首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Species of Mediterranean vegetation are known to regenerate directly after fire. The phenomenon of autosuccession (direct regeneration) has been found to be often combined with an increase of species richness during the first years after fire due to the high abundance of short-lived herbaceous plants facilitated by plentiful nutrients and light. The high degree of vegetation resilience, which is expressed in terms of autosuccession, has been explained by the selective pressure of fire in historic times. According to existing palaeoecological data, however, the Pinus halepensis forests in the Ricote Mountains (Province of Murcia, SE Spain) did not experience substantial fire impact before the presence of man nor are they especially fire-prone today. Therefore, we studied post-fire regeneration to find out if direct succession is present or if species from pre-fire vegetation are absent during the post-fire regeneration stages. Patterns of succession were deduced from observations made in sample plots on sites of a known regeneration age as well as in adjacent unburnt areas. The results of the vegetation analyses, including a Detrended Correspondence Analysis, indicate that Pinus halepensis forest regeneration after fire resembles autosuccession. As regards the presence of woody species, there is a high percentage similarity on north (83%) and south (70%) facing slopes during the first year after fire vs. reference areas which is due, for example, to direct regeneration of the resprouting Quercus coccifera or seeders like Pinus halepensis or Fumana laevipes. However, if herbaceous species are included in the comparison, the similarity on north-facing sites decreases (to 53%) with the presence of additional species, mainly ruderals like Anagallis arvensis or Reseda phyteuma, and even woody species on the burnt plots. This effect indicates “enhanced autosuccession”, which was not found on south-facing sites where overall species richness was very high irrespective of the impact of fire. Locally we found limited regeneration of some species, for example Pinus halepensis at high altitudes (1000 m), even 22 years after fire. As we assume that historical fires did not play an important role in the area and direct succession is present nevertheless, our results support the theory that autosuccession is not a process restricted to fire-prone areas. Fire has been only one of several selective forces since human settlement that probably led to a set of species pre-adapted against recurrent disturbance.  相似文献   

2.
Kazanis  Dimitris  Arianoutsou  Margarita 《Plant Ecology》2004,171(1-2):101-121
A hierarchical approach for plant functional classification was applied to describe long-term vegetation change in Pinus halepensis burned forests. Plant species were initially grouped according to their growth form and afterwards data on species modes of regeneration, persistence and dispersal, together with some other specific competitive advantages were explored, resulting in the identification of 29 different functional groups, 14 for woody and 15 for herbaceous species. Three types of Pinus halepensis forests were identified, according to the structure of the understorey. For each forest type, a post-fire chronosequence of communities was selected for sampling. Data sampling was performed for at least two consecutive years in each community, so as to reduce the shortcomings of the synchronic approach and to increase the age range of each chronosequence. Even though the vast majority of the functional groups proved to be persistent throughout the post-fire development of vegetation, their species richness and abundance did not remain stable. An increase of annual herb richness and abundance was recorded in the first years after the fire, with the leguminous species forming the dominant functional group. For perennial herbs, the most abundant group was of species with vivid lateral growth, while the group of species with subterranean resource organs included the highest number of species. Finally, as far as the woody species are concerned, the groups that played the most important role in defining vegetation structure were the mono-specific group of the pine, the group of resprouting sclerophyllous tall shrubs and the group of obligate seeder short shrubs (with Cistusspp., among others). A negative relationship between the abundance of woody obligate resprouters and the regeneration of woody obligate seeders was found. The advantage of the proposed functional group approach over classical floristic or structural approaches for the long-term study of communities is discussed, together with the applicability of this approach in studies of vegetation risk assessments due to fire regime alterations.  相似文献   

