首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potato is an important world crop but its cultivation is relatively limited by its sensitivity to salt-stress. Auto- and hetero-grafting was used to examine the effect of rootstock and abscisic acid (ABA) on expression of the Ca2+-storage protein calreticulin (CR) and salt-stress tolerance in potato. Sibling-selected diploid clones of potato (S. tuberosum) were utilized that are distinguished by differential root Na+ absorption; including type: late-maturing, LM and excluding type, early-maturing, EM under salt treatment; salt-stress sensitivity (S/T, sensitive or tolerant); and abscisic acid production (AD/AN, ABA-deficient or-normal sibling lines). CR expression, osmotic potential (OP) and leaf Ca2+ were measured at the end of a 5 days NaCl stress treatment applied at tuber initiation. Increased CR expression was induced by NaCl stress and associated with salt tolerance in early-maturing tolerant (EMT) and late-maturing tolerant (LMT) clones with higher levels of CR in LMT compared to the EMT clone. Early-maturing sensitive (EMS) clone salt tolerance increased when grafted onto LMT but not onto EMT rootstocks. EMS scions maintained less negative leaf OP when grafted onto LMT rootstocks than grafting onto the EMT rootstock. Exogenous ABA application induced a less negative upper leaf OP in the salt-stress sensitive AD clone but not in the AN clone. AD clones were characterized by low CR levels, which did not increase after stress. However, grafting the AD clone onto LMT increased CR expression in the AD portion of the graft combination. Salt-stress induced CR expression and is positively associated with the presence of ABA and the salt-stress tolerant phenotypes. Both, elevation in CR expression and salt tolerance in the tolerant rootstocks, were translocated to sensitive scions although highest permeation depended on the LM type. Calreticulin expression appears to be involved in ABA-induced salt tolerance and both salt-stress tolerance and CR expression appear to be regulated by the roots.  相似文献   

2.
M. Ashraf  A. Waheed 《Plant and Soil》1993,154(2):257-266
The salt tolerance of three tolerant accessions of chick pea, CM 663, 10130 and 10572 and three sensitive accessions 10582, 12908 and 12909 selected at the germination and seedling stage was assessed at the adult stage using sand culture salinized with 0, 40 or 80 mol m-3 NaCl. The two tolerant accessions, CM 663 and 10572 and one sensitive, 12908 showed consistent correlation between the degrees of salt tolerance at the early growth stages and adult stage as the former two produced significantly higher seed yield compared with the other accessions and the latter did not survive till seed setting in the salt treatments. By contrast 10130 which was found relatively salt tolerant at the two early growth stages could not survive in 40 mol m-3 NaCl till seed setting. Similarly two sensitive accessions, 10582 and 12909 not only survived at the adult stage but produced some yield as well. On the basis of performance of the six accessions at three different stages, accessions CM 663 and 10572 can be categorised as relatively salt tolerant, 12908 as sensitive and 10130, 10582 and 12909 as moderately tolerant. The tolerant accession CM 663 had high Na+ and Cl- in the leaves but maintained high K:Na ratios and high K+ versus Na+ selectivity. This accession had relatively low leaf osmotic potential which may be due to its high accumulation of Na+ and Cl- in the leaves. By contrast the second tolerant accession 10572 had lowest Na+ and moderate Cl- in the leaves.of all accessions but had highest K+ versus Na+ selectivity, although its leaf K:Na was intermediate. It had also relatively low osmotic potential which cannot be related to different ions determined in this study. The salt sensitive accession 12908 had high leaf Na+ and moderate Cl- but had very low K:Na ratio (less than one) and K+ versus Na+ selectivity. The remaining accessions as a whole did not show any consistent pattern of uptake of different ions. The positive correlation between the degree of salt tolerance at different growth stages do exist in some accessions of chick pea examined in the present study, but for others in which no positive correlation was observed suggests that a combination of certain characters can be used as selection criterion for improving salt tolerance in chick pea.  相似文献   

3.
Potato (Solanum tuberosum) is a major crop world-wide and the productivity of currently used cultivars is strongly reduced at high soil salt levels. We compared the response of six potato cultivars to increased root NaCl concentrations. Cuttings were grown hydroponically and treated with 0 mM, 60 mM and 180 mM NaCl for one week. Growth reduction on salt was strongest for the cultivars Mozart and Mona Lisa with a severe senescence response at 180 mM NaCl and Mozart barely survived the treatment. The cultivars Desiree and Russett Burbank were more tolerant showing no senescence after salt treatment. A clear difference in Na+ homeostasis was observed between sensitive and tolerant cultivars. The salt sensitive cultivar Mozart combined low Na+ levels in root and stem with the highest leaf Na+ concentration of all cultivars, resulting in a high Na+ shoot distribution index (SDI) for Mozart as compared to Desiree. Overall, a positive correlation between salt tolerance and stem Na+ accumulation was found and the SDI for Na+ points to a role of stem Na+ accumulation in tolerance. In stem tissue, Mozart accumulated more H2O2 and less proline compared to the tolerant cultivars. Analysis of the expression of proline biosynthesis genes in Mozart and Desiree showed a clear reduction in proline dehydrogenase (PDH) expression in both cultivars and an increase in pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Desiree, but not in Mozart. Taken together, current day commercial cultivars show promising differences in salt tolerance and the results suggest that mechanisms of tolerance reside in the capacity of Na+ accumulation in stem tissue, resulting in reduced Na+ transport to the leaves.  相似文献   

4.
The performance of a major quantitative trait locus (QTL) of terminal drought tolerance (DT) of pearl millet was assessed under salt stress. The test-cross hybrids of the QTL donor parent (drought tolerant, PRLT 2/89-33), QTL recipient parent (drought sensitive, H 77/833-2), and a set of six near isogenic lines introgressed with a terminal DT-QTL (QTL-NILs) were evaluated for germination and seedling emergence at 7 days after sowing (DAS) in Petri plates at four salinity levels, and at vegetative (24 DAS) and maturity stages at three salinity and alkalinity levels. Na+ and K+ accumulation, their compartmentation in different plant parts, and their effects on growth and yield parameters were evaluated. The DT-QTL donor parent and QTL-NILs accumulated less Na+ in shoot parts at seedling, vegetative and maturity stages, and also partitioned the accumulated Na+ more into nodes and internodes and less into leaves than the drought-sensitive recurrent parent. The pattern of reduced salt accumulation in the drought-tolerant parent and QTL-NILs was consistently associated with better growth and productivity in saline and alkaline treatments. It is concluded that the DT-QTL contributed by PRLT 2/89-33 exerted favourable effects on growth and productivity traits under salt stress by limiting Na+ accumulation in leaves.  相似文献   

5.
The expression of salt tolerance from Triticum tauschii in hexaploid wheat   总被引:6,自引:0,他引:6  
Summary Accessions of Triticum tauschii (Coss.) Schmal. (D genome donor to hexaploid wheat) vary in salt tolerance and in the rate that Na+ accumulates in leaves. The aim of this study was to determine whether these differences in salt tolerance and leaf Na+ concentration would be expressed in hexaploid wheat. Synthetic hexaploids were produced from five T. tauschii accessions varying in salt tolerance and two salt-sensitive T. turgidum cultivars. The degree of salt tolerance of the hexaploids was evaluated as the grain yield per plant in 150 mol m-3 NaCl relative to grain yield in 1 mol m-3 NaCl (control). Sodium concentration in leaf 5 was measured after the leaf was fully expanded. The salt tolerance of the genotypes correlated negatively with the concentration of Na+ in leaf 5. The salt tolerance of the synthetic hexaploids was greater than the tetraploid parents primarily due to the maintenance of kernel weight under saline conditions. Synthetic hexaploids varied in salt tolerance with the source of their D genome which demonstrates that genes for salt tolerance from the diploid are expressed at the hexaploid level.  相似文献   

