首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Decomposition of Phragmites australis (Cav. Trin ex Steudel) rhizome was studied at Lake Fert?/Neusiedler See using the litter bag technique. Samples were analysed for rhizome dry mass, fibre (cellulose, hemicellulose, lignin) and nutrient content (C, N, P and S), litter-associated fungal biomass, potential microbial respiration (electron transport activity: ETS) and cellulolitic bacteria. The mass loss of decomposing rhizome was rapid in the initial period and only 13.6% of the dry mass remained at the end of the experiment during 953 days. Substantial quantities of C, N, S and P were lost during 99 days; only 18% C, 19% N, 14% S and 6.4% of the P remained after 953 days. Hemicellulose degraded more rapidly than the other fibres whilst the lignin had the slowest rate of decomposition. Bacteria were found to be the primary colonizers of plant detritus, which was followed by fungal growth. An antagonistic relationship was observed between bacteria and fungi. Fungal biomass as determined by ergosterol concentrations ranged between 4.1 and 420 μg g−1 and peaked every year in September. The number of cellulolitic bacteria varied from 0 to 22 MPN g−1 with higher values in summer. The ETS-activity ranged between 0.1 and 1.6 mg O2 g−1 h−1. The changes in ETS-activity varied almost in parallel with the in situ temperature of the lake water.  相似文献   

2.
《Aquatic Botany》2001,69(2-4):217-234
Decomposition processes were investigated in the soil of a declining, more eutrophic and a healthy, less eutrophic freshwater reed (Phragmites australis (Cav.) Trin. ex Steudel) stand in the littoral zone of Rožmberk fishpond, Czech Republic. Soil and pore water were sampled five times from April to October 1998. Chemical properties, CO2 production in oxic and anoxic conditions, CH4 production, denitrifying enzyme activity (DEA) and bacterial biomass were measured under laboratory conditions in suspensions prepared from homogenised soil samples. The more eutrophic West stand was more anaerobic than the East stand, with lower redox potential, lower pH and with a higher amount of organic acids, mainly acetic and lactic acid. Mean seasonal concentrations of total nitrogen in pore water, nitrogen of amino acids and proteins, and reducing sugars were all higher in the soil at the more eutrophic stand. Higher nutrient status and more reduced conditions at the more eutrophic stand were accompanied by (i) a limitation of aerobic microbial activities (CO2 production in oxic conditions: 0.35 versus 0.54 μmol CO2 cm−3 h−1); lower DEA (4.0 versus 20.2 nmol N2O cm−3 h−1) and a lower proportion of bacteria that were active in aerobic conditions; (ii) by a prevalence of anaerobic over aerobic microbial processes; (iii) by a higher rate of methanogenesis (15.0 versus 11.5 nmol CH4 cm−3 h−1) and (iv) by an overall lower rate of microbial processes as compared to less eutrophied stand. The shift from aerobic to anaerobic microbial metabolism, and a coinciding restriction of metabolic activities at the more eutrophic stand are indicative of an elevated oxygen stress in the soil, associated with accumulation of metabolites toxic to both the micro-organisms and the reed. Possible links between eutrophication, decomposition processes in the soil and reed decline are discussed.  相似文献   

3.
The change in dried rhizome samples that were left to decompose was investigated to elucidate the effects of rhizome age on the decomposition rate of Phragmites australis. Rhizomes were classified into five age categories and placed 30 cm below the soil surface of a reed stand. After 369 days of decay, new (i.e., aged less than one year) rhizomes had lost 84% of their original dry mass, compared with a loss of 41–62% for that of older rhizomes. The exponential decay rates of older rhizomes were nearly identical to that of aboveground biomass. The nitrogen (N) concentration increased to two times its original values, but the phosphorus (P) concentration remained constant after an initial loss by leaching. The carbon to nitrogen (C:N) and carbon to phosphorus ratios (C:P) leveled out at 22:1 to 38:1 and 828:1 to 1431:1, respectively, regardless of rhizome age. The results are important to understand the nutrient cycles of reed-dominant marsh ecosystems.  相似文献   