3.
Regeneration mode is one of the key attributes determining population structure and dynamics of plant species. We investigated long-term patterns after fire in the cover of plant species in a 100-year chronosequence of burned Pinus brutia forests in a humid Mediterranean climate region in Turkey. Significant trends were present in the change of cover in major species through post-fire chronosequence, and species with similar trends were clustered in relation to their regeneration modes. Obligate resprouters increased their cover from the early post-fire years to the later stages, while cover of obligate seeders with a soil seed bank increased in the early years, but then decreased through time. Facultative resprouters were at an intermediate position, with an increase in cover until mid-successional stages and then a decrease through time. The cover of the only obligate seeder with a canopy seed bank (P. brutia) followed a linear increasing trend during the succession. When species with the same regeneration mode were grouped, the same trends were observed with more explained variances. A few life-history traits were enough to explain the observed trends. Our study shows that regeneration mode is an explanatory functional grouping system for describing long-term post-fire dynamics of Mediterranean Basin woody species. We suggest that regeneration mode must be a major component of any vegetation or forest stand dynamics model in the Mediterranean Basin. This result has important implications for the management of Mediterranean Basin ecosystems, and can potentially be extrapolated to other Mediterranean-type fire-prone ecosystems.  相似文献   

4.
Ne'eman  Gidi  Goubitz  Shirrinka  Nathan  Ran 《Plant Ecology》2004,171(1-2):69-79

Fire is known to be a major factor in shaping plants and vegetation worldwide. Many plant traits have been described as adaptations for surviving fire, or regenerating after it. However, many of the traits are also advantageous for overcoming other disturbances. The fact that fire in the Mediterranean Basin has been almost exclusively of anthropogenic origin, and thus is of short duration in an evolutionary time scale, cast doubt on the possibility that fire can act as a selective force in the Mediterranean Basin. Our aim here is to review the ecological advantages of Pinus halepensis traits and their possibility to be selected by fire. The non-self pruning of cones and branches, and the high resin content increase the probability of canopy fires and consequent death of P. halepensis trees. Post-fire regeneration of P. halepensis depends totally upon its canopy-stored seed bank. The seedlings grow quickly and they first reproduce at an early age. Young reproductive trees function first as females with a high percentage of serotinous cones. Thus, young P. halepensistrees allocate many resources to seed production, reducing their `immaturity risk' in a case of an early successive fire. The proportion of serotinous cones is higher in post-fire naturally regenerating stands than in unburned stands, and seeds from serotinous cones germinate better under simulated post-fire conditions. The extremely high pH of the ash-bed under the burned canopies creates the post-fire regeneration niche of P. halepensis exactly under their parent trees. All these traits are advantageous for post-fire regeneration, but could they also be selected during the time scale of anthropogenic fires in the Mediterranean Basin? Pinus halepensis is a relatively short living tree with almost no recruitment under forest canopy. The longest estimated fire-return interval and generation length are about 125 years. The earliest solid evidence for the first hominid-controlled fire in the Mediterranean basin is 780,000 years ago, and thus the estimated number of post-fire generations is 6240. We suggest that such a number of generations is sufficient for the selection and radiation of fire adaptive traits in P. halepensis.

  相似文献   

5.
Frequent fires reduce the abundance of woody plant species and favour herbaceous species. Plant species richness also tends to increase with decreasing vegetation biomass and cover due to reduced competition for light. We assessed the influence of variable fire histories and site biomass on the following diversity measures: woody and herbaceous species richness, overall species richness and evenness, and life form evenness (i.e. the relative abundance or dominance among six herbaceous and six woody plant life forms), across 16 mixed jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) forest stands in south‐west Australia. Fire frequency was defined as the total number of fires over a 30‐year period. Overall species richness and species evenness did not vary with fire frequency or biomass. However, there were more herbaceous species (particularly rushes, geophytes and herbs) where there were fewer shrubs and low biomass, suggesting that more herbaceous species coexist where dominance by shrubs is low. Frequently burnt plots also had lower number and abundance of shrub species. Life form evenness was also higher at both high fire frequency and low biomass sites. These results suggest that the impact of fire frequency and biomass on vegetation composition is mediated by local interactions among different life forms rather than among individual species. Our results demonstrate that measuring the variation in the relative diversity of different woody and herbaceous life forms is crucial to understanding the compositional response of forests and other structurally complex vegetation communities to changes in disturbance regime such as increased fire frequency.  相似文献   

6.
《Acta Oecologica》2002,23(6):393-404
Shrubland responses to experimental burning, cutting and ploughing treatments were studied over 15 years in two shrubland communities dominated by Erica australis. The treatments represent the most frequent forms of anthropogenic disturbances experienced by these communities throughout their history. The response to burning and cutting treatments is similar, and the succession process is characterised as autosuccession. The highest values for herbaceous annuals and perennials were observed in the third and fourth years. Generally, herbaceous species remain present throughout the study period, while woody taxa ones increase their cover values over time. The quantity of herbaceous species present is in inverse proportion to the quantity of woody taxa. The woody species that appear immediately after treatments are sprouting species, namely Erica australis and Arctostaphylos uva-ursi. The response to ploughing is slower, reflecting the recovery mechanism (seedlings). However, after 15 years, there are no significant differences in regeneration between treatments. The first stages of this post-ploughing succession are dominated by annual species until the fourth or fifth years, after which woody species begin to dominate and herbaceous taxa decrease considerably. Woody species with high germination values are Halimium alyssoides and Halimium umbellatum. These shrubland communities have a very high resilience to such perturbations and start regenerating rapidly, reaching the original state in about 9 years. The appearance of the climax arboreal species of the area, Quercus pyrenaica, when it comes from germination, occurs 15 years after the perturbations.  相似文献   

7.
Very high-severity fires are a component of many fire-prone ecosystems, yet are often viewed as detrimental to vegetation. However, species in such systems are likely to have adapted to persist under a fire regime that includes high-severity fires. We examined how fire severity affects post-fire recruitment and residual seed banks of Acacia species and whether severity may affect plant responses to fire intervals. Nine sites of either high or low burn severity were identified after a large-scale mixed-severity fire in Warrumbungle National Park, south-eastern Australia. Transects were used to sample above-ground woody plant density. Seed bank size was surveyed by soil extraction from two depths and manual searching for seeds. Residual soil seed bank and recruitment were compared across the two burn severities. Acacia seedling density was higher in areas burnt at high severity, indicating that increased severity triggers increased germination from the seed bank. Size of residual seed bank was smaller after high-severity fire, but varied between species, with few Acacia cheelii seeds remaining despite high above-ground abundance. In contrast, A. penninervis retained a small residual seed bank. There was little evidence of negative effects on populations of Acacia species after high-severity burns. However, we found that high fire severity may impact on the ability of a species to persist in response to a subsequent short fire interval. Fire management for maintaining biodiversity needs to consider other key aspects of the fire regime, including severity and season, rather than focusing solely on fire frequency.  相似文献   

8.
Quercus ilex and Pinus halepensis are two of the most common tree species of the western Mediterranean basin. Both species regenerate reliably after fire: P. halepensis colonizes recently disturbed areas by effective seedling recruitment, while Q. ilex resprouts vigorously after disturbances. For this reason, the natural regeneration of these species after fire should ensure the re-establishment of a forest similar to that which existed before the fire. This study analyzes with a simple simulation model whether or not the relative abundance of monospecific and mixed forests of these species in the landscape is altered by fire. We also analyze the topographic factors and the forest structure before the fire that determine the changes in forest composition after fire. This study has been carried out in a large fire that occurred in NE Spain. Overall, 33% of plots changed to another community type, but this probability of change varied considerably among community types before the fire. Monospecific forests of P. halepensis or Q. ilex had a high probability of remaining in their original composition after the fire, whereas the resilience of mixed forests of these two species was quite low. Mixed forests changed for the most part to monospecific P. halepensis or Q. ilex forests. Analysis of several factors determining these changes indicated that only elevation as a significant topographical variable. The effect of fire was to increase the altitudinal differentiation between the two species. P. halepensis forests that changed to mixed or Q. ilex forests were those of highest elevation, while the mixed and Q. ilex plots that changed to P. halepensis forests were those located at the lowest elevations. Concerning structural variables before fire, density of Q. ilex trees before the fire showed a much greater effect than P. halepensis density in determining the post-fire community. Finally, burn severity also influenced the changes observed. For both P. halepensis and Q. ilex forests, plots that changed to another forest type were mainly those that burned more severely. In the case of mixed forests, even low fire severities involved high probabilities of change to monospecific forests.  相似文献   

9.
黑龙江省大兴安岭林区火烧迹地森林更新及其影响因子   总被引:8,自引:0,他引:8  
林火干扰是大兴安岭森林更新的影响因子之一,研究火烧迹地森林更新的影响因子(立地条件、火前植被、火干扰特征)对理解生态系统的结构、功能和火后演替轨迹具有重要意义。选取呼中及新林林业局55个代表性火烧样地,利用增强回归树分析法分析了火烧迹地森林更新的影响因素。结果表明:(1)立地条件是影响针、阔叶树更新苗密度的主要因素;海拔对针叶树更新苗密度的影响最大;坡度对阔叶树更新苗密度影响最大;(2)距上次火烧时间对针叶树更新苗比重影响最大,其次是林型;(3)中度林火干扰后森林更新状况好于轻度和重度火烧迹地。根据火烧迹地森林更新调查分析可知:林型影响火后演替模式,火前为针叶树或阔叶树纯林,火后易发生自我更新(火后树种更新组成与火前林型相同),而针阔混交林在火干扰影响下易于发生序列演替(火后初期以早期演替树种更新为主)。  相似文献   

10.
This paper deals with the post-fire regeneration of Pinus halepensis Mill. ecosystems in the Sithonia peninsula in northern Greece. The pre-burning stands consisted of two storeys; the overstorey of the dominant tree species P. halepensis and the understorey of evergreen sclerophyllous shrubs. The wildfire took place in June 1994. Three months after the fire two experimental plots of 0.75 ha each were established on a northeastern and a southwestern facing slope. In each experimental plot different restoration treatments were applied by using P. halepensis reproductive material. The treatments were the following: (i) planting of paper- pot seedlings, (ii) planting of bare-root seedlings, (iii) seeding in patches, (iv) seeding in strips, (v) seeding in strips and lines. The results of these treatments were compared to the control (no treatment applied). The results showed that all applied restoration works accelerated the rate of regeneration, while the best results were obtained by the method of planting paper-pot seedlings.  相似文献   

11.
《Acta Oecologica》2004,25(3):137-142
We studied patterns of small mammal abundance and species richness in post-fire habitats by sampling 33 plots (225 m2 each) representing different stages of vegetation recovery after fire. Small mammal abundance was estimated by live trapping during early spring 1999 and vegetation structure was sampled by visual estimation at the same plots. Recently–burnt areas were characterised by shrubby and herbaceous vegetation with low structural variability, and unburnt areas were characterised by well developed forest cover with high structural complexity. Small mammal abundance and species richness decreased with time elapsed since the last fire (from 5 to at least 50 years), and these differences were associated to the decreasing cover of short shrubs as the post-fire succession of plant communities advanced. However, relationships between vegetation structure and small mammals differed among areas burned in different times, with weak or negative relationship in recently burnt areas and positive and stronger relationship in unburnt areas. Furthermore, the abundance of small mammals was larger than expected from vegetation structure in plots burned recently whereas the contrary pattern was found in unburned areas. We hypothesised that the pattern observed could be related to the responses of small mammal predators to changes in vegetation and landscape structure promoted by fire. Fire-related fragmentation could have promoted the isolation of forest predators (owls and carnivores) in unburned forest patches, a fact that could have produced a higher predation pressure for small mammals. Conversely, small mammal populations would have been enhanced in early post-fire stages by lower predator numbers combined with better predator protection in areas covered by resprouting woody vegetation.  相似文献   

12.
Postfire vegetation regeneration in many fire-prone ecosystems is soil seed bank dependent. Although vegetation and seed bank may be spatially structured, the role of prefire vegetation patterns and fire in determining postfire vegetation patterns is poorly known. Here, we investigated the spatial patterning of species abundance and richness in the vegetation and seed bank of a Mediterranean encroached dehesa in Central Spain. The seed bank was studied with and without a heat shock simulating a spatially homogeneous fire. Semivariograms and cross-semivariograms showed that species richness in the vegetation was aggregated in patches, mainly of herbs, with highest values corresponding to high herb cover and low tree cover. Species richness in the seed bank was also structured in patches, but the spatial pattern was weak. Seedling density of germinates in the seed bank also showed weak spatial pattern. Heating increased overall germination and species richness, and the intensity of the spatial pattern of species richness, particularly of herbaceous species. However, seed bank density patterns disappeared after heat shock because of increased germination of shrubs without spatial pattern. Our results document that the spatial structure of plant richness in the vegetation may persist after fire due to the spatial patterns of herbaceous species in the seed bank, and that postfire species richness patterns can arise independently of fire intensity patterns. However, the spatial structure of the vegetation after fire can be altered by the feedback between shrub encroachment and an eventual fire because of the ubiquitous germination of shrubs.  相似文献   

13.
Resilience against sudden changes in the environment is a very desirable trait in plants used for ecosystem restoration. Mediterranean-like vegetation exhibits particularly strong fire resilience. There are two main functional groups of fire-prone species among Mediterranean-like vegetation: seeders and resprouters. Our aims were to describe how the theory of succession after fire relates to rehabilitation and to use this knowledge to improve the results of rehabilitation attempts in Mediterranean-like ecosystems. Eight post-fire (PF) sites, 14 post-rehabilitated (PR) quarry sites and two woodland sites were sampled. Detrended Canonical Correspondence Analysis (DCCA) showed that PF and PR successions were quite different. Both displayed an increasing abundance of resprouters over time, but seeder density increased throughout PR succession and decreased during PF succession. Nine species were common to both successions in all studied stages. The results showed that until 15-21 years of succession, the post-rehabilitation sites had not become as resilient to fires as sites populated by indigenous vegetation due to the lack of a seeder seed bank. However, after 21 years of PR succession, the exponentially increasing seeder population may allow for seed bank formation and thus eventually improve the fire resilience of the site.  相似文献   

14.
Calluna-dominated heathlands are widespread in N. Britain, especially in the eastern and central part of Scotland. The plant communities of these heathland ecosystems are influenced by regular burning as a land management practice. In a well-controlled fire, regeneration takes place both vegetatively (from surviving stem bases or underground rhizomes) and from seed. But there is always a post-fire successon taking place even in this brief period of vegetation reoovery. In order to understand the biological mechanisms operating in the post-fire succession, the present work was carried out to examine regeneration behaviour of different species. Three ‘regenerative strategies’ were identified: I. Woody low-shrubs with slow bud development to begin with, followed by vigorous and profuse branching, becoming dominant after two years; II. Small herbaceous hemicryptophytes; sprouting not as prolific as in plants of group I, but more vigorous than in plants of group III; III. Geophytes with rapid development, important in the first 2–3 years.  相似文献   

15.
Goubitz  S.  Nathan  R.  Roitemberg  R.  Shmida  A.  Ne’eman  G. 《Plant Ecology》2004,173(2):191-201
To assess the canopy seed bank structure of Pinus halepensis, we measured the level of serotiny and the seed bank size and density of trees in unburned stands and post-fire regenerated stands in Israel. We analysed the effects of tree size, tree density and fire history on the level of serotiny. The level of serotiny decreased with an increase in tree height. The high level of serotiny in short trees could be explained by selection to increase regeneration chances after burning at pre-mature age. Also, limitation of long-distance seed dispersal opportunities in short trees may favour high serotiny levels. The level of serotiny was higher in post-fire stands than in unburned stands, suggesting a fast selection for serotiny by fire. Unburned stands had a higher total stand seed density than post-fire regenerated stands, but the proportion of seeds in serotinous cones of the total stand seed density was higher in post-fire regenerated stands. The fact that P. halepensis bears simultaneously serotinous and non-serotinous cones reflects its dual strategy as both a post-fire obligate seeder, mainly from serotinous cones and an early coloniser during fire-free periods, mainly from non-serotinous cones. The relative investment in these strategies is dependent on fire history and varies with tree height. Furthermore, mature brown cones can contribute to post-fire regeneration in case of spring fires, and serotinous cones are known to open partially also in dry spell events. Thus, post-fire regeneration and invasion are strategies, which seem to complement each other.  相似文献   

16.
For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.  相似文献   

17.
Abstract. We document post‐fire succession on xeric sites in the southern Appalachian Mountains, USA and assess effects of 20th century reduction in fire frequency on vegetation structure and composition. Successional studies over 18 yr on permanent plots that had burned in 1976–1977 indicate that tree mortality and vegetation response varied with fuel load and fire season. In the first three years after fire, hardwood sprouts dominated tree regeneration. On sites where summer and autumn fires reduced litter depth to less than 1 cm, densities of shade‐intolerant Pinus seedlings increased steadily over this period. 4 to 8 yr after fire, large numbers of newly established seedlings and sprouts had grown to 1 – 10 cm DBH. By year 18 growth of these saplings led to canopy closure on most sites. Herbaceous cover and richness peaked in the first decade after fire, then declined. On similar sites that had not burned in more than 50 yr, regeneration of shade‐intolerant Pinus spp. and mean cover and richness of herbs were considerably lower than those observed on recently burned plots. Reconstructions of landscape conditions based on observed post‐fire succession and 20th century changes in fire regime suggest that reductions in fire frequency circa 1940 led to substantial changes in forest structure and decreases in cover and richness of herbaceous species.  相似文献   

