首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Jeon ES  Kim JH  Ryu H  Kim EK 《Cellular signalling》2012,24(6):1241-1250
Granular corneal dystrophy type 2 (GCD2) is an autosomal dominant disease caused by a R124H point mutation in the transforming growth factor-β-induced gene (TGFBI). However, the cellular role of TGFBI and the regulatory mechanisms underlying corneal dystrophy pathogenesis are still poorly understood. Lysophosphatidic acid (LPA) refers to a small bioactive phospholipid mediator produced in various cell types, and binds G protein-coupled receptors to enhance numerous biological responses, including cell growth, inflammation, and differentiation. LPA levels are elevated in injured cornea and LPA is involved in proliferation and wound healing of cornea epithelial cells. Accumulating evidence has indicated a crucial role for LPA-induced expression of TGFBI protein (TGFBIp) through secretion of transforming growth factor-beta1 (TGF-β1). In the current study, we demonstrate that LPA induces TGFBIp expression in corneal fibroblasts derived from normal or GCD2 patients. LPA-induced TGFBIp expression was completely inhibited upon pretreatment with the LPA(1/3) receptor antagonists, VPC32183 and Ki16425, as well as by silencing LPA(1) receptor expression with small hairpin RNA (shRNA) in corneal fibroblasts. LPA induced secretion of TGF-β1 in corneal fibroblasts, and pretreatment with the TGF-β type I receptor kinase inhibitor SB431542 or an anti-TGF-β1 neutralizing antibody also inhibited LPA-induced TGFBIp expression. Furthermore, we show that LPA requires Smad2/3 proteins for the induction of TGFBIp expression. LPA elicited phosphorylation of Smad2/3, and Smad3 specific inhibitor SIS3 or siRNA-mediated depletion of endogenous Smad2/3 abrogates LPA-induced TGFBIp expression. Finally, we demonstrate that LPA-mediated TGFBIp induction requires JNK activation, but not ERK signaling pathways. These results suggest that LPA stimulates TGFBIp expression through JNK-dependent activation of autocrine TGF-β1 signaling pathways and provide important information for understanding the role of phospholipids involved in cornea related diseases.  相似文献   

5.
The ATR/CHK1-dependent intra-S checkpoint inhibits replicon initiation and replication fork progression in response to DNA damage caused by UV (UV) radiation. It has been proposed that this signaling cascade protects against UV-induced mutations by reducing the probability that damaged DNA will be replicated before it can be repaired. Normal human fibroblasts (NHF) were depleted of ATR or CHK1, or treated with the CHK1 kinase inhibitor TCS2312, and the UV-induced mutation frequency at the HPRT locus was measured. Despite clear evidence of S-phase checkpoint abrogation, neither ATR/CHK1 depletion nor CHK1 inhibition caused an increase in the UV-induced HPRT mutation frequency. These results question the premise that the UV-induced intra-S checkpoint plays a prominent role in protecting against UV-induced mutagenesis.  相似文献   

6.
7.

Objective

To determine the efficacy of soluble pig tissue factor pathway inhibitor fusion immunoglobulin (TFPI-Ig) in blocking pig to human xenogeneic blood coagulation.

Results

To generate pig TFPI-Ig or human TFPI-Ig, expression vector containing cDNA encoding pig TFPIα or human TFPIα combined with human constant Ig heavy chain region was cloned and introduced into CHO cells. After purification of pig TFPI-Ig and human TFPI-Ig, the inhibition of each recombinant protein on pig tissue factor (TF)-mediated blood coagulation was examined in human plasma. Compared to human TFPI-Ig, pig TFPI-Ig inhibited pig TF activity and thrombin generation in human plasma more efficiently at certain concentrations.

Conclusions

Pig TFPI-Ig will be be useful as a therapeutic protein to treat pig to human xenogeneic blood coagulation.
  相似文献   

8.
Recent studies have suggested a regulatory role for the dioxin receptor (AhR) in cell adhesion and migration. Following our previous work, we report here that the C-terminal Src kinase-binding protein (Cbp) signaling pathway controls β1 integrin activation and that this mechanism is AhR dependent. T-FGM AhR ?/? fibroblasts displayed higher integrin β1 activation, revealed by the increased binding of the activation reporter 9EG7 anti-β1 mAb and of a soluble fibronectin fragment, as well as by enhanced talin-β1 association. AhR ?/? fibroblasts also showed increased fibronectin secretion and impaired directional migration. Notably, interfering Cbp expression in AhR ?/? fibroblasts reduced β1 integrin activation, improved cell migration and rescued wild-type cell morphology. Cbp over-expression in T-FGM AhR ?/? cells enhanced the formation of inhibitory Csk–Cbp complexes which in turn reduced c-Src p-Tyr416 activation and focal adhesion kinase (FAK) phosphorylation at the c-Src-responsive residues p-Tyr576 and p-Tyr577. The c-Src target and migration-related protein Cav1 was also hypophosphorylated at p-Tyr14 in AhR ?/? cells, and such effect was rescued by down-modulating Cbp levels. Thus, AhR regulates fibroblast migration by modulating β1 integrin activation via Cbp-dependent, Src-mediated signaling.  相似文献   

9.
In kidney, the ubiquitin carboxy-terminal hydrolase 1 (UCH-L1) is involved in podocyte injury and proteinuria but details of the mechanism underlying its regulation are not known. Activation of NF-κB is thought to be the predominant risk factor for kidney disease; therefore, it is postulated that UCH-L1 may be one of the NF-κB target genes. In this study, we investigated the involvement of NF-κB activation in the regulation of UCH-L1 expression and the function of murine podocytes. Stimulation of podocytes with the cytokines TNF-α and IL-1β up-regulated UCH-L1 expression rapidly at the mRNA and protein levels and the NF-κB-specific inhibitor pyrrolidine dithiocarbamate resulted in down-regulation. NF-κB up-regulates UCH-L1 via binding the ? 300 bp and ? 109 bp sites of its promoter, which was confirmed by the electrophoretic mobility shift assay of DNA–nuclear protein binding. In the renal biopsy from lupus nephritis patients, the expressions of NF-κB and UCH-L1 increased in immunohistochestry staining and were positively correlated. Activation of NF-κB up-regulates UCH-L1 expression following changing of other podocytes molecules, such as nephrin and snail. These results suggest that activation of the NF-κB signaling pathway could be the major pathogenesis to up-regulate UCH-L1 in podocyte injury, followed by the turnover of other molecules, which might result in morphological changes and dysfunction of podocytes. This work help us to understand the effect of NF-κB on specific target molecules of podocytes, and suggest that targeting the NF-κB–UCH-L1 interaction could be a novel therapeutic strategy for the treatment of podocyte lesions and proteinuria.  相似文献   

10.
PADs (peptidylarginine deiminases) are calcium-dependent enzymes that change protein-bound arginine to citrulline (citrullination/deimination) affecting protein conformation and function. PAD up-regulation following chick spinal cord injury has been linked to extensive tissue damage and loss of regenerative capability. Having found that human neural stem cells (hNSCs) expressed PAD2 and PAD3, we studied PAD function in these cells and investigated PAD3 as a potential target for neuroprotection by mimicking calcium-induced secondary injury responses. We show that PAD3, rather than PAD2 is a modulator of cell growth/death and that PAD activity is not associated with caspase-3-dependent cell death, but is required for AIF (apoptosis inducing factor)-mediated apoptosis. PAD inhibition prevents association of PAD3 with AIF and AIF cleavage required for its translocation to the nucleus. Finally, PAD inhibition also hinders calcium-induced cytoskeleton disassembly and association of PAD3 with vimentin, that we show to be associated also with AIF; together this suggests that PAD-dependent cytoskeleton disassembly may play a role in AIF translocation to the nucleus. This is the first study highlighting a role of PAD activity in balancing hNSC survival/death, identifying PAD3 as an important upstream regulator of calcium-induced apoptosis, which could be targeted to reduce neural loss, and shedding light on the mechanisms involved.  相似文献   

11.
Human skin fibroblasts were incubated with a fluorogenic xyloside, 4-methylumbelliferyl--D-xyloside (Xyl-MU), in the presence or absence of tunicamycin. The xyloside-initiated glycosaminoglycans (GAG-MUs) were isolated from the culture medium, and their structures characterized. When the cells were incubated with Xyl-MU in the presence of 0.2 g ml–1 tunicamycin, the synthesis of GAG-MU was increased about three fold, compared with the control value in the absence of tunicamycin (cells exposed to Xyl-MU alone). The structures of GAG-MUs synthesized in the presence or absence of tunicamycin were compared by HPLC analysis using gel-filtration and ion-exchange columns, enzymatic digestion, and unsaturated disaccharide composition analysis. The data indicated that cells incubated with tunicamycin produced more undersulfated and shorter GAG-MUs than cells without tynicamycin. These results suggest that tunicamycin inhibits the elongation and sulfation of glycosaminoglycan (GAG) chains and that, as a result, GAG-MUs with shorter chains and undersulfated residues, but possessing a large number of GAG chains, are synthesized in the presence of tunicamycin.  相似文献   

