首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sexual stage of Aspergillus (Emericella) nidulans consists of cleistothecia containing asci, each with eight ascospores. The fungus completes the sexual cycle in a homokaryotic or a heterokaryotic mycelium, respectively. The common assumption for the last 50 years was that different nuclear types are not distinguishable when sexual development is initiated. When cultured on a medium limited for glucose supplemented with 2% sorbitol, sexual development of A. nidulans is slowed and intact tetrads can be isolated. Through tetrad analysis we found that unlike haploid nuclei fuse preferentially to the prezygotic diploid nucleus. When heterokaryons are formed between nuclei of different genetic backgrounds, then recombinant asci derived from opposite nuclei are formed exclusively. Strains in the same heterokaryon compatibility group with moderate differences in their genetic backgrounds can discriminate between the nuclei of a heterokaryon and preferentially form a hybrid diploid nucleus, resulting in 85% recombinant tetrads. A. nidulans strains that differ at only a single genetic marker fuse the haploid nuclei at random for formation of diploid nuclei during meiosis. These results argue for a genetically determined "relative heterothallism" of nuclear recognition within a heterokaryon and a specific recruitment of different nuclei for karyogamy when available.  相似文献   

2.
Summary The eggs of the gall midgeHeteropeza pygmaea develop parthenogenetically inside of the mother larva. They lack a chorion and remain enveloped by the follicular epithelium. After experimental elimination of the follicular epithelium naked eggs are formed, which reach the blastoderm stage but remain spherical instead of assuming an elongated shape. To analyze this peculiar egg development and the roles of egg shape and envelope during development, the ultrastructure of cleaving normal and naked eggs was investigated. It was shown that the number of elements of Golgi apparatus and endoplasmic reticulum strongly increases during early cleavage. Their association with cleavage furrows and nuclei suggests that these organelles play a dominant role in membrane production. Egg yolk consists of lipids and glycogen, wheareas no proteins are found. Cleaving eggs contain numerous vesicles with lysosomal characteristics, indicating intense autophagic processes. Cleavage furrow formation occurs independently from the positioning of cleavage nuclei. The numerous microtubules, which are associated with cleavage furrows and nuclei and located in the egg periphery, the intercellular bridges, and in the central part of the egg, suggest that the cytoskeleton has an important role in cleavage furrow formation, blastoderm layer establishment, and yolk localization. Since these processes are accurately accomplished in naked spherical eggs, they can be considered as independent of normal egg shape and the follicular epithelium.  相似文献   

3.
Shelled acanthors (= eggs) of two isolates of Moniliformis moniliformis (Acanthocephala) were tested for their capacity to respond to a hatching stimulus in vitro and for their retention of infectivity to a natural intermediate host (Periplaneta americana). The shelled acanthors were stored for more than 120 weeks (Australian isolate) and for 104 weeks (Texan isolate) together with rat faeces in an incubator maintained at 22.2 +/- 0.1 degrees C. In both cases, infectivity to P. americana was shown to have been retained. In vitro tests of the hatching response were carried out on many occasions during this period of faecal storage. Shelled acanthors continued to respond and no differences were detected either between isolates or within an isolate through time.  相似文献   

4.
Crude extracts of Xenopus eggs are capable of nuclear assembly around chromatin templates or even around protein-free, naked DNA templates. Here the requirements for nuclear assembly around a naked DNA template were investigated. Extracts were separated by ultracentrifugation into cytosol, membrane, and gelatinous pellet fractions. It was found that, in addition to the cytosolic and membrane fractions, a component of the gelatinous pellet fraction was required for the assembly of functional nuclei around a naked DNA template. In the absence of this component, membrane-bound but functionally inert spheres of lambda DNA were formed. Purification of the active pellet factor unexpectedly demonstrated the component to be glycogen. The assembly of functionally active nuclei, as assayed by DNA replication and nuclear transport, required that glycogen be pre-incubated with the lambda DNA and cytosol during the period of chromatin and higher order intermediate formation, before the addition of membranes. Hydrolysis of glycogen with alpha- amylase in the extract blocked nuclear formation. Upon analysis, chromatin formed in the presence of cytosol and glycogen alone appeared highly condensed, reminiscent of the nuclear assembly intermediate described by Newport in crude extracts (Newport, J. 1987. Cell. 48:205- 217). In contrast, chromatin formed from phage lambda DNA in cytosol lacking glycogen formed "fluffy chromatin-like" structures. Using sucrose gradient centrifugation, the highly condensed intermediates formed in the presence of glycogen could be isolated and were now able to serve as nuclear assembly templates in extracts lacking glycogen, arguing that the requirement for glycogen is temporally restricted to the time of intermediate formation and function. Glycogen does not act simply by inducing condensation of the chromatin, since similarly isolated mitotically condensed chromatin intermediates do not form functional nuclei. However, both mitotic and fluffy interphase chromatin intermediates formed in the absence of glycogen can be rescued to form functional nuclei when added to a second extract which contains glycogen. This study presents a novel role for a carbohydrate in nuclear assembly, a role which involves the formation of a particular chromatin intermediate. Potential models for the role of glycogen are discussed.  相似文献   

5.
Nuclear reconstitution in vitro: stages of assembly around protein-free DNA   总被引:96,自引:0,他引:96  
J Newport 《Cell》1987,48(2):205-217
We have developed a cell-free system derived from Xenopus eggs that reconstitutes nuclear structure around an added protein-free substrate (bacteriophage lambda DNA). Assembled nuclei are morphologically indistinguishable from normal eukaryotic nuclei: they are surrounded by a double membrane containing nuclear pores and are lined with a peripheral nuclear lamina. Nuclear assembly involves discrete intermediate steps, including nucleosome assembly, scaffold assembly, and nuclear membrane and lamina assembly, indicating that during reconstitution nuclear organization is assembled one level at a time. Topoisomerase II inhibitors block nuclear assembly. Lamin proteins and membrane vesicles bind to chromatin late in assembly, suggesting that these components do not interact with chromatin that is formed early in assembly. Reconstituted nuclei replicate their DNA; replication begins only after envelope formation has initiated, indicating that envelope attachment may be important for regulating replication.  相似文献   

