首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Different combinations of three rate‐limiting enzymes in phytosterol biosynthesis, the Arabidopsis thaliana hydroxyl methylglutaryl CoA1 (HMGR1) catalytic subunit linked to either constitutive or seed‐specific β‐conglycinin promoter, and the Glycine max sterol methyltransferase1 (SMT1) and sterol methyltransferase2‐2 (SMT2‐2) genes, under the control of seed‐specific Glycinin‐1 and Beta‐phaseolin promoters, respectively, were engineered in soybean plants. Mature seeds of transgenic plants displayed modest increases in total sterol content, which points towards a tight control of phytosterol biosynthesis. However, in contrast to wild‐type seeds that accumulated about 35% of the total sterol in the form of intermediates, in the engineered seeds driven by a seed‐specific promoter, metabolic flux was directed to Δ5‐24‐alkyl sterol formation (99% of total sterol). The engineered effect of end‐product sterol (sitosterol, campesterol, and stigmasterol) over‐production in soybean seeds resulted in an approximately 30% increase in overall sitosterol synthesis, a desirable trait for oilseeds and human health. In contradistinction, increased accumulation of cycloartenol and 24(28)‐methylencylartanol (55% of the total sterol) was detected in plants harbouring the constitutive t‐HMGR1 gene, consistent with the previous studies. Our results support the possibility that metabolic flux of the phytosterol family pathway is differentially regulated in leaves and seeds.  相似文献   

2.
Sitbon F  Jonsson L 《Planta》2001,212(4):568-572
Transgenic tobacco (Nicotiana tabacum L.) plants with altered sterol composition were generated by transformation with plant cDNAs encoding type-1 and type-2 sterol methyltransferases (SMTs; EC 2.1.1.41). For both SMT1 and SMT2 transformants, the transformation was associated with a reduction in the level of cholesterol, a non-alkylated sterol. In SMT1 transformants a corresponding increase of alkylated sterols, mainly 24-methyl cholesterol, was observed. On the other hand, in SMT2 transformants the level of 24-methyl cholesterol was reduced, whereas the level of sitosterol was raised. No appreciable alteration of total sterol content was observed for either genotype. The general phenotype of transformants was similar to that of controls, although SMT2 transformants displayed a reduced height at anthesis. The results show that plant sterol composition can be altered by transformation with an SMT1 cDNA without adverse effects on growth and development, and provide evidence, in planta, that SMT1 acts at the initial step in sterol alkylation. Received: 27 June 2000 / Accepted: 22 July 2000  相似文献   

3.
4.
The first committed step in the conversion of cycloartenol into Delta(5) C24-alkyl sterols in plants is catalyzed by an S-adenosyl-methionine-dependent sterol-C24-methyltransferase type 1 (SMT1). We report the consequences of overexpressing SMT1 in tobacco (Nicotiana tabacum), under control of either the constitutive carnation etched ring virus promoter or the seed-specific Brassica napus acyl-carrier protein promoter, on sterol biosynthesis in seed tissue. Overexpression of SMT1 with either promoter increased the amount of total sterols in seed tissue by up to 44%. The sterol composition was also perturbed with levels of sitosterol increased by up to 50% and levels of isofucosterol and campesterol increased by up to 80%, whereas levels of cycloartenol and cholesterol were decreased by up to 53% and 34%, respectively. Concomitant with the enhanced SMT1 activity was an increase in endogenous 3-hydroxy-3-methylglutaryl coenzyme A reductase activity, from which one can speculate that reduced levels of cycloartenol feed back to up-regulate 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and thereby control the carbon flux into sterol biosynthesis. This potential regulatory role of SMT1 in seed sterol biosynthesis is discussed.  相似文献   

5.
Sterol methyltransferase 1 controls the level of cholesterol in plants   总被引:10,自引:0,他引:10  
The side chain in plant sterols can have either a methyl or ethyl addition at carbon 24 that is absent in cholesterol. The ethyl addition is the product of two sequential methyl additions. Arabidopsis contains three genes-sterol methyltransferase 1 (SMT1), SMT2, and SMT3-homologous to yeast ERG6, which is known to encode an S-adenosylmethionine-dependent C-24 SMT that catalyzes a single methyl addition. The SMT1 polypeptide is the most similar of these Arabidopsis homologs to yeast Erg6p. Moreover, expression of Arabidopsis SMT1 in erg6 restores SMT activity to the yeast mutant. The smt1 plants have pleiotropic defects: poor growth and fertility, sensitivity of the root to calcium, and a loss of proper embryo morphogenesis. smt1 has an altered sterol content: it accumulates cholesterol and has less C-24 alkylated sterols content. Escherichia coli extracts, obtained from a strain expressing the Arabidopsis SMT1 protein, can perform both the methyl and ethyl additions to appropriate sterol substrates, although with different kinetics. The fact that smt1 null mutants still produce alkylated sterols and that SMT1 can catalyze both alkylation steps shows that there is considerable overlap in the substrate specificity of enzymes in sterol biosynthesis. The availability of the SMT1 gene and mutant should permit the manipulation of phytosterol composition, which will help elucidate the role of sterols in animal nutrition.  相似文献   

6.
CYP51 exists in all organisms that synthesize sterols de novo. Plant CYP51 encodes an obtusifoliol 14alpha-demethylase involved in the postsqualene sterol biosynthetic pathway. According to the current gene annotation, the Arabidopsis (Arabidopsis thaliana) genome contains two putative CYP51 genes, CYP51A1 and CYP51A2. Our studies revealed that CYP51A1 should be considered an expressed pseudogene. To study the functional importance of the CYP51A2 gene in plant growth and development, we isolated T-DNA knockout alleles for CYP51A2. Loss-of-function mutants for CYP51A2 showed multiple defects, such as stunted hypocotyls, short roots, reduced cell elongation, and seedling lethality. In contrast to other sterol mutants, such as fk/hydra2 and hydra1, the cyp51A2 mutant has only minor defects in early embryogenesis. Measurements of endogenous sterol levels in the cyp51A2 mutant revealed that it accumulates obtusifoliol, the substrate of CYP51, and a high proportion of 14alpha-methyl-delta8-sterols, at the expense of campesterol and sitosterol. The cyp51A2 mutants have defects in membrane integrity and hypocotyl elongation. The defect in hypocotyl elongation was not rescued by the exogenous application of brassinolide, although the brassinosteroid-signaling cascade is apparently not affected in the mutants. Developmental defects in the cyp51A2 mutant were completely rescued by the ectopic expression of CYP51A2. Taken together, our results demonstrate that the Arabidopsis CYP51A2 gene encodes a functional obtusifoliol 14alpha-demethylase enzyme and plays an essential role in controlling plant growth and development by a sterol-specific pathway.  相似文献   

7.
The norbornenodiazetine plant growth regulator tetcyclacis, when applied to roots of Avena sativa, caused a substantial increase in the cholesterol content of the shoots. Amounts of the C-24 alkylated sterols campesterol, stigmasterol and sitosterol all declined. A similar alteration in the sterol profile was observed for a plasma membrane preparation from the shoots. Changes in the sterol composition of root tissue were much less pronounced.  相似文献   

8.
Brassinosteroids (BRs) are an important class of plant steroidal hormones that are essential in a wide variety of physiological processes. Two kinds of intermediates, sitosterol and campesterol, play a crucial role in cell elongation, cellulose biosynthesis, and accumulation. To illuminate the effects of sitosterol and campesterol on the development of cotton (Gossypium hirsuturm L.) fibers through screening cotton fiber EST database and contigging the candidate ESTs, two key genes GhSMT2-1 and GhSMT2-2 controlling the sitosterol biosynthesis were cloned from developing fibers of upland cotton cv. Xuzhou 142. The full length of GhSMT2-1 was 1, 151bp, including an 8bp 5'-untranslated region (UTR), a 1, 086bp open reading frame (ORF), and a 57bp 3'-UTR. GhSMT2-1 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The full length of GhSMT2-2 was 1, 166bp, including an 18bp 5'-UTR, a 1, 086bp ORF, and a 62bp 3'-UTR. GhSMT2-2 gene encoded a polypeptide of 361 amino acid residues with a predicted molecular mass of 40kDa. The two deduced amino acid sequences had high homology with the SMT2 from Arabidopsis thaliana and Nicotiana tabacum. Furthermore, the typical conserved structures characterized by the sterol C-24 methyltransferase, such as region I (LDVGCGVGGPIVIRAI), region Ⅱ (IEATCHAP), and region Ⅲ (YEWGWGQSFHF), were present in both deduced proteins. Southern blotting analysis indicated that GhSMT2-1 or GhSMT2-2 was a single copy in upland cotton genome. Quantitative real-time RT-PCR analysis revealed that the highest expression levels of both genes were detected in 10 DPA (day post anthesis) fibers, while the lowest levels were observed in cotyledon and leaves. The expression level of GhSMT2-1 was 10 times higher than that of GhSMT2-2 in all the organs and tissues detected. These results indicate that the homologue of sterol C-24 methyltransferase gene was cloned from upland cotton and both GhSMT2 genes play a crucial role in fiber elongation. The role of GhSMT2-1 may be more important than that of GhSMT2-2.  相似文献   