6.
Control of ion loading into the xylem has been repeatedly named as a crucial factor determining plant salt tolerance. In this study we further investigate this issue by applying a range of biophysical [the microelectrode ion flux measurement (MIFE) technique for non‐invasive ion flux measurements, the patch clamp technique, membrane potential measurements] and physiological (xylem sap and tissue nutrient analysis, photosynthetic characteristics, stomatal conductance) techniques to barley varieties contrasting in their salt tolerance. We report that restricting Na+ loading into the xylem is not essential for conferring salinity tolerance in barley, with tolerant varieties showing xylem Na+ concentrations at least as high as those of sensitive ones. At the same time, tolerant genotypes are capable of maintaining higher xylem K+/Na+ ratios and efficiently sequester the accumulated Na+ in leaves. The former is achieved by more efficient loading of K+ into the xylem. We argue that the observed increases in xylem K+ and Na+ concentrations in tolerant genotypes are required for efficient osmotic adjustment, needed to support leaf expansion growth. We also provide evidence that K+‐permeable voltage‐sensitive channels are involved in xylem loading and operate in a feedback manner to maintain a constant K+/Na+ ratio in the xylem sap.  相似文献   

7.
The effects of salt stress were studied on the accumulation and metabolism of proline and its correlation with Na+ and K+ content in shoots and callus tissue of four potato cultivars, viz., Agria, Kennebec (relatively salt tolerant), Diamant and Ajax (relatively salt sensitive). Na+ and proline contents increased in all cultivars under salt stress. However, K+ and protein contents decreased in response to NaCl treatments. The activities of enzymes involved in proline metabolism, Δ1-pyrroline-5-carboxylate synthetase (P5CS) and proline dehydrogenase (ProDH) increased and decreased, respectively, in response to elevated NaCl concentrations. The changes of P5CS and ProDH activities in more salt sensitive cultivars (Diamant, Ajax) were more than those in the tolerant ones. Then the stimulation of synthesis in combination with a partially increase of protein proteolysis, a decrease in proline utilization and inhibition of oxidation resulted in high proline contents in seedlings and calli under salt stress. In callus tissue, reduced growth and cell size may be partially responsible for high proline accumulation in response to high NaCl levels. However, although the basic proline contents in the seedlings of more salt tolerant cultivars were higher than the sensitive ones, a clear relationship was not generally observed between accumulation of proline and salt tolerance in potato.  相似文献   

8.
Genotypic variability was assessed within six Medicago ciliaris genotypes growing symbiotically with Sinorhizobium medicae in order to identify physiological criteria (growth, ion content, and plant health) associated with salt tolerance. Response to salt stress depended on the line and the level of salt. Two lines with lower dry biomass under non-saline conditions (TNC 1.8 from a semi-arid area and TNC 10.8 from a sub-humid area), were more tolerant to NaCl, whereas the most productive lines (TNC 11.5 and TNC 11.9 from a humid bioclime) were more sensitive in terms of growth and nitrogen fixation. Susceptibility of symbiotic nitrogen fixation to saline stress was not associated with a higher accumulation of Na+ in nodules, since the most tolerant lines TNC 1.8 and TNC 10.8 accumulated the highest Na+ amount in nodules. Leaf area and net photosynthate assimilation rate were conserved in line TNC 1.8 and to a lesser extent in line TNC 10.8 potentially owing to a greater ability to protect aerial organs and nodules from Na+ damage and to insure a better supply of leaves with nitrogen. Our results suggest that nodule growth and number and nodule Na+ content should not be used as selection tools for tolerance or susceptibility, since two of the tested lines maintained consistent growth in spite of reduced nodule and high Na+ content. Instead, the most reliable physiological indicators for tolerance appear to be consistent growth (i.e., no growth changes) and reduced leaf Na+ accumulation with increasing concentrations of NaCl.  相似文献   

9.
Twenty-five genotypes of early CIMMYT hexaploid wheat (Triticum aestivum L.) were screened for salt tolerance in a glasshouse experiment at 150 mol m−3 NaCl in sand culture. The genotypes Na(20)TPP, Penjamo 62, and Inia 66 exceeded all the lines in grain yield per plant under salt stress, whereas Nainari 60 and Norin 10 were the lowest of all genotypes. However, Jaral 66 and Yaqui 54 were the lowest of all the genotypes in all growth and yield attributes. Considerable variation in accumulation of Na+ and Cl in different plant parts of 25 genotypes of early CIMMYT wheat under salt stress was observed. The genotype Noreste 66 was the lowest in leaf Na+ and Cl, and it had highest leaf K/Na ratio and K versus Na selectivity of all the genotypes, but in terms of growth and grain yield, it was moderately tolerant. The other genotype Norin 10 was the highest in leaf Na+ and Cl of all genotypes, but its leaf K/Na ratio and K versus Na selectivity were considerably low. However, in shoot biomass it was the highest and in grain yield the lowest of all genotypes. In view of phylogenetic lineage of the genotypes, most of the genotypes have evolved from Norin 10, so the trait of high uptake of Na+ and Cl in most genotypes may have been inherited from Norin 10. The ion exclusion trait in the moderately salt tolerant genotype Noreste 66 was possibly inherited from Yaqui 50 as it was the only among all putative parents which showed low uptake of toxic ions. Overall, owing to the complex nature of the salt tolerance trait being controlled by polygenes, it was not easy to draw relationships between degree of salt tolerance and pattern of uptake of toxic ions and maintenance of leaf K/Na ratios. However, from the phylogenetic lineage of the 25 genotypes it was possible to draw relationships between degree of salt tolerance and mechanism of ion uptake between parents and progeny.  相似文献   

10.
11.
罗达  吴正保  史彦江  宋锋惠 《生态学报》2022,42(5):1876-1888
研究盐胁迫下3个品种平欧杂种榛幼苗叶片解剖结构和离子代谢特征,以揭示盐胁迫响应与适应机制及不同品种的耐盐性差异。以‘达维’、‘辽榛7号’、‘玉坠’2年生压条苗为材料,在盆栽条件下经轻度、中度、重度(分别为50、100、200 mmol/L NaCl)盐胁迫处理,设对照为0,研究幼苗叶片显微解剖结构参数和Na~+、K~+、Cl~-、Ca2+含量的变化及其在根、茎、叶中的吸收、运输和分配特征。不同品种平欧杂种榛叶片厚度、上表皮厚度、下表皮厚度、栅栏组织和海绵组织厚度随着盐胁迫程度的增强呈现出先增加后降低的特点,轻度和中度胁迫下各参数显著高于对照。中度盐胁迫显著提高了各品种叶片结构紧密度。盐胁迫导致平欧杂种榛根、茎、叶Na~+和Cl~-含量明显高于对照。盐胁迫下,Na~+和Cl~-在叶中的绝对含量明显高于茎和根,但二者的增幅以根中最大,叶中最小,表明平欧杂种榛根系首先会吸收并截留一定数量的Na~+和Cl~-,然后将其运输至茎和叶中。与对照相比,轻度和中度盐胁迫下根、茎对K~+和Ca2+的吸收保持稳定或减少,叶对K~+和Ca2+...  相似文献   

12.
Salt stress responses implicate a complex mechanism and differ from plant species to another. In this study, we analyzed the physiological, biochemical and molecular responses to salt stress of the diploid wheat (T. monococcum) and compared to the tetraploid wheat (T. durum). Our results showed that the diploid wheat cultivar (cv. Turkey) is relatively tolerant to different salt stress conditions than the tetraploid wheat cultivar (cv. Om Rabia3). This tolerance was manifested by significant germination, plant growth and uptake of water generating cell turgor and development. Moreover, total chlorophyll content was higher in the diploid wheat than that in the tetraploid wheat. The Na+ content in leaf blade of the cv. Om Rabia3 was significantly higher than that of the cv. Turkey, suggesting that the diploid cultivar accumulates less toxic sodium in the photosynthetic tissues. This mechanism could be explained by the recirculation of the toxic ions Na+ into the xylem sap by SOS1 protein, which coordinates with HKT-like proteins to reduce the accumulation of Na+ ions in leaf blade. Interestingly, the expression of the three genes SOS1, HKT and NHX was enhanced under salinity especially in leaf blade of the cv. Turkey. Moreover, this wheat cultivar induced the antioxidative enzymes CAT and SOD activity more efficiently than the other cultivar.  相似文献   

13.
Leidi  E.O.  Saiz  J.F. 《Plant and Soil》1997,190(1):67-75
Physiological responses to salt stress were studied in two cotton cultivars previously selected on the basis of growth under salinity. Plants were grown in nutrient solutions under controlled conditions. In the first experiment, the genotypes were grown at different salt concentrations (0, 100 and 200 mt M NaCl) and growth rates, water contents and ion accumulation were determined. In a second experiment, both genotypes were grown at the same salt concentration (200 mt M NaCl). Dry matter partitioning in individual leaves, stem and roots, water contents, specific leaf area (SLA), ion accumulation (K+, Na+, Cl) and leaf water potentials were measured. Finally, an experiment with low salt levels (2.7 and 27 mt M NaCl) was run to compare K and Na+ uptake and distribution.There were no differences in growth between the cultivars in the absence of salt stress, whereas under stress genotype Z407 had higher leaf area and dry matter accumulation than P792. Leaf water potential and leaf water content were lower in cv P792 than in cv Z407. There were no significant differences in the levels of Cl accumulation between genotypes. The main feature of the tolerant genotype (Z407) was a higher accumulation of Na+ in leaves and an apparent capacity for K+ redistribution to younger leaves.We postulate that the higher tolerance in Z407 is the result of several traits such as a higher Na+ uptake and water content. Adaptation through adequate, but tightly controlled ion uptake, typical of some halophytes, matched with efficient ion compartmentation and redistribution, would result in an improved water uptake capacity under salt stress and lead to maintenance of higher growth rates.  相似文献   

14.

Aims

The objectives of this study were to evaluate salt tolerance level of rice genotypes using the well-established screening criteria; the salt injury score, survival percentage and ratio between Na+ and K+, as well as the contents of proline and chlorophyll, and to identify the relationship between salt tolerance and physiological characters.

Methods

One hundred and six rice genotypes were grown in hydroponic solutions subjected to salt stress and evaluated for salt tolerance ability and the physiological parameters. Multivariate cluster analysis was performed based on salinity tolerance scores (ST scores; score 1 being the most tolerant, score 9 the most sensitive), survival percentage and Na+/K+ ratio.

Results

ST scores based on salt injury symptoms were negatively correlated with survival percentage and chlorophyll concentration in the stressed seedlings but positively correlated with Na+/K+ ratio and proline content. Rice genotypes were classified into five salt tolerance groups: tolerant (T), moderately tolerant (MT), moderately sensitive (MS), sensitive (S) and highly sensitive (HS). The means of ST scores were significantly different among the five tolerance groups indicating that the ST score was the most reliable index for identifying salt tolerance. The means of Na+/K+ ratio and proline content in stressed seedlings were distinctively different between the extreme T and HS groups, but the means among the intermediate groups (MT, MS and S) were not significantly different. Chlorophyll content, on the other hand, was not related to the levels of salt tolerance.

Conclusions

In addition to the commonly used Na+/K+ ratio, proline content is suggested to be another useful criterion to differentiate salt-tolerant from salt-sensitive rice. This study also identified several Thai improved and local cultivars with the level of salt tolerance and physiological characters comparable to Pokkali, the standard salt-tolerant donor and may be utilized as alternative sources of salt tolerance alleles.  相似文献   

15.
This study compared the growth, nodulation, N2 fixation, and ion distribution in three Medicago truncatula lines, in response to salt in nutrient solution. Two local lines (TN8.20 and TN6.18) and a reference line (Jemalong 6) were inoculated with a reference strain Sinorhizobium meliloti 2011, a very tolerant strain to salinity (700 mM NaCl) and grown in a controlled glasshouse with or without 75 mM NaCl. A genotypic variation in tolerance to salt was found: TN6.18 was the most sensitive line whereas TN8.20 was the most tolerant. The relative tolerance of TN8.20 was concomitant with the lowest leaf Na+ concentration and the highest nodule biomass production. However, nodule efficiency (amount of nitrogen fixed per g dry weight nodule) decreased in all lines. Results suggest that the tolerance to salt seems to depend on the host plant ability to protect its leaves against an excessive Na+ (and Cl?) accumulation, and its ability to maintain the development of an abundant nodular system, which in turn determines an important rate of nitrogen fixation and allows the plants to conserve their growth potentialities. The loss of the nodular efficiency under salt stress seems to be compensated by a large nodule biomass.  相似文献   