4.
This study estimated the decomposition rate and nutrient dynamics of Phragmites australis litter in Lake Burullus (Egypt) and investigated the amount of nutrients released back into the water after the decomposition of the dead tissues. Phragmites australis detritus decomposition was studied from April to September 2003 utilizing the leaf, stem, and rhizome litterbags technique with coarse mesh (5 mm) bags on five sampling dates and with nine replicate packs per sample. All samples were dried, weighed and analyzed for N, P, Ca, Mg, Na, and K concentrations. The exponential breakdown rate of leaves (?0.0117/day) was significantly higher than that of rhizomes (?0.0040/day) and stems (?0.0036/day). N, Na and K mineralization were the highest from leaf litter, followed by rhizomes and stems, while P, Ca and Mg mineralization were the highest from rhizomes, followed by leaves and stems. The dead shoot biomass at the end of 2003 amounted to 4550 g DM/m2 which enters the decomposition process. By using the decay rate of 0.0117 and 0.0036/day for the leaves and stems, 3487 g DM/m2 is decomposed in a year, leaving only 1063 g DM/m2 after 1 year. This is mainly equivalent to releasing the following nutrients into surrounding water (in g/m2): 24.4 N, 1.1 P, 15.5 Ca, 3.5 Mg, 11.3 Na and 16.7 K. In conclusion, the present study indicates a significant difference in relation to the type of litter; these breakdown rates were generally greater than most rates reported in previous studies that used the same technique and mesh size.  相似文献   

5.
A field incubator based on a closed flow system was applied for primary productivity measurements in situ. The seasonal development of epiphytes showed a pronounced productivity maximum in May (610 mg C m−2 Phragmites stand d−1) and a maximum chlorophyll a content of 414 mg m−2 Phragmites stand. Substratum limitation was indicated during the spring maximum. Primary productivity and biomass decreased to low values in late summer, mainly due to shading from the aerial shoots. Significant quantitative heterogeneities in epiphyte biomass occurred over a few decimeter of Phragmites stem. Productivity and biomass were higher on old stems than on new ones throughout the growth period. The annual epiphyte production (23,7 g C m−2 Phragmites stand) was mainly a result of the spring maximum. The fact that 64% was produced on old stems emphasizes the importance of the highly variable degree to which these may be destroyed. The host plant phenology appears from this investigation to be a key factor affecting epiphyte growth in the emergent vegetation determined by (1) the amount of available substratum and (2) the light penetration through the canopy.  相似文献   

6.
Albay  Meric  Akcaalan  Reyhan 《Hydrobiologia》2003,506(1-3):531-540
Hydrobiologia - Colonisation of epiphytic algae on the common reed (Phragmites australis) and on glass slides were studied during a twenty-four week exposure period in a shallow, turbid lake,...  相似文献   

7.
Boris Löhlein 《Hydrobiologia》1996,334(1-3):115-123
The Oligochaeta and Aphanoneura in the aufwuchs on Phragmites australis in a eutrophic hardwater lake were studied at two sites over a period of one year, in order to elucidate the structure and dynamics of this assemblage. The naidids Chaetogaster diastrophus, Nais spp., and Stylaria lacustris dominated the assemblage at any season. At both sites these taxa showed the same distinct pattern of successive population maxima in spring and summer: Chaetogaster diastrophus reached its peak density first, followed by Nais species, and eventually by Stylaria lacustris. Differences in temporal dynamics between sites were small apart from a second Stylaria maximum which was only observed at one site. Total naidid densities reached peak values of 3.8 individuals per cm2 reed stem surface area. With mean individual biomass of 2.2 µg dry mass for Chaetogaster diastrophus, 13.3 µg for Nais, and 86 µg for Stylaria lacustris, respectively, maximum total naidid biomass on reed stems was 44 µg dry mass per cm2. The biomass peak occurred later than that of total naidid density because in summer larger naidids dominated the assemblage. The observed succession appears to be consistent with seasonal changes in periphytic algal communities on the reed stems.  相似文献   

8.
9.
van Dokkum  H. P.  Slijkerman  D. M. E.  Rossi  L.  Costantini  M. L. 《Hydrobiologia》2002,482(1-3):69-77
A decomposition study has been carried out in Lake Geestmerambacht, a moderately deep (max. ca. 22 m), monomictic slightly brackish lake in The Netherlands. To assess the relative importance of biotic (benthos) and physico-chemical factors, the mass loss rate (K) of reed leaf litter was measured at 10 sites, both in winter and in summer, in the absence (`protected' litter bags) and the presence (`unprotected' litter bags) of invertebrates. The aim was to investigate the variation in mass loss rate within the habitat and between seasons, and the role of the litter-associated invertebrate community. The experiments showed high spatial variation in decomposition rates. The spatial pattern changed with season. In summer, decomposition rates were higher than in winter: 4.4 times in the presence of invertebrates, and 2.6 times in their absence. The exclusion of invertebrates (`protected' litter bags versus `unprotected' litter bags) led to significantly lower decomposition rates. In particular, the decomposition rate was strongly correlated with the number of gammarids, the dominant taxon in the litter bags, which are well known for their ability to feed on leaf litter. The abundance of gammarids was directly correlated to the level of dissolved oxygen and inversely correlated to the effective fetch in summer, when the spatial structure of the decomposition process was evident. Therefore, the results of this study indicate that there are seasonal and spatial differences in the rate of detritus decomposition, most likely due to changes in habitat characteristics that influence the distribution of gammarids, key-species responsible for the first steps of the leaf breakdown in Lake Geestmerambacht. The spatial dependency of the process leads to formation of heterogeneous ecological patches in which the probability of disturbance propagation may vary.  相似文献   

10.
Unintentional loss of herbicides into drainage ditches, shores or other waterbodies may cause large problems in farmland. Therefore strategies for the phytoremediation of agrochemicals and especially herbicides have become a topic of great interest in many agricultural areas. However, in order to establish effective biological pollution control, information on the detoxification capacity of riparian plants and aquatic macrophytes (e.g., Phragmites australis) is important to build up effective buffer stripes. We determined the detoxification capacity of Phragmites australis roots and leaves for the conjugation of agrochemicals to glutathione by assaying the model substrate CDNB as well as the herbicides fenoxaprop-P, propachlor, pethoxamid and terbuthylazine. Specific GST activities were always higher in the rhizomes (6.78 +/- 0.88 microkat/mg protein for CDNB) than in leaves (1.08 +/- 0.21 microkat/mg protein). The detoxification capacity is distributed across an array of GST isoforms. In summary, Phragmites australis seems to be efficient in herbicide detoxification and a good candidate for phytoremediation of effluents from agricultural sites.  相似文献   

11.
Carbohydrate and total nitrogen contents as well as free amino acid (FAA) concentrations were determined in distinct types of rhizomes of two genetically homogeneous stands of reed (Phragmites australis (Cav.) Trin. ex Steudel) differing in morphology, productivity and nutrient supply in order to evaluate the storage capacity of vertical rhizomes and expansion rhizomes. The expansion rhizomes possess significantly higher amounts of FAA and of total nitrogen but similar carbohydrate concentrations in comparison to the vertical rhizomes. However, no significant differences were found for total nitrogen, FAA and total carbohydrates between both investigated stands indicating a comparable storage capacity of rhizomes independent of nutrient availability. Only the composition of the FAA pool varied in the alanine/asparagine ratio probably influenced by the oxygen supply of the rhizome/root system.  相似文献   

12.
芦苇生态型研究进展   总被引:21,自引:4,他引:17  
芦苇生态幅极广,适生于多种生境类型。不同的环境选择压力如水深、盐度、养分、气候等交互影响致使芦苇个体及种群间发生不同程度的分化和变异,形成了形态、生理或遗传上互有差异、异地性的不同生态型。尽管基于芦苇表型变异以及遗传变异进行生态型划分的研究已开展很多,但针对芦苇生态型变异规律及其可能的形成机制的认知仍存在较多分歧。在总结近年来有关芦苇生态型研究文献的基础上,通过对影响芦苇生态型变异的主要因素——环境因素和遗传因素的分析,以期为芦苇生态型的划分及其可能的形成机制提供新的研究思路。(1)空间尺度的选择应成为研究者分析、划分芦苇生态型的首要定位。在较大的地理空间尺度上,高度异质性的生境导致某些性状的变异式样具有相对的不连续性,可作为不同芦苇生态型鉴别与描述的主要依据;(2)在合理的尺度定位、取样设计和统计分析的基础上开展的表型变异研究,及进一步基于种群水平的分子标记研究(分子指纹特征或特有等位基因),可为芦苇生态型的鉴定、划分提供更为可靠的参考数据,并且可以甄别生境差异(环境响应)和遗传变异对芦苇不同生态型分化的贡献;(3)应同时进行不同生态型的特定性状与功能(株高、茎粗、生物量、生理抗逆性、水体污染物净化能力等)的定位,推动优良基因型的选育与扩繁。  相似文献   

13.
O. A. Clevering 《Oecologia》1999,121(4):447-457
Phragmites australis (common reed) is a dominant clonal species in the interface between land and water in many European wetlands. Along the land-water gradient, strong consistently different selective forces might operate to give rise to genetic substructuring. I have investigated the occurrence of genetic substructuring in European P. australis populations. The present paper examines whether seedlings, from seeds collected at both ends of the land-water gradient, showed differences in response to nutrient supply. Under controlled conditions, the relative growth rate (RGR) in the exponential growth phase, and growth characters of 10-week old seedlings were assessed. Among populations, no differences in response to nutrient supply were found. Although total dry weight was not related to the geographic origin of the populations, northern/western compared to southern/eastern European populations (1) formed more but shorter shoots, (2) formed thinner but longer rhizomes, and (3) invested more dry matter in leaves at the expense of stems. It was concluded that these trait differences are likely to originate from differences in the length of the growing season in the native habitat. Within populations, ’water-side’ seedlings had a higher RGR under sub-optimal while for ’land-side’ seedlings this was under optimal nutrient conditions. Ten-week-old ’water-side’ seedlings had a higher total dry weight than ’land-side’ ones, irrespective of nutrient loading. Differences in growth could not clearly be related to differences in single biomass allocation and morphological traits. A discriminant analysis on these traits, however, revealed that ’water-side’ seedlings showed higher plasticity in discriminant scores than ’land-side’ seedlings in response to nutrient supply. Discriminant scores also pointed towards a subtle trade-off between height versus expansion growth of seedlings, from the water to landward side. In the Romanian population, this could be related to morphological differences between ploidy levels. Overall, it was concluded that within populations, selection on growth form rather than on adaptations to the nutrient status of the habitat might have taken place. Received: 20 August 1998 / Accepted: 29 July 1999  相似文献   

14.
Ramet size equalisation in a clonal plant,Phragmites australis   总被引:1,自引:0,他引:1  
B. Ekstam 《Oecologia》1995,104(4):440-446
The influence of shading from older generations of dead culms (standing litter) on density, growth rate and development of size structure at the ramet level was investigated in a pure stand of Phragmites australis by experimental neutral shading of plots after removal of standing litter. Initial differences in height distribution between autumn and spring cohorts disappeared in the course of shoot growth. The Gini coefficients of shoot heights and estimated shoot weights indicated that the size structure of the shoots became more equal with increasing mean size in both shaded and unshaded plots. Relative growth rate for height (RHGR) and weight of individual shoots was negatively related to shoot size during the early and presumably storage-dependent growth period, suggesting a strong support for growth of smaller shoots. No etiolation was indicated by mean or maximum height in shaded and unshaded plots, or by the relationship between shoot height and weight. Mean shoot density was significantly lower in shaded than in unshaded plots in one of two shade treatment years. A regression model indicated a small but significant effect of shoot density on the approximately linear relationship between RHGR and the logarithm of height. The growth rate of small shoots was slightly larger at low than at high shoot density. Therefore, it is suggested that the shade from standing litter in P. australis stands can decrease shoot natality in the spring cohort, and thereby increase the support to fewer small shoots.  相似文献   

15.
《Aquatic Botany》2001,69(2-4):89-108
Phragmites australis is a cosmopolitan wetlands species occurring in a wide range of climatic habitats. It can be assumed that adaptations to climate have evolved to enable the synchronization of growth with the seasonality of the environment. To study these adaptations, European P. australis was collected in different geographic regions, and grown in common environments situated in the Czech Republic, Denmark and The Netherlands.Phragmites australis originating from higher latitudes showed higher relative length growth rates (RLGR), and flowered earlier in time than that from lower latitudes. Plants from Spain even continued growth until the first autumn frosts. When grown in the different common environments, population differences were found in RLGR, but no general trend was apparent. On average, shoots started to grow 2 weeks earlier in The Netherlands than in Denmark and 6 weeks earlier than in the Czech Republic. These differences could be largely related to lower spring temperatures in the latter two countries. When shoot-growth was plotted against the temperature sum, no differences in RLGR between Denmark and The Netherlands were apparent, whereas shoot-growth was slower in the Czech Republic.Results from a greenhouse experiment showed that seedlings from southern populations formed taller but fewer shoots and thicker but shorter rhizomes than those from northern populations, irrespective of total dry weight. They also allocated more dry matter to stems at the expense of leaves, whereas no differences in allocation to below-ground plant parts were found.It was concluded that populations of P. australis showed clinal variation in (i) the length of the growing season, (ii) time of flowering, and (iii) morphology and biomass allocation. These results are discussed with respect to the possible effects of global warming on population functioning.  相似文献   

16.
On the north shore of Lake Balaton four study areas were selected with different levels of mineral nutrient supply (two of them are at sewage inflows, one is at the mouth of a natural watercourse, and one is unaffected by water inflow). Studies were made on the development ofPhragmites australis (Cav.) Trin. exSteudel stands. Monthly levels of N, P, K, Na, Ca and Mg in the organs (leaf-blade, leaf-sheath, culm, aquatic root, rhizome and root) of reed were determined from April to October in 1980. Differences were detected between the four study areas in the shoot height, mass, growth rate and element contents. In the aboveground organs, the levels of N, P, and K showed a decrease all through the growing season, but Ca and Mg rose to a peak before declining for the rest of the season. In the underground organs the levels of N and P decreased to a minimum in June to July and thereafter the quantities of these elements gradually increased. In the most heavily contaminated area (area IV), significantly higher levels of tissue N, P and K were found.  相似文献   

17.
《Aquatic Botany》2007,87(2):134-140
Tidal marshes have recently been shown to be important biogenic Si recycling surfaces at the land–sea interface. The role of vegetation in this recycling process has not yet been quantified. In situ and ex situ decomposition experiments were conducted with Phragmites australis stems. In a freshwater tidal marsh, litterbags were incubated at different elevations and during both winter and summer. Biogenic Si (BSi) dissolution followed a double exponential decay model in the litterbags (from ca. 60 to 15 mg g−1 after 133 days), irrespective of season. Si was removed much faster from the incubated plant material compared to N and C, resulting in steadily decreasing Si/N and Si/C ratios. Ex situ, decomposition experiments were conducted in estuarine water, treated with a broad-spectrum antibiotic, and compared to results from untreated incubations. The bacterial influence on the dissolution of dissolved Si (DSi) from P. australis stems was negligible. Although the rate constant for dissolved Si dissolution decreased from 0.004 to 0.003 h−1, the eventual amount of BSi dissolved and saturation concentration in the incubation environment were similar in both treatments. P. australis contributes to and enhances dissolved Si recycling capacity of tidal marshes: in a reed-dominated small freshwater tidal marsh, more than 40% of DSi export was attributable to reed decomposition. As the relation between tidal marsh surface and secondary production in estuaries has been linked to marsh Si cycling capacity, this provides new insight in the ecological value of the common reed.  相似文献   

18.
Rhizome dynamics and resource storage in Phragmites australis   总被引:6,自引:1,他引:5  
Seasonal changes in rhizome concentrations of total nonstructural carbohydrates (TNC), water soluble carbohydrates (WSC), and mineral nutrients (N, P and K) were monitored in two Phragmites australis stands in southern Sweden. Rhizome biomass, rhizome length per unit ground area, and specific weight (weight/ length ratio) of the rhizomes were monitored in one of the stands.Rhizome biomass decreased during spring, increased during summer and decreased during winter. However, changes in spring and summer were small (< 500 g DW m-2) compared to the mean rhizome biomass (approximately 3000 g DW m–2). Winter losses were larger, approximately 1000 g DW m-2, and to a substantial extent involved structural biomass, indicating rhizome mortality. Seasonal changes in rhizome length per unit ground area revealed a rhizome mortality of about 30% during the winter period, and also indicated that an intensive period of formation of new rhizomes occurred in June.Rhizome concentrations of TNC and WSC decreased during the spring, when carbohydrates were translocated to support shoot growth. However, rhizome standing stock of TNC remained large (> 1000 g m–2). Concentrations and standing stocks of mineral nutrients decreased during spring/ early summer and increased during summer/ fall. Only N, however, showed a pattern consistent with a spring depletion caused by translocation to shoots. This pattern indicates sufficient root uptake of P and K to support spring growth, and supports other evidence that N is generally the limiting mineral nutrient for Phragmites.The biomass data, as well as increased rhizome specific weight and TNC concentrations, clearly suggests that reloading of rhizomes with energy reserves starts in June, not towards the end of the growing season as has been suggested previously. This resource allocation strategy of Phragmites has consequences for vegetation management.Our data indicate that carbohydrate reserves are much larger than needed to support spring growth. We propose that large stores are needed to ensure establishment of spring shoots when deep water or stochastic environmental events, such as high rhizome mortality in winter or loss of spring shoots due to late season frost, increase the demand for reserves.  相似文献   