12.
13.
Interleukin-13 (IL-13) plays a critical role in asthma mucus overproduction, while the mechanisms underlying this process are not fully elucidated. Previous studies showed that nuclear factor of activated T cells (NFAT) is involved in the pathogenesis of asthma, but whether it can directly regulate IL-13-induced mucus (particularly MUC5AC) production is still not clear. Here we showed that IL-13 specifically induced NFAT3 activation through promoting its dephosphorylation in air–liquid interface (ALI) cultures of mouse tracheal epithelial cells (mTECs). Furthermore, both Cyclosporin A (CsA, a specific NFAT inhibitor) and LY294002 (a Phosphoinositide 3-kinase (PI3K) inhibitor) significantly blocked IL-13-induced MUC5AC mRNA and protein production through the inhibition of NFAT3 activity. We also confirmed that CsA could not influence the forkhead Box A2 (Foxa2) and mouse calcium dependent chloride channel 3 (mClca3) expression in IL-13-induced MUC5AC production, which both are known to be important in IL-13-stimulated mucus expression. Our study is the first to demonstrate that the PI3K–NFAT3 pathway is positively involved in IL-13-induced mucus production, and provided novel insights into the molecular mechanism of asthma mucus hypersecretion.  相似文献   

14.
15.
16.
The potential risk of arsenic-related neurodegeneration has been a growing concern. Arsenic exposure has been reported to disrupt neurite growth and neuron body integrity in vitro; however, its underlying mechanism remains unclear. Previously, we showed that arsenic sulfide (AS) exerted cytotoxicity in gastric and colon cancer cells through regulating nuclear factor of the activated T cells (NFAT) pathway. The NFAT pathway regulates axon path finding and neural development. Using neural crest cell line PC12 cells as a model, here we show that AS caused mitochondrial membrane potential collapse, reactive oxygen species production, and cytochrome c release, leading to mitochondria-mediated apoptosis via the AKT/GSK-3β/NFAT pathway. Increased glycogen synthase kinase-3 beta (GSK-3β) activation leads to the inactivation of NFAT and its antiapoptotic effects. Through inhibiting GSK-3β activity, both nerve growth factor (NGF) and Tideglusib, a GSK-3β inhibitor partially rescued the PC12 cells from the AS-induced cytotoxicity and restored the expression of NFATc3. In addition, overexpression of NFATc3 stimulated neurite outgrowth and potentiated the effect of NGF on promoting the neurite outgrowth. Collectively, our results show that NFATc3 serves as the downstream target of NGF and plays a key role in preventing AS-induced neurotoxicity through regulating the AKT/GSK-3β/NFAT pathway in PC12 cells.  相似文献   

17.
18.
Although the fibroblast growth factor (FGF) signaling axis plays important roles in cell survival, proliferation, and differentiation, the molecular mechanism underlying how the FGF elicits these diverse regulatory signals is not well understood. By using the Frs2α null mouse embryonic fibroblast (MEF) in conjunction with inhibitors to multiple signaling pathways, here we report that the FGF signaling axis activates mTOR via the FGF receptor substrate 2α (FRS2α)-mediated PI3K/Akt pathway, and suppresses autophagy activity in MEFs. In addition, the PI3K/Akt pathway regulated mTOR is crucial for the FGF signaling axis to suppress autophagy in MEFs. Since autophagy has been proposed to play important roles in cell survival, proliferation, and differentiation, the findings suggest a novel mechanism for the FGF signaling axis to transmit regulatory signals to downstream effectors.  相似文献   

19.
20.
Nitric oxide (NO) has received wide attention as a biological signaling molecule that uses cyclic GMP as a cellular second messenger. Other work has supported roles for cysteine oxidation or nitrosylation as signaling events. Recent studies in bacteria and mammalian cells now point to the existence of at least two other pathways independent of cGMP. For the E. coli SoxR protein, signaling occurs by nitrosylation of its binuclear iron-sulfur clusters, a reaction that is unprecedented in gene activation. In intact cells, these nitrosylated centers are very rapidly replaced by unmodified iron-sulfur clusters, a result that points to the existence of an active repair pathway for this type of protein damage. Exposure of mammalian cells to NO elicits an adaptive resistance that confers elevated resistance of the cells to higher levels of NO. This resistance in many cell types involves the important defense protein heme oxygenase 1, although the mechanism by which this enzyme mediates NO resistance remains unknown. Induction of heme oxygenase in some cell types occurs through the stabilization of its mRNA. NO-induced stabilization of mRNA is mediated by pre-existing proteins and points to the existence of an important new signaling pathway that counteracts the damage and stress exerted by this free radical.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号