6.
Summary We have studied the surface of the animal half of ovulated newt eggs recovered from different portions of the oviduct. The germinative area, about 40 m diameter, is localized in the region of the whitish polar spot, about 450 m diameter. The structural changes in the germinative area are connected with the formation and extrusion of the first and second polar bodies. Of the two types of oviductal eggs observed, those covered with microvilli (type 1) were found only in the ostial portions of the oviduct, whilst those covered with microfolds (type 11) were found more distally. The structural difference between these two types may be related to the known reduction in surface area of the cell membrane during oocyte maturation. Offprint requests to: W. Kilarski  相似文献   

7.
Oocyte nuclear proteins of Xenopus are distributed into the cytoplasm of the maturing egg after germinal vesicle breakdown. Later they are found in all cell nuclei of the embryo. At early stages of development, different nuclear proteins behave differently. A class of 'early shifting' antigens is accumulated by pronuclei and cleavage nuclei, whereas others appear to be excluded from the nuclei at early stages but are shifted into the nuclei at blastula or during and after gastrulation. Accumulation of 'late-shifting' nuclear antigens is a gradual process and occurs during a period characteristic of each protein. Multiple artificial pronuclei can be formed after injection of sperm nuclei, erythrocyte nuclei or pure lambda-DNA into unfertilized eggs. The artificial pronuclei accumulate early- but not late-shifting proteins. Early-migrating proteins rapidly accumulate into the germinal vesicle after de novo synthesis in the oocyte, indicating that the efficiency of translocation into nuclei is an intrinsic property of each protein. Artificial extension of the length of the cell cycle before midblastula transition does not lead to accumulation of the late-shifting nuclear antigens investigated.  相似文献   

8.
We have found that injection of bacteriophage lambda DNA into unfertilized Xenopus eggs causes the assembly around the DNA of structures resembling typical eucaryotic cell nuclei. These spherical structures begin to form 60-90 min after injection. They contain lambda DNA and are bounded by a phase-dense envelope. Immunofluorescent staining of the lambda-DNA-containing structures with anti-lamin antibody reveals the presence of the lamin nuclear proteins at the periphery of the structure, a pattern identical to that of embryonic nuclei. Electron microscopy reveals that the injected DNA is surrounded by a double bilayer nuclear membrane containing nuclear pore complexes. The "nuclei" containing lambda DNA respond to modulators of the Xenopus cell cycle in a manner that mimics the response of embryonic nuclei to these modulators during mitosis. These results suggest that nuclear reassembly and breakdown occur independently of specific DNA sequence information.  相似文献   

9.
We have studied the pathway of nuclear assembly from demembranated sperm chromatin by fractionating a cell-free system from Xenopus eggs (Lohka, M. J., and Y. Masui. 1983. Science (Wash. DC). 220:719-721). Both the soluble fraction and a washed vesicular fraction are required for formation of normal nuclei that initiate replication in vitro. The soluble fraction alone decondenses chromatin and the vesicular fraction alone surrounds chromatin with membranes. Both fractions are required for formation of nuclear pore complexes. Recombining these two fractions recovers approximately 100% of the nuclear assembly and DNA replication activities. Restricting the proportion of the vesicular fraction slows acquisition of the nuclear membrane and allows observation of immature nuclear pores ("prepores"). These form as arrays around and within the chromatin mass before membranes form. Subsequently membrane vesicles bind to these prepores, linking them by a single membrane throughout the chromatin mass. At the periphery this single membrane is surrounded by an outer membrane. In mature nuclei all membranes are at the periphery, the two membranes are linked by pores, and no prepores are seen. Nuclear assembly and replication are inhibited by preincubating the chromatin with the vesicular fraction. However nuclear assembly is accelerated by preincubating the condensed chromatin with the soluble fraction. This also decreases the lag before DNA replication. Initiation of DNA replication is only observed after normal nuclei have fully reassembled, increasing the evidence that replication depends on nuclear structure. The pathway of nuclear assembly and its relationship to DNA replication are discussed.  相似文献   

10.
Summary In the eggs ofWachtliella persicariae the cleavage nuclei move relative to the surrounding ooplasm. This active migration is caused by an organelle whose ultrastructure was studied throughout the mitotic cycle. It consists of a greatly enlarged polar cytaster derived from the mitotic apparatus, linked to the nucleus by 100 Å filaments. The microtubules of the cytaster were found only during periods of active nuclear migration, i.e., from the onset of anaphase to the early prophase of the next mitotic cycle. They are always solitary and follow the course of the astral rays, which are known to temporarily adhere to peripheral structures of the egg cell and to exert tractive forces. In contrast to the cytaster microtubules, the microtubules in the spindle are bundled and persist from early metaphase through late telophase.During ontogenesis the first migration cytaster is built up between 3 and 12 min after oviposition near the anterior egg pole, in the vicinity of the sperm nucleus. In non-inseminated eggs time lapse films show a migration cytaster to develop autonomously in a region free from nuclei, but it does not follow the normal path of the male pronucleus. In several cases the female pronucleus, which remains without a cytaster of its own, was observed to move to the cytaster generated in the absence of the male pronucleus. Whether or not it is adhering to a nucleus, the cytaster divides into two at the correct time, i.e, corresponding to the first cleavage division in fertilized eggs. In some non-inseminated eggs this type of pseudocleavage has been observed to occur repeatedