首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.  相似文献   

3.
Exposure of proliferating cells to genotoxic stresses activates a cascade of signaling events termed the DNA damage response (DDR). The DDR preserves genetic stability by detecting DNA lesions, activating cell cycle checkpoints and promoting DNA damage repair. The phosphoinositide 3-kinase-related kinases (PIKKs) ataxia telangiectasia-mutated (ATM), ATM and Rad 3-related kinase (ATR) and DNA-dependent protein kinase (DNA-PK) are crucial for sensing lesions and signal transduction. The checkpoint kinase 1 (CHK1) is a traditional ATR target involved in DDR and normal cell cycle progression and represents a pharmacological target for anticancer regimens. This study employed cell lines stably depleted for CHK1, ATM or both for dissecting cross-talk and compensatory effects on G?/M checkpoint in response to ionizing radiation (IR). We show that a 90% depletion of CHK1 renders cells radiosensitive without abrogating their IR-mediated G?/M checkpoint arrest. ATM phosphorylation is enhanced in CHK1-deficient cells compared with their wild-type counterparts. This correlates with lower nuclear abundance of the PP2A catalytic subunit in CHK1-depleted cells. Stable depletion of CHK1 in an ATM-deficient background showed only a 50% reduction from wild-type CHK1 protein expression levels and resulted in an additive attenuation of the G?/M checkpoint response compared with the individual knockdowns. ATM inhibition and 90% CHK1 depletion abrogated the early G?/M checkpoint and precluded the cells from mounting an efficient compensatory response to IR at later time points. Our data indicates that dual targeting of ATM and CHK1 functionalities disrupts the compensatory response to DNA damage and could be exploited for developing efficient anti-neoplastic treatments.  相似文献   

4.
5.
ATM and ATR are essential regulators of DNA damage checkpoints in mammalian cells through their respective effectors, Chk2 and Chk1. Cross regulation of the ATM-Chk2 and ATR-Chk1 pathways is very limited, although ATM and ATR show overlapping function in a partnership and time-dependent manner. In this study, we report that Chk2 is a substrate of ATR in response to ionizing and ultraviolet radiation. ATR activation induced by ionizing radiation (IR) is weak in ATM+/+ cells. However, when ATM is inhibited by caffeine, ATR activation is markedly enhanced. Total Chk2 and Chk2 Thr68 are also hyperphosphorylated in the presence of caffeine. Both ATM+/+ and ATM-/- cells display normal ATR activation in response to UV radiation-induced DNA damage, which is caffeine sensitive. In two lines of ATM-deficient, as well as in an ATM siRNA silencing cell line, ATR is activated when the cells are exposed to IR and is able to phosphorylate Chk2 in vitro. These observations suggest that ATR is one of the kinases that is likely involved in phosphorylation of Chk2 in response to IR when ATM is deficient.  相似文献   

6.
7.
8.
ATR, a phosphatidylinositol kinase-related protein homologous to ataxia telangiectasia mutated (ATM), is important for the survival of human cells following many forms of DNA damage. Expression of a kinase-inactive allele of ATR (ATRkd) in human fibroblasts causes increased sensitivity to ionizing radiation (IR), cis-platinum and methyl methanesulfonate, but only slight UV radiation sensitivity. ATRkd overexpression abrogates the G2/M arrest after exposure to IR, and overexpression of wild-type ATR complements the radioresistant DNA synthesis phenotype of cells lacking ATM, suggesting a potential functional overlap between these proteins. ATRkd overexpression also causes increased sensitivity to hydroxyurea that is associated with microtubule-mediated nuclear abnormalities. These observations are consistent with uncoupling of certain mitotic events from the completion of S-phase. Thus, ATR is an important component of multiple DNA damage response pathways and may be involved in the DNA replication (S/M) checkpoint.  相似文献   

9.
BRCA1 is a central component of the DNA damage response mechanism and defects in BRCA1 confer sensitivity to a broad range of DNA damaging agents. BRCA1 is required for homologous recombination and DNA damage-induced S and G(2)/M phase arrest. We show here that BRCA1 is required for ATM- and ATR-dependent phosphorylation of p53, c-Jun, Nbs1 and Chk2 following exposure to ionizing or ultraviolet radiation, respectively, and is also required for ATM phosphorylation of CtIP. In contrast, DNA damage-induced phosphorylation of the histone variant H2AX is independent of BRCA1. We also show that the presence of BRCA1 is dispensable for DNA damage-induced phosphorylation of Rad9, Hus1 and Rad17, and for the relocalization of Rad9 and Hus1. We propose that BRCA1 facilitates the ability of ATM and ATR to phosphorylate downstream substrates that directly influence cell cycle checkpoint arrest and apoptosis, but that BRCA1 is dispensable for the phosphorylation of DNA-associated ATM and ATR substrates.  相似文献   

10.
The DNA damage surveillance network orchestrates cellular responses to DNA damage through the recruitment of DNA damage-signaling molecules to DNA damage sites and the concomitant activation of protein phosphorylation cascades controlled by the ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) kinases. Activation of ATM/ATR triggers cell cycle checkpoint activation and adaptive responses to DNA damage. Recent studies suggest that protein ubiquitylation or degradation plays an important role in the DNA damage response. In this study, we examined the potential role of the proteasome in checkpoint activation and ATM/ATR signaling in response to UV light-induced DNA damage. HeLa cells treated with the proteasome inhibitor MG-132 showed delayed phosphorylation of ATM substrates in response to UV light. UV light-induced phosphorylation of 53BP1, as well as its recruitment to DNA damage foci, was strongly suppressed by proteasome inhibition, whereas the recruitment of upstream regulators of 53BP1, including MDC1 and H2AX, was unaffected. The ubiquitin-protein isopeptide ligase RNF8 was critical for 53BP1 focus targeting and phosphorylation in ionizing radiation-damaged cells, whereas UV light-induced 53BP1 phosphorylation and targeting exhibited partial dependence on RNF8 and the ubiquitin-conjugating enzyme UBC13. Suppression of RNF8 or UBC13 also led to subtle defects in UV light-induced G2/M checkpoint activation. These findings are consistent with a model in which RNF8 ubiquitylation pathways are essential for 53BP1 regulation in response to ionizing radiation, whereas RNF8-independent pathways contribute to 53BP1 targeting and phosphorylation in response to UV light and potentially other forms of DNA replication stress.  相似文献   

11.
Rapid activation of ATR by ionizing radiation requires ATM and Mre11   总被引:16,自引:0,他引:16  
The ataxia-telangiectasia-mutated (ATM) and ATM- and Rad3-related (ATR) protein kinases are crucial regulatory proteins in genotoxic stress response pathways that pause the cell cycle to permit DNA repair. Here we show that Chk1 phosphorylation in response to hydroxyurea and ultraviolet radiation is ATR-dependent and ATM- and Mre11-independent. In contrast, Chk1 phosphorylation in response to ionizing radiation (IR) is dependent on ATR, ATM, and Mre11. The ATR and ATM/Mre11 pathways are generally thought to be separate with ATM activation occurring early and ATR activation occurring as a late response to double strand breaks. However, we demonstrate that ATR is activated rapidly by IR, and ATM and Mre11 enhance ATR signaling. ATR-ATR-interacting protein recruitment to double strand breaks is less efficient in the absence of ATM and Mre11. Furthermore, IR-induced replication protein A foci formation is defective in ATM- and Mre11-deficient cells. Thus, ATM and Mre11 may stimulate the ATR signaling pathway by converting DNA damage generated by IR into structures that recruit and activate ATR.  相似文献   

12.
13.
The histone variant H2AX is rapidly phosphorylated at the sites of DNA double-strand breaks (DSBs). This phosphorylated H2AX (gamma-H2AX) is involved in the retention of repair and signaling factor complexes at sites of DNA damage. The dependency of this phosphorylation on the various PI3K-related protein kinases (in mammals, ataxia telangiectasia mutated and Rad3-related [ATR], ataxia telangiectasia mutated [ATM], and DNA-PKCs) has been a subject of debate; it has been suggested that ATM is required for the induction of foci at DSBs, whereas ATR is involved in the recognition of stalled replication forks. In this study, using Arabidopsis as a model system, we investigated the ATR and ATM dependency of the formation of gamma-H2AX foci in M-phase cells exposed to ionizing radiation (IR). We find that although the majority of these foci are ATM-dependent, approximately 10% of IR-induced gamma-H2AX foci require, instead, functional ATR. This indicates that even in the absence of DNA replication, a distinct subset of IR-induced damage is recognized by ATR. In addition, we find that in plants, gamma-H2AX foci are induced at only one-third the rate observed in yeasts and mammals. This result may partly account for the relatively high radioresistance of plants versus yeast and mammals.  相似文献   

14.
15.
Never-in-mitosis A related protein kinase 1 (Nek1) is involved early in a DNA damage sensing/repair pathway. We have previously shown that cells without functional Nek1 fail to activate the more distal kinases Chk1 and Chk2 and fail to arrest properly at G1/S or M-phase checkpoints in response to DNA damage. As a consequence, foci of damaged DNA in Nek1 null cells persist long after the instigating insult, and Nek1 null cells develop unstable chromosomes at a rate much higher than identically cultured wild type cells. Here we show that Nek1 functions independently of canonical DNA damage responses requiring the PI3 kinase-like proteins ATM and ATR. Chemical inhibitors of ATM/ATR or mutation of the genes that encode them fail to alter the kinase activity of Nek1 or its localization to nuclear foci of DNA damage. Moreover ATM and ATR activities, including the localization of the proteins to DNA damage sites and phosphorylation of early DNA damage response substrates, are intact in Nek1 -/- murine cells and in human cells with Nek1 expression silenced by siRNA. Our results demonstrate that Nek1 is important for proper checkpoint control and characterize for the first time a DNA damage response that does not directly involve one of the known upstream mediator kinases, ATM or ATR.  相似文献   

16.
Hammond EM  Giaccia AJ 《DNA Repair》2004,3(8-9):1117-1122
ATM and ATR are stress-response kinases which respond to a variety of insults including ionizing radiation, replication arrest, ultraviolet radiation and hypoxia/re-oxygenation. Hypoxia occupies a unique niche in the study of both ATR- and ATM-mediated checkpoint pathways. Hypoxia is a physiologically significant stress that occurs in virtually all solid tumors and differs from most other stresses in that it does not induce DNA damage. Previous studies have indicated that hypoxia provides a unique way to induce ATR in response to inhibition of DNA replication. During tumor expansion hypoxia is inevitably followed by periods of re-oxygenation which in vitro has been shown to induce significant levels of DNA damage and an ATM response. Therefore both ATR and ATM have a role to play in hypoxia/re-oxygenation.  相似文献   

17.
The cohesin complex plays a central role in genome maintenance by regulation of chromosome segregation in mitosis and DNA damage response (DDR) in other phases of the cell cycle. The ATM/ATR phosphorylates SMC1 and SMC3, two core components of the cohesin complex to regulate checkpoint signaling and DNA repair. In this report, we show that the genome-wide binding of SMC1 and SMC3 after ionizing radiation (IR) is enhanced by reinforcing pre-existing cohesin binding sites in human cancer cells. We demonstrate that ATM and SMC3 phosphorylation at Ser1083 regulate this process. We also demonstrate that acetylation of SMC3 at Lys105 and Lys106 is induced by IR and this induction depends on the acetyltransferase ESCO1 as well as the ATM/ATR kinases. Consistently, both ESCO1 and SMC3 acetylation are required for intra-S phase checkpoint and cellular survival after IR. Although both IR-induced acetylation and phosphorylation of SMC3 are under the control of ATM/ATR, the two forms of modification are independent of each other and both are required to promote reinforcement of SMC3 binding to cohesin sites. Thus, SMC3 modifications is a mechanism for genome-wide reinforcement of cohesin binding in response to DNA damage response in human cells and enhanced cohesion is a downstream event of DDR.  相似文献   

18.
The ATM and ATR kinases signal cell cycle checkpoint responses to DNA damage. Inactive ATM is an oligomer that is disrupted to form active monomers in response to ionizing radiation. We examined whether ATR is activated by a similar mechanism. We found that the ATRIP subunit of the ATR kinase and ATR itself exist as homooligomers in cells. We did not detect regulation of ATR or ATRIP oligomerization after DNA damage. The predicted coiled-coil domain of ATRIP is essential for ATRIP oligomerization, stable ATR binding, and accumulation of ATRIP at DNA lesions. Additionally, the ATRIP coiled-coil is also required for ATRIP to support ATR-dependent checkpoint signaling to Chk1. Replacing the ATRIP coiled-coil domain with a heterologous dimerization domain restored stable binding to ATR and localization to damage-induced intranuclear foci. Thus, the ATR-ATRIP complex exists in higher order oligomeric states within cells and ATRIP oligomerization is essential for its function.  相似文献   

19.
Polyploid cells result in aneuploidy through aberrant chromosome segregation, possibly leading to tumorigenesis. Although polyploid cells are induced through over-replication by a variety of agents, including DNA-damaging drugs, the mechanisms that induce polyploidy have been hitherto unknown. Here, we show that treatment with bleomycin, a glycopeptide anticancer drug, induces over-replication at low cytotoxic doses. During bleomycin-induced over-replication, mitotic entry is inhibited through tyrosine phosphorylation of CDK1 along the ATM/ATR pathway in the early phase of treatment. Bleomycin-induced over-replication is inhibited by the inhibitors of the ATM/ATR pathway through abrogation of bleomycin-induced G2 arrest, and the ATM/ATR inhibitors promote cell death instead of over-replication. Following the phosphorylation of CDK1, the level of cyclin B1 is decreased in the late phase of treatment. Time-lapse imaging of clone cells that express a live cell marker of endogenous cyclin B1 revealed that cyclin B1 is degraded in G2-arrested cells upon bleomycin treatment. Our findings lead to a model of how the ATM/ATR pathway acts as a molecular switch for regulating cell fates, flipping between cell death via progress into mitosis, and over-replication via sustained G2 arrest upon DNA damage, where cyclin B1 degradation is an important factor for inducing over-replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号