16.
17.
A hydroponic experiment was conducted to elucidate the difference in growth and cell ultrastructure between Tibetan wild and cultivated barley genotypes under moderate (150 mM NaCl) and high (300 mM NaCl) salt stress. The growth of three barley genotypes was reduced significantly under salt stress, but the wild barley XZ16 (tolerant) was less affected relative to cultivated barley Yerong (moderate tolerant) and Gairdner (sensitive). Meanwhile, XZ16 had lower Na+ and higher K+ concentrations in leaves than other two genotypes. In terms of photosynthetic and chlorophyll fluorescence parameters, salt stress reduced maximal photochemical efficiency (F v/F m), net photosynthetic rate (Pn), stomatal conductance (Gs), and intracellular CO2 concentration (Ci). XZ16 showed relatively smaller reduction in comparison with the two cultivated barley genotypes. The observation of transmission electron microscopy found that fundamental cell ultrastructure changes happened in both leaves and roots of all barley genotypes under salt NaCl stress, with chloroplasts being most changed. Moreover, obvious difference could be detected among the three genotypes in the damage of cell ultrastructure under salt stress, with XZ16 and Gairdner being least and most affected, respectively. It may be concluded that high salt tolerance in XZ16 is attributed to less Na+ accumulation and K+ reduction in leaves, more slight damage in cell ultrastructure, which in turn caused less influence on chloroplast function and photosynthesis.  相似文献   

18.
Fifty-two-day old plants of a salt tolerant line, S24 and a salt sensitive, Yecora Rojo were subjected for 15 days to 125 mol·m−3 NaCl in Hoagland’s nutrient solution under glass-house conditions. The dry matter of shoots and roots of the salt tolerant line was significantly greater over all time intervals in saline substrate than the salt sensitive line, Yecora Rojo. In the leaves of salt-treated former line concentration of Na+ and Cl was lower as compared to the latter line. The lower Na+ and Cl concentrations in the leaves of S24 were found to be associated with lower transport of these ions to the shoots whereas the reverse was true for Yecora Rojo. The lines did not differ in accumulation of either ion in roots. It is concluded that salt tolerance in these two genotypes of spring wheat is associated with restricted accumulation of toxic Na+ and Cl ions to the shoots or with restricted transport.  相似文献   

19.
In saline soils, high levels of sodium (Na+) and chloride (Cl?) ions reduce root growth by inhibiting cell division and elongation, thereby impacting on crop yield. Soil salinity can lead to Na+ toxicity of plant cells, influencing the uptake and retention of other important ions [i.e. potassium (K+)] required for growth. However, measuring and quantifying soluble ions in their native, cellular environment is inherently difficult. Technologies that allow in situ profiling of plant tissues are fundamental for our understanding of abiotic stress responses and the development of tolerant crops. Here, we employ laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) to quantify Na, K and other elements [calcium (Ca), magnesium (Mg), sulphur (S), phosphorus (P), iron (Fe)] at high spatial resolution in the root growth zone of two genotypes of barley (Hordeum vulgare) that differ in salt‐tolerance, cv. Clipper (tolerant) and Sahara (sensitive). The data show that Na+ was excluded from the meristem and cell division zone, indicating that Na+ toxicity is not directly reducing cell division in the salt‐sensitive genotype, Sahara. Interestingly, in both genotypes, K+ was strongly correlated with Na+ concentration, in response to salt stress. In addition, we also show important genetic differences and salt‐specific changes in elemental composition in the root growth zone. These results show that LA‐ICP‐MS can be used for fine mapping of soluble ions (i.e. Na+ and K+) in plant tissues, providing insight into the link between Na+ toxicity and root growth responses to salt stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号