首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Twenty mutants isolated from Latisail, Jhingasail and Pankaj varieties of rice (Oryza sativa L.) were screened for two aspects of nutritive quality, namely crude protein content and distribution pattern of protein in the endosperm. Observations revealed a wide variation for both characters, and while there was no consistent association between protein content and test grain weight, which varied between varieties, a positive correlation between protein content and grain sterility was noted. In a few mutants protein distribution was observed to be varied and showed a similarity to optimum milling characteristics.  相似文献   

2.
In this study, we reported the isolation and analysis of new polymorphic microsatellites in mungbean (Vigna radiata (L.) Wilczek). Twelve out of 210 primer pairs screened in 30 mungbean accessions gave polymorphism. The polymorphic markers detected two to three alleles per locus with an average of 2.08. Observed heterozygosity varied from 0 to 0.133, while expected heterozygosity ranged from 0.095 to 0.498. Tests for Hardy-Weinberg equilibrium (HWE) and pairwise linkage disequilibrium of the polymorphic loci revealed that all loci except MB-SSR14 significantly departed from HWE and four pairwise combinations, viz. MB-SSR14 vs. MB-SSR42, MB-SSR42 vs. MB-SSR87, MB-SSR114 vs. MB-SSR121, and MB-SSR175 vs. MB-SSR231 significantly deviated from linkage disequilibrium. The markers are being used to study genetic diversity and genome mapping of mungbean.  相似文献   

3.
Sexually-mature mungbean (Vigna radiata (L.) Wilczek) plants were efficiently regenerated from cotyledonary node explants. The explants were capable of directly developing multiple shoots on basal media devoid of any growth regulators. The shoot multiplication was influenced by media composition, growth regulators, age of donor seedling and explant type. The explants with both the cotyledons attached to the embryonic axis excised from 4-d-old seedlings, produced the highest number of shoots (5 or 6) in 100% of the cultures within 2 weeks on B5 basal medium (BBM) containing BAP or 2-iP, respectively, (at 5x10–7M) and 3% sucrose. Shoots elongated and developed better using BAP. Increasing micronutrients, carbohydrate and nitrogen levels in the medium above the original formulation of B5 basal medium appeared to be of no benefit for increasing the number of shoots. The shoots were rooted on basal MS medium or MS containing 10–6 of NAA, IAA or IBA. This protocol was found applicable to six other cultivars of mungbean. One hundred rooted shoots were successfully established in soil in the glasshouse, where 90% of them survived. The regenerated plants flowered precociously, but produced normal pods and viable seeds.Abbreviations BAP 6-benzylaminopurine - KIN kinetin - 2-iP 6- — -dimethylallyl aminopurine - AdS adenine sulphate - IAA indole-3-acetic acid - IBA indole-3-butyric acid - NAA 1-naphthalene acetic acid - MS Murashige and Skoog (1962) medium - B5 Gamborg et al. (1968) medium - C medium MS salts + B5 vitamins  相似文献   

4.
The levels of gibberellin and cytokinin like substances are increased in mungbean (Vigna radiata L. Wilczek) seedlings by penicillin treatment. The possible role of penicillin in regulating the hormone levels in plant tissues is suggested.  相似文献   

5.
Ohwaki  Y.  Kraokaw  S.  Chotechuen  S.  Egawa  Y.  Sugahara  K. 《Plant and Soil》1997,192(1):107-114
Ten mungbean cultivars were evaluated for their resistance to iron deficiency in view of chlorosis symptoms, plant growth and seed yield under field conditions on a calcareous soil in Thailand. The KPS2 cultivar was highly susceptible; the KPS1, PSU1 and Pag-asa 1 cultivars were somewhat susceptible; the VC1163B cultivar was moderately tolerant; the CN36, CN60, UT1 and CNM-I cultivars were tolerant; and the CNM8509B cultivar was very tolerant to iron deficiency. Foliar application of a solution of 5 g L-1 ferrous sulphate was effective in correcting chlorosis that was induced by iron deficiency, and it enhanced both the growth and the yield of susceptible cultivars. Compared with the susceptible cultivar KPS2, the tolerant cultivar UT1 had a greater ability to lower the pH of the nutrient solution in response to iron deficiency. The root-associated Fe3+-reduction activity of UT1 that had been grown in -Fe medium was similar to that of the plants grown in +Fe medium when the acidification of the medium occurred. Acidification of the medium in response to iron deficiency might contribute to the efficient solubilization of iron from calcareous soils, and it related more closely to the resistance to iron deficiency than Fe3+ reduction by roots in mungbean cultivars.  相似文献   

6.
Khattak GS  Haq MA  Ashraf M  McNeilly T 《Hereditas》2001,134(3):211-217
Additive, dominance, and epistasis genetic basis of seed yield per plant, number of pods per plant, number of seeds per pod, and 1000 seed weight in mungbean (Vigna radiata (L.) Wilczek) have been examined, using Triple Test Cross (TTC) analysis. The material for TTC test was evaluated in two seasons i.e., kharif (July-October) and spring/summer (March-June), at the research station of the Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan. Epistasis was present significantly for number of pods per plant and number of seeds per pod when grown in the spring/summer season (March to June). Partition of epistasis showed that additive x additive ('i' type) interaction was an important component of number of pods per plant, and number of seeds per pod was found to be of both types 'i' type, and additive x dominance, and dominance x dominance ('j' and 'l' type) interactions. This indicated that epistasis might be a non-trivial factor in the inheritance of pods per plant, and seeds per pod in mungbean. The expression of epistasis was influenced differentially by particular genotypes, indicating that a limited number of genotypes may not be sufficient to detect non-allelic interactions for a trait in mungbean. Additive and dominance genetic components were significant for all four traits in kharif season (July to October) but only for seed yield and 1000 seed weight in spring/summer season. This suggests that the genes controlling seed yield per plant, and 1000 seed weight are equally sensitive to the environment. The predominance additive gene action in those traits is not significantly influenced by epistasis, suggesting that improvement of the traits can be achieved through standard selection procedures.  相似文献   

7.
The genetic basis of plant height at various growth stages and the degree of indetermination of plant height in six mungbean genotypes (NM 92, 6601, NM 89, VC 1560D and VC 3902A) were assessed through half diallel cross. Cultivars, 6601 and NM 92, were the best general combiner for pre-flowering dry matter accumulation and minimum increase in plant height from first flower to 90% pods maturity, respectively. For these traits, the combination NM 92 x NM 89 was the best specific combiner of all the crosses. Both additive and dominant gene effects controlled the inheritance of plant height at first pod and to 90% pods maturity, degree of indetermination of plant height (DDh) from first flower to first pod maturity (DDh1), DDh from first flower to 90% pods maturity (DDh2) and DDh from first pod maturity to 90% pods maturity (DDh3). Plant height at first flower was additively inherited. The additive gene action was predominant as compared to dominant gene action for all the traits examined. High narrow and broad sense heritability estimates for DDh2 showed that better response to selection is possible for the development of mungbean genotypes with minimum increase in plant height during post-flowering development.  相似文献   

8.
Summary Bruchids (genus Callosobruchus) are among the most destructive insect pests of mungbeans and other members of the genus, Vigna. Genetic resistance to bruchids was previously identified in a wild mungbean relative, TC1966. To analyze the underlying genetics, accelerate breeding, and provide a basis for map-based cloning of this gene, we have mapped the TC1966 bruchid resistance gene using restriction fragment length polymorphism (RFLP) markers. Fifty-eight F2 progeny from a cross between TC1966 and a susceptible mungbean cultivar were analyzed with 153 RFLP markers. Resistance mapped to a single locus on linkage group VIII, approximately 3.6 centimorgans from the nearest RFLP marker. Because the genome of mungbean is relatively small (estimated to be between 470 and 560 million base pairs), this RFLP marker may be suitable as a starting point for chromosome walking. Based on RFLP analysis, an individual was also identified in the F2 population that retained the bruchid resistance gene within a tightly linked double crossover. This individual will be valuable in developing resistant mungbean lines free of linkage drag.  相似文献   

9.
The effect of a range of ultraviolet (uv) irradiation doses on nucleic acid and protein synthesis has been studied during seed germination and seedling growth in mungbean (Vigna radiata L). The treatment of seeds with low dose irradiation were stimulative for the synthesis of these molecules.  相似文献   

10.
A promising approach for overcoming poor crop yields in phosphorus (P)-deficient soils is to exploit the genetic variation among plants to grow under low P conditions. We examined the P requirements of three mungbean cultivars, T-77, MI-5 and E-72, using four P rates, 0, 30, 60 and 90 mg P kg-1 soil (designated P0, P1, P2 and P3, respectively). Nodulation was highest in T-77, and unlike the other cultivars, nodule numbers were not increased by P application. Similarly, growth of T-77 was the highest, and was not influenced by P rates. In contrast shoot yields of MI-5 and E-72 at P0 were only 76 and 65%, respectively, of the maximum obtained under P application. Nodule dry weight and the amount of N fixed (Ndfa) in each cultivar was enhanced by P application, with T-77 generally giving the lowest response, and accumulating the highest Ndfa. The data suggest a higher P requirement for N2 fixation (especially for T-77) than for growth. All plants increased their P uptake as P rates increased, with T-77 accumulating the highest amount of P at each P level. Differences in the physiological P use efficiency, PPUE (g shoot mg-1 P) among genotypes were generally not significant, neither were there any consistent trends as P rates changed. The ability to absorb P therefore appeared to be more important than PPUE in enhancing growth. We conclude from our data that it is possible by selection to obtain plants capable of good growth and high N2 fixation in soils of low P; cultivar T-77 is a good example.  相似文献   

11.
Within this work we describe the purification and biochemical characterization of a ddNTP-sensitive DNA polymerase purified from mungbean (Vigna radiata cv B1, L.) seeds at 18 days after fertilization, when > 70% of the nuclei are reported to be in the endoreduplicated state. The purified enzyme is a single polypeptide of 62 kDa and many of its physicochemical properties are similar to those of mammalian DNA polymerase beta. Similar to the other X-family DNA polymerases, it lacks 3'-5' exonuclease activity and has short gap-filling and strand-displacement activity. The enzyme shows moderately processive DNA synthesis on a single-strand template. The determined N-terminal heptapeptide sequence of the enzyme showed clear homology with helix 1 of the N-terminal single strand DNA-binding domain (residues 32-41) of rat and human DNA polymerase beta. These results represent the first evidence for the identification and characterization of a ddNTP-sensitive DNA polymerase expressed during the endoreduplication cycle that shares biochemical and immunological similarity with mammalian DNA polymerase beta.  相似文献   

12.
Mungbean yellow mosaic India virus (MYMIV) is a major constraint on mungbean production in South and Southeast Asia. The virus belongs to the genus Begomovirus, causing yellow mosaic disease and subsequently yield loss up to 75–100 %. The present study employed F2 and BC1F1 populations derived from a cross between susceptible (BARImung 1; BM1) and resistant (BARImung 6; BM6) mungbeans to identify quantitative trait loci (QTLs) associated with resistance to MYMIV. Resistance to the virus was evaluated using F2:3 and BC1F1:2 populations under field conditions in two locations in Bangladesh in 2012. A total of 1,165 simple sequence repeat markers from different legumes were used to detect the polymorphism between BM1 and BM6. Sixty-one polymorphic markers were used to construct a linkage map comprising 11 linkage groups. Composite interval mapping consistently identified two major QTLs, qMYMIV2 on linkage group 2 and qMYMIV7 on linkage group 7, conferring the resistance in both F2 and BC1F1 populations. qMYMIV2 and qMYMIV7 accounted for 31.42–37.60 and 29.07–47.36 %, respectively, of the disease score variation, depending on populations and locations. At both loci, the resistant alleles were contributed by the parent BM6. qMYMIV2 appeared to be common to a major QTL for MYMIV resistance in mungbean reported previously, while qMYMIV7 is a new QTL for the resistance. The markers linked to the QTLs in this study are useful in marker-assisted breeding for development of mungbean varieties resistant to MYMIV.  相似文献   

13.
A phosphate solubilizing fungus, Aspergillus awamori S29 was isolated from rhizoshpere of mungbean. The phosphate solubilizing activity of A. awamori S29 in liquid was 1,110?mg/L for tricalcium phosphate (TCP). The organism was able to solubilize various inorganic forms of phosphate at a wide range of temperatures. Among various insoluble phosphate sources tested, di-calcium phosphate was solubilized the most, followed by TCP. A. awamori S29 had significant effect (p?<?0.05) on mungbean growth, total P and plant biomass under pot conditions, although no obvious difference in available P in soil and number of leaves was found compared to the control.  相似文献   

14.
Bulk segregant analysis (BSA) and random amplified polymorphic DNA (RAPD) techniques were used to analyse the F2 individuals of susceptible VBN (Gg) 2 × resistant KMG 189 to screen and identify the molecular marker linked to mungbean yellow mosaic virus (MYMV) resistant gene in mungbean. Two DNA bulks namely resistant bulks and susceptible bulks were setup by pooling equal amount of DNA from five randomly selected plants of each disease response. A total of 72 random sequence decamer oligonucleotide primers were used for RAPD analysis. Primer OPBB 05 (5′-GGGCCGAACA-3′) generated OPBB 05 260 fragment in resistant parent and their bulks but not in the susceptible parent and their bulks. Co segregation analysis was performed in resistant and susceptible F2 individuals, it confirmed that OPBB 05 260 marker was tightly linked to mungbean yellow mosaic virus resistant gene in mungbean.  相似文献   

15.
Detached mungbean (Vigna radiata L.Wilczek) leaves were inoculated with a conidial suspension of a local isolate (TI-1) of the powdery mildew pathogen (Erysiphe polygoni DC) under controlled environment conditions. Based on the latent period and severity of the infection, a rating scale of 0–5 was used to classify the host pathogen interactions. Reactions 0, 1 and 2 were considered resistant and referred to as R0, R1 and R2 while 3, 4 and 5 were classified as susceptible (S). RUM lines (resistant to powdery mildew) and their derivatives are crossed with several susceptible (reaction types 3–5) genotypes and the inheritance of the resistance was studied in the F1, F2 and F3 generations. The results showed that powdery mildew resistance in mungbean is governed by two dominant genes designated as Pm-1 and Pm-2. When both Pm-1 and Pm-2 were present, an R0 reaction was observed after inoculation with TI-1. The resistant reaction was R1 when only Pm-1 was present and R2 in the presence of Pm-2. In the absence of both Pm-1 and Pm-2, susceptible reactions 3, 4 and 5 were observed.  相似文献   

16.
Nitrogen is exported in the form of ureides or amides from the nodules in pulse crops. In order to understand the carbon metabolism in ureide and amide exporting nodules, activities of enzymes involved in glucose metabolism were compared in cytosolic and bacteroidal fractions of mungbean (ureide exporter) and lentil (amide exporter) nodules during development. Activities of hexokinase, fructokinase, phosphoglucomutase, fructose-1,6-bisphosphatase, phosphohexose isomerase and UDP-glucose pyrophosphorylase were detected in cytosolic fraction of nodules of both the crops during development. Out of these enzymes, specific activity of phosphohexose isomerase was the highest in nodules of both the crops, in comparison with other enzymes. In comparison with mungbean, activities of various enzymes were less in cytosolic fraction of lentil. Activities of hexokinase, fructokinase, phosphoglucomutase were present only in cytosolic fraction of mungbean (Vigna radiata L.), however, low activity of these enzymes was also observed in lentil (Lens culinaris L.) bacteroids. Activities of phosphohexose isomerase and fructose-1,6-bisphosphatase were higher in bacteroids of lentil, as compared to mungbean during early nodule development, but this pattern was reversed with progress of crop development. Higher activities of phosphoglucomutase and fructose-1,6-phosphatase in mungbean cytosolic fraction could lead to increased flow of carbon towards pentose phosphate pathway.  相似文献   

17.
Explanted cotyledons of mungbean Vigna radiata (L). Wilczek, variety Pag-asa-1, regenerated shoots directly from the basal adaxial side of the petiolar residue on MS medium supplemented with 8.9 M 6-benzyladenine. A simplified and rapid procedure for glycol methacrylate sectioning for histological observations was used to observe shoot initiation. At the time of culture, comparatively smaller and differentially stained epidermal cells were present on the basal adaxial region of the petiolar residue. A meristematic cell mass that developed at 48 h after culture appeared to be of epidermal and subepidermal cell origin. Scanning electron microscopy revealed shoot primordia and approximately 2 nodules at the base of the petiole as early as 48 h after culture. All of these structures developed into shoots during incubation.Abbreviations FAA formalin 5%–70% ethanol, 90%-acetic acid 5% - GMA glycol methacrylate - BA 6-benzyladenine  相似文献   

18.
Flooding-induced changes in leaf gas exchanges, grain yield, and yield-related parameters of mungbean were evaluated employing two flood-tolerant (GK48 and VC3945A) and one flood-susceptible (Vo1982A-G) genotypes. Three flooding regimes viz. 1, 3 and 7-day were imposed at vegetative, flowering, and pod-fill stages. Flooding caused a drastic reduction in photosynthesis rates (P n), irrespective of flooding duration. However, the flooded plants recovered P n to a large extent depending on genotypes. Used genotypes showed a significant variation in P n during and after flooding. Post-flooding recovery in P n of GK48 and VC3945A was more pronounced at the vegetative and flowering stages than the pod-fill stage. At the pod-fill stage, only plants of GK48 survived when flooding prolonged for 7 days. Flooded plants showed higher intercellular CO2 concentrations (C i), and reduced stomatal conductance (g s). However, during recovery, P n increased significantly along with reduced C i in flood-tolerant GK48 and VC3945A genotypes. In contrast, C i remained high and P n recovery was minimal in flood-susceptible Vo1982A-G genotype. This implies that mesophyll tolerance rather than stomatal factor might be the major limitation of P n recovery in a susceptible genotype. Very weak relationship between P n and transpiration rate (T r) indicated low water use efficiency (WUE) in flooded plants, but subsequent recovery of both the parameters, suggesting higher WUE, particularly in tolerant genotypes. Seed yield of mungbean was the product of number of pods per plant and seed size, and longer the flooding period, the lower were the pods per plant at the flowering and pod-fill stage. Flooding reduced seed yield in all the three genotypes, but the extent of reduction was much less in flood-tolerant GK48 and VC3945A. Higher yield of flood-tolerant genotypes may be attributed to the rapid recovery of leaf gas exchanges.  相似文献   

19.
Iron deficiency chlorosis (IDC) is a major problem reducing yield of mungbean in many countries. In this study, we crossed “KPS1”, the most popular Thai mungbean cultivar susceptible to IDC with “NM10-12”, a mungbean line from Pakistan resistant to IDC. Segregation analysis of the F2 population revealed that the resistance is controlled by a major gene (IR) with dominant effect. Two AFLP markers, E-ACT/M-CTA and E-ACC/M-CTG were identified closely linking with the IR gene. The frequencies of these markers were assessed in 241 mungbean accessions from several countries. The accessions could be divided, in relative to total chlorophyll content of the resistant check (NM10-12) and the susceptible check (KPS1), into the resistant group with 125 accessions and the susceptible group with 116 accessions. Among 125 resistant accessions, E-ACT/M-CTA and E-ACC/M-CTG were present in 119 (95%) and 109 (87%) accessions, respectively. Both markers can identify all resistant accessions from England, Indonesia and Pakistan, but only E-ACT/M-CTA linked to all resistant accessions from Australia, India, Iraq, Taiwan and Thailand. Understanding the inheritance and identifying molecular markers linking to the IR gene can help plant breeders to improve this crop for growing in iron-deficient soils.  相似文献   

20.
Genome relationships between mungbean (Vigna tradiata) and cowpea (V. Unguiculata) based on the linkage arrangement of random genomic restriction fragment length polymorphism (RFLP) markers have been investigated. A common set of probes derived from cowpea, common bean (Phaseolus vulgaris), mungbean, and soybean (Glycine max) PstI genomic libraries were used to construct the genetic linkage maps. In both species, a single F2 population from a cross between an improved cultivar and a putative wild progenitor species was used to follow the segregation of the RFLP markers. Approximately 90% of the probes hybridized to both mungbean and cowpea DNA, indicating a high degree of similarity in the nucleotide sequences among these species. A higher level of polymorphism was detected in the mungbean population (75.7%) than in the cowpea population (41.2%). Loci exhibiting duplications, null phenotypes, and distorted segregation ratios were detected in both populations. Random genomic DNA RFLP loci account for about 89% of the currently mapped markers with a few cDNA and RAPD markers added. The current mungbean map is comprised of 171 loci/loci clusters distributed in 14 linkage groups spanning a total of 1570cM. On the other hand, 97 markers covered 684 cM and defined 10 linkage groups in the current cowpea map. The mungbean and cowpea genomes were compared on the basis of the copy number and linkage arrangement of 53 markers mapped in common between the two species. Results indicate that nucleotide sequences are conserved, but variation in copy number were detected and several rearrangements in linkage orders appeared to have occurred since the divergence of the two species. Entire linkage groups were not conserved, but several large linkage blocks were maintained in both genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号