linear, negative, numerical response for wild horses between annual λ and horses per unit pasture biomass.  相似文献   

17.
Population size and population growth rate respond to changes in vital rates like survival and fertility. In deterministic environments change in population growth rate alone determines change in population size. In random environments, population size at any time t is a random variable so that change in population size obeys a probability distribution. We analytically show that, in a density-independent population, the proportional change in population size with respect to a small proportional change in a vital rate has an asymptotic normal distribution. Its mean grows linearly at a rate equal to the elasticity of the long-term stochastic growth rate λ S while the standard deviation scales as $\sqrt t$ . Consequently, a vital rate with a larger elasticity of λ S may produce a larger mean change in population size compared to one with a smaller elasticity of λ S. But a given percentage change in population size may be more likely when the vital rate with smaller elasticity is perturbed. Hence, the response of population size to perturbation of a vital rate depends not only on the elasticity of the population growth rate but also on the variance in change in population size. Our results provide a formula to calculate the probability that population size changes by a given percentage that works well even for short time periods.  相似文献   

18.
The Tehuacán-Cuicatlán Valley is one of the areas with the highest biocultural diversity in Mexico. There, the pochote (Ceiba aesculifolia subsp. parvifolia) has been used for more than 7000 years, and its seeds are currently consumed and sold in traditional markets. However, the high demand-supply of this resource in regional markets could affect the permanence of the species populations. This study evaluated the state of populations harvested at different intensity levels, their risk, and potential for sustainable use. In the state of Puebla, pochote seeds are mainly commercialized, while in Oaxaca they are directly consumed by households. During 2 years, we censused five populations of the region from permanent 5000 m2 plots. We evaluated growth, survival, and fecundity of individual plants of each population and constructed demographic matrix models for calculating population growth rates (λ), viability, and elasticity. Population growth rates in Puebla were λ ? 1, while in Oaxaca λ >?1. Permanence of adult trees is the most important demographic aspect for maintaining populations’ growth rates. Viability analyses for 30 years showed that two populations studied are at risk of extinction. In localities where seeds are directly consumed, the populations tolerate harvest rates of nearly 90% of fruits, while in those used for commercialization the populations tolerate lower levels, because of variations in population structure and growth rates. By simulating different harvest rates, we suggest optimal sustainable harvesting. For conserving pochote, monitoring of used populations is crucial. Our current information provide criteria that may be helpful to local authorities and people for making appropriate decisions to obtain benefits from pochote without compromising its populations’ stability.  相似文献   

19.
Understanding the factors limiting population growth is crucial for species management and conservation. We assessed the effects of seed and microsite limitation, along with climate variables, on Helianthemum squamatum, a gypsum soil specialist, in two sites in central Spain. We evaluated the effects of experimental seed addition and soil crust disturbance on H. squamatum vital rates (survival, growth and reproduction) across four years. We used this information to build integral projection models (IPMs) for each combination of management (seed addition or soil disturbance), site and year. We examined differences in population growth rate (λ) due to management using life table response experiments. Soil crust disturbance increased survival of mid to large size individuals and germination. Contributions to λ of positive individual growth (progression) and negative individual growth (retrogression) due to managements varied among years and sites. Soil crust disturbance increased λ in the site with the highest plant density, and seed addition had a moderate positive effect on λ in the site with lowest plant density. Population growth rate (λ) decreased by half in the driest year. Differences in management effects between sites may represent a shift from seed to microsite limitation at increasing densities. This shift underscores the importance of considering what factors limit population growth when selecting a management strategy.  相似文献   

20.
Many recent studies have demonstrated a negative effect of small population size on single plant traits. However, not much is known about the actual consequences of reduced plant performance on the long-term prospect of species survival. I studied the effect of population size on population growth rate and survival probability in the rare perennial herbScorzonera hispanica occurring in fragmented grasslands. Its performance was measured using several traits related to reproduction in 21 populations ranging in size from 3 to 2475 plants. These data were then connected with data on full demography of the species from three of the studied populations. Two different matrix models differing in the number of transitions based on measurements in the populations differing in size were used to explore the relationship between population size and population growth rate. Both matrix models showed that despite the decline in seed production in small populations, population growth rate is never significantly different from one, and the populations could thus be expected to survive in the long run. Calculations of extinction probabilities that take into account demographic and environmental stochasticity, however, showed that populations below 100 flowering individuals have a high probability to become extinct. This demonstrates that demographic and environmental stochasticity is an important driver of the fate of small populations in this system. This study demonstrates that estimation of population growth rate can provide new insights into the effect of population size on population growth and survival. It also shows how matrix models enable the combination various pieces of information about the single populations into one overall measure, and may provide a useful tool for the standardization of studies on the effects of population size on population performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号