9.
The effects of N-phenyl-N'-l,2,3,-thidiazol-5-ylurea (thidiazuron; Dropp; SN 49537) on fatty acids of membrane lipids and sterol content in apple ( Malus domestica Borkh cv. Golden Delicious) buds associated with bud break and bud development were determined. The predominant fatty acids in the membrane lipids of apple buds were palmitic acid (C16:0), linoleic acid (C18:2) and linolenic acid (C18:3). β -Sitosterol and sitosteryl ester were the predominant sterols. An accumulation of unsaturated polar membrane fatty acids started after thidiazuron treatment. A decrease in the percentage of the sitosterol was accompanied by an increase in campesterol and stigmasterol at the beginning of rapid growth. An increase in the ratio of campesterol and stigmasterol to sitosterol and a decrease in the ratio of free sterols to membrane lipids upon breaking of dormancy also occurred in apple buds induced by thidiazuron.  相似文献   

10.
Molecular roles of sterols in plant development remain to be elucidated. To investigate sterol composition during embryogenesis, the occurrence of 25 steroid compounds in stages of developing seeds and pods of Pisum sativum was examined by GC-MS analysis. Immature seeds containing very young embryos exhibited the greatest concentrations of sterols. Regression models indicated that the natural log of seed or pod fr. wt was a consistent predictor of declining sterol content during embryonic development. Although total sterol levels were reduced in mature embryos, the composition of major sterols sitosterol and campesterol remained relatively constant in all 12 seed stages examined. In mature seeds, a significant decrease in isofucosterol was observed, as well as minor changes such as increases in cycloartenol branch sterols and campesterol derivatives. In comparison to seeds and pods, striking differences in composition were observed in sterol profiles of stems, shoots, leaves, flowers and flower buds, as well as cotyledons versus radicles. The highest levels of isofucosterol, a precursor to sitosterol, occurred in young seeds and flower buds, tissues that contain rapidly dividing cells and cells undergoing differentiation. Conversely, the highest levels of stigmasterol, a derivative of sitosterol, were found in fully-differentiated leaves while all seed stages exhibited low levels of stigmasterol. The observed differences in sterol content were correlated to mRNA expression data for sterol biosynthesis genes from Arabidopsis. These findings implicate the coordinated expression of sterol biosynthesis enzymes in gene regulatory networks underlying the embryonic development of flowering plants.  相似文献   

11.
Phytosterols are classified into C24‐ethylsterols and C24‐methylsterols according to the different C24‐alkylation levels conferred by two types of sterol methyltransferases (SMTs). The first type of SMT (SMT1) is widely conserved, whereas the second type (SMT2) has diverged in charophytes and land plants. The Arabidopsis smt2 smt3 mutant is defective in the SMT2 step, leading to deficiency in C24‐ethylsterols while the C24‐methylsterol pathway is unchanged. smt2 smt3 plants exhibit severe dwarfism and abnormal development throughout their life cycle, with irregular cell division followed by collapsed cell files. Preprophase bands are occasionally formed in perpendicular directions in adjacent cells, and abnormal phragmoplasts with mislocalized KNOLLE syntaxin and tubulin are observed. Defects in auxin‐dependent processes are exemplified by mislocalizations of the PIN2 auxin efflux carrier due to disrupted cell division and failure to distribute PIN2 asymmetrically after cytokinesis. Although endocytosis of PIN2–GFP from the plasma membrane (PM) is apparently unaffected in smt2 smt3, strong inhibition of the endocytic recycling is associated with a remarkable reduction in the level of PIN2–GFP on the PM. Aberrant localization of the cytoplasmic linker associated protein (CLASP) and microtubules is implicated in the disrupted endocytic recycling in smt2 smt3. Exogenous C24‐ethylsterols partially recover lateral root development and auxin distribution in smt2 smt3 roots. These results indicate that C24‐ethylsterols play a crucial role in division plane determination, directional auxin transport, and polar growth. It is proposed that the divergence of SMT2 genes together with the ability to produce C24‐ethylsterols were critical events to achieve polarized growth in the plant lineage.  相似文献   

12.
The typical plant sterols (sitosterol, stigmasterol and campesterol) were compared with respect to their ability to regulate membrane fluidity of soybean phosphatidylcholine (PC) vesicles. Fluidity changes were monitored by the steady-state fluorescence anisotropy with 1,6-diphenyl-1,3,5-hexatriene as a probe and assigned to a measure of the acyl chain orientational order. Sitosterol and campesterol appear to be the most suitable sterols in ordering the acyl chains of soybean lecithin bilayers, even more efficient than cholesterol, the standard of reference for sterol effects on membranes, suggesting that they play a significant role in the regulation of plant membrane properties. Stigmasterol is shown to be much less active. Cycloartenol, a biosynthetic precursor of plant sterols, increases the acyl chain order with the same efficiency as cholesterol. We also investigated the effects of two unusual sterols, 24-methylpollinastanol and 14 alpha,24-dimethylcholest-8-en-3 beta-ol, which were shown to accumulate in plants treated with fungicides belonging to two important classes, N-substituted morpholines and triazoles, respectively. These two sterols exhibit a behavior very similar to that of stigmasterol. The results are discussed in terms of sterol effects on the molecular packing of soybean PC bilayers.  相似文献   

13.
《Insect Biochemistry》1991,21(1):53-56
Larvae of the house fly, Musca domestica were reared aseptically on diets which contained either cholesterol, campesterol or sitosterol as the dietary sterol at a concentration of 0.1% dry wt. Analysis of puraria (24 h post-pupariation) reared on campesterol or sitosterol diets revealed they contained from 2.7 to 4.6% cholesterol, indicating an ability to accumulate this sterol even where it is present in only minute quantities. Purparia on all diets produced the 27-carbon molting hormones, ecdysone and 20-hydroxyecdysone. When the concentration of campesterol was increased to 0.2% dry wt, puparia also contained the 28-carbon ecdysteroid, makisterone A, although it accounted for only 20.7% of the total ecdysteroid produced.  相似文献   

14.
The sterol biosynthesis pathway of Arabidopsis produces a large set of structurally related phytosterols including sitosterol and campesterol, the latter being the precursor of the brassinosteroids (BRs). While BRs are implicated as phytohormones in post-embryonic growth, the functions of other types of steroid molecules are not clear. Characterization of the fackel (fk) mutants provided the first hint that sterols play a role in plant embryogenesis. FK encodes a sterol C-14 reductase that acts upstream of all known enzymatic steps corresponding to BR biosynthesis mutants. Here we report that genetic screens for fk-like seedling and embryonic phenotypes have identified two additional genes coding for sterol biosynthesis enzymes: CEPHALOPOD (CPH), a C-24 sterol methyl transferase, and HYDRA1 (HYD1), a sterol C-8,7 isomerase. We describe genetic interactions between cph, hyd1 and fk, and studies with 15-azasterol, an inhibitor of sterol C-14 reductase. Our experiments reveal that FK and HYD1 act sequentially, whereas CPH acts independently of these genes to produce essential sterols. Similar experiments indicate that the BR biosynthesis gene DWF1 acts independently of FK, whereas BR receptor gene BRI1 acts downstream of FK to promote post-embryonic growth. We found embryonic patterning defects in cph mutants and describe a GC-MS analysis of cph tissues which suggests that steroid molecules in addition to BRs play critical roles during plant embryogenesis. Taken together, our results imply that the sterol biosynthesis pathway is not a simple linear pathway but a complex network of enzymes that produce essential steroid molecules for plant growth and development.  相似文献   

15.
We measured the cholestanol, cholesterol precursor (lathosterol), and plant sterol (campesterol and sitosterol) concentrations of serum and bile in 11 patients with cerebrotendinous xanthomatosis. The mean values of serum cholestanol, lathosterol, campesterol, and sitosterol were, respectively, 8.4-, 2.5-, 2.7-, and 1.4-times higher in the patients than in normal control subjects (n = 26). Cholestanol (6.7-fold) and campesterol (3.7-fold) levels in bile (n = 4) were also elevated in the patients. There was no significant difference of serum sterol levels between patients with coronary artery disease and those without it. Chenodeoxycholic acid treatment for periods ranging from 6 months to 3 years and 4 months lowered serum lathosterol (57.7% reduction) and campesterol (57.8%) levels in parallel with cholestanol (70.8%) level, but the sitosterol level (19.7%) decreased less. Thus, increased levels of cholesterol precursor (lathosterol), plant sterols (campesterol and sitosterol), and cholestanol were found in the serum and bile in cerebrotendinous xanthomatosis. Chenodeoxycholic acid treatment effectively reduced the levels of these sterols, except for sitosterol.  相似文献   

16.
Plasma membrane preparations from soybean root and hypocotyl contained the following free sterols: cholesterol, campesterol, stigmasterol, and sitosterol. The cholesterol level was relatively low in root plasma membrane (less than 0.5%) but was 1.4 to 2.4% in hypocotyl membrane. The relative levels of the three other sterols fluctuated with cellular development and tissue source. Campesterol level decreased with the development of both root and hypocotyl membrane. With development, stigmasterol increased greatly in root membrane but remained constant in hypocotyl membrane, and sitosterol, the major free sterol component of all membrane preparations, decreased in root membrane but increased slightly in hypocotyl membrane.  相似文献   

17.
Plasma membrane vesicles were extracted from the shoots of 10-day-old oat, rye and rice plants and incubated with either cholesterol, stigmasterol or a mixture of sitosterol + campesterol (60:40). After ascertaining that the sterol composition of the vesicles had been altered by this treatment, the specific hydrolytic activity of the membrane-bound H+-ATPase (EC 3. 6. 1. 35) was measured. The results indicated that, although all sterols were taken up, cholesterol was best integrated into the plasma membrane of the species tested. After treatment, ATPase activity was altered in oat and rice, but not in rye. The results are discussed in the context of sterol/lipid and sterol/protein interactions in the plasma membrane.  相似文献   

18.
We generated transgenic lines of Arabidopsis thaliana with an RNA interference construct that expressed hairpin double-stranded RNA for DET2:DWF4:SMT2 to induce sequence-specific RNA silencing. In transgenic plants, expressions of DET2, DWF4, and SMT2 were simultaneously reduced, and the campesterol content was increased by up to 420% compared to the level in the wild-type plant. Triple knock-down of the DET2, DWF4, and SMT2 enzymes also resulted in reduction of brassinosteroid (BR)-specific biosynthesis intermediates. Transgenic plants harboring the RNA interference construct displayed a semi-dwarf phenotype due to altered development. Our findings indicate that redesigning of plant architecture is possible through simultaneous suppression of multiple genes involved in BR biosynthesis.  相似文献   

19.
High dose daily intake of plant sterols decreases the uptake of cholesterol in the intestine by competitive mechanisms and thus leads to reduced serum levels of total and LDL-cholesterol. By this, the commercialization of plant sterol enriched ‘functional food’ products is rapidly increasing. Subjects using these kinds of diet present a duplication of their serum plant sterol levels after long-term intake. In analogy to cholesterol, plant sterols such as campesterol and sitosterol can be oxidized to oxyphytosterols and these may counteract the primary anti-atherosclerotic action of cholesterol lowering. In order to investigate the whole spectrum of the consequences following high plant sterol intake a highly sensitive and specific isotope dilution gas chromatography–mass spectrometry method for the analysis of 7-oxygenated campesterol/sitosterol in trace amounts in human serum is presented in this paper. The validation was based on limits for detection and quantification, recovery, precision and minimization of autoxidation during work-up. Our results show an overall coefficient of variation ≤10% for the precision. The lowest limits for detection and quantification for 7α-hydroxy-campesterol were 7 pg/mL and 23 pg/mL, respectively. Data for overall sum recovery ranged from 92% to 115%. We practically used this method for analysis of oxyphytosterols simultaneously with plant sterol concentrations in serum from healthy volunteers. Sixteen subjects were treated with plant sterol enriched margarine (3 g/day) for 28 days. The results showed a significant increase of the oxyphytosterol 7β-hydroxy-sitosterol from 1.19 ± 0.54 (before intake) to 2.24 ± 1.24 ng/mL (mean ± SD; +86.7%; P = 0.007) after intake of the margarine. There was a highly significant correlation between the serum levels of campesterol and the sum of 7-oxygenated campesterol (R2 = 0.915; P < 0.001) and sitosterol and the sum of 7-oxygenated sitosterol (R2 = 0.915; P < 0.001). We can conclude from this study that the analytic method is well suited for detection of OPS, even at trace amounts.  相似文献   

20.
A dwarf mutant of broad bean ( Vicia faba L.), the variety Rinrei, has been created by γ -ray irradiation. Rinrei is characterized by dark green leaves and by reduced plant length, internode and petiole length, shoot weight, and number of branches. Genetic analysis of hybrids between Rinrei and two wild-type lines indicated that these characteristics are controlled by a single recessive gene. The phenotype of Rinrei was restored to that of the wild type by application of brassinolide, but not by GA3. Qualitative and quantitative analysis by gas chromatography–mass spectrometry indicated that 24-methylenecholesterol and isofucosterol accumulated in Rinrei to levels more than 30 times higher than in the wild type. In contrast, Rinrei had lower than wild-type levels of campesterol, sitosterol and brassinosteroids. Therefore, Rinrei is a brassinosteroid-deficient mutant defective in sterol C-24 reduction. The gene was tentatively designated as brassinosteroid deficient dwarf 1 , bdd1 , which seems to be a homologue of Arabidopsis dwf1 ( dim , cbb1 ) and pea lkb .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号