19.
Decomposition of culms (sheaths and stems) of the emergent macrophyte Phragmites australis (common reed) was followed for 16 months in the litter layer of a brackish tidal marsh along the river Scheldt (the Netherlands). Stems and leaf sheaths were separately analyzed for mass loss, litter-associated fungal biomass (ergosterol), nutrient (N and P), and cell wall polymer concentrations (cellulose and lignin). The role of fungal biomass in litter nutrient dynamics was evaluated by estimating nutrient incorporation within the living fungal mass. After 1 year of standing stem decay, substantial fungal colonization was found. This corresponded to an overall fungal biomass of 49 ± 8.7 mg g−1 dry mass. A vertical pattern of fungal colonization on stems in the canopy is suggested. The litter bag experiment showed that mass loss of stems was negligible during the first 6 months, whereas leaf sheaths lost almost 50% of their initial mass during that time. Exponential breakdown rates were −0.0039 ± 0.0004 and −0.0026 ± 0.0003 day−1 for leaf sheaths and stems, respectively (excluding the initial lag period). In contrast to the stem tissue—which had no fungal colonization—leaf sheaths were heavily colonized by fungi (93 ± 10 mg fungal biomass g−1 dry mass) prior to placement in the litter layer. Once being on the sediment surface, 30% of leaf sheath's associated fungal biomass was lost, but ergosterol concentrations recovered the following months. In the stems, fungal biomass increased steadily after an initial lag period to reach a maximal biomass of about 120 mg fungal biomass g−1 dry mass for both plant parts at the end of the experiment. Fungal colonizers are considered to contain an important fraction of nutrients within the decaying plant matter. Fungal N incorporation was estimated to be 64 ± 13 and 102 ± 15% of total available N pool during decomposition for leaf sheaths and stems, respectively. Fungal P incorporation was estimated to be 37 ± 9 and 52 ± 15% of total available P during decomposition for leaf sheaths and stems, respectively. Furthermore, within the stem tissue, fungi are suggested to be active immobilizers of nutrients from the external environment because fungi were often estimated to contain more than 100% of the original nutrient stock.  相似文献   

20.
Phragmites (Phragmites australis Cav. (Trin.) ex Steud) plants exposed to a high concentration of CdSO4 (50 μM) for 21 d were analysed with respect to the distribution of metal, its effects on antioxidants, the antioxidant enzymes and the redox status in leaves, roots and stolons. The highest accumulation of Cd2+ occurred in roots followed by leaves, and it was not significant in the stolons when compared with the control plants. In particular, in roots from Cd-treated plants, both the high amount of GSH and the parallel increase of glutathione-S-transferase (EC 2.5.1.18; GST) activity seemed to be associated with an induction of the detoxification processes in response to the high cadmium concentration. Superoxide dismutase (EC 1.15.1.1; SOD), ascorbate peroxidase (EC 1.11.1.11; APX), glutathione reductase (EC 1.6.4.2; GR) and catalase (EC 1.11.1.6; CAT) activities as well as reduced and oxidised glutathione contents in all samples of leaves, roots and stolons were increased in the presence of Cd2+ when compared to control plants. Despite the fact that Cd2+ has a redox characteristic not compatible with the Fenton-type chemistry that produces active oxygen species, the antioxidant response is widespread and generic. Increased activities of antioxidant enzymes in Cd-treated plants suggest that metal tolerance in Phragmites plants might be associated to the efficiency of these mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号