18.
《Acta Oecologica》2004,25(1-2):1-6
The aboveground biomass of three woody species (Cistus albidus, Quercus coccifera and Pinus halepensis) in two early successional stages (3- and 10-year old) of a post-fire Mediterranean ecosystem was investigated. Among these three species, which belong to the successional series of holm oak (Quercus ilex), C. albidus and Q. coccifera are two dominant shrub species in the garrigue ecosystem and P. halepensis is a pioneer tree species widely represented in the Mediterranean area. The results obtained showed that in monospecific stands, C. albidus and Q. coccifera had a high recovery potential. In the 3-year-old stands, the cover of P. halepensis was only 19.8% for a total biomass of 0.75 ± 0.21 t ha–1, while the plant cover of C. albidus and Q. coccifera was, respectively, 26% and 85.5% and biomass was 4.72 ± 1.09 and 11.5 ± 0.16 t ha–1. Only 10 years after fire, the plant cover of C. albidus and Q. coccifera was, respectively, 55% and 100% and total biomass 13.2 ± 1.7 and 35.8 ± 4.7 t ha–1. The greatest increase in biomass was noted for P. halepensis (29.7 t ha–1). If mean annual biomass increments are considered, it appears that there was a significant decrease with the stand age for the two shrub species although the tree species showed an increase in productivity. These differing patterns in biomass and productivity of shrub and tree species with stand age provide information on biomass accumulation rates of pioneer species in a Mediterranean succession and their importance in the vegetation dynamics.  相似文献   

19.
The early post-fire plant succession in fynbos vegetation in the Mediterranean-type climate area of South Africa was studied. Relatively little has been published on this early stage of plant succession in fynbos. Annual sampling over the first three post-fire years confirmed a steady, but relatively slow increase in plant canopy cover of shrubs and graminoids (mainly Restionaceae), whereas cover of geophytes and other herbs peaked in the first year and declined significantly, thereafter. Cover of annual plants increased each year, which may relate to the persistence of a relatively open vegetation cover by the third year. The responses of reseeder and resprouter species of the Restionaceae to the post-fire environment appeared to be habitat dependent. Cover of the reseeders increased rapidly in seep areas, but their recovery was distinctly delayed in dryland areas outside the seeps. Re-establishment of the many reseeder Erica species appeared to be delayed until the second post-fire year. Seed banks of these species were possibly negatively impacted by the fire, and required dispersal of seed from unburnt areas for recruitment. In contrast to some current generalisations, species richness appeared to increase after the fire; less certainly from the first to the second year, but more certainly from the second to the third year. Therefore, this study does not support a short-term monotonic decline in species richness after fire in fynbos.  相似文献   

20.
Summer wildfires and autumn torrential rainfall are the background to the development of one of the most important environmental problems in the western Mediterranean area: erosion, degradation of soil structure and desertification. These processes especially affect plant communities located in old abandoned fields where woody sprouters are practically absent. Under these conditions, post-fire vegetation cover is dependent on obligate seeders and, in the short term, especially on resprouting perennial grasses. Brachypodium retusum is a rhizomatous perennial grass that plays a particularly important role in the resilience of these fire-prone Mediterranean ecosystems. In Mediterranean gorse shrublands, during the first few years after a fire, this species represents 90% of plant cover and biomass. The recurrence or severity of fire does not seem to affect the regeneration capacity of this species. After two years, even under high fire frequency (12 years) and high fire severity (> 400°C), it recovers both cover and biomass. Nevertheless, this species, a key factor in the control of soil erosion, is extremely affected by erosion processes. A single extreme rainfall event reduces the rate of regeneration of B. retusum by about 50%. The reduction in the protective cover of this species may result in degradation and eventual self-induced degrading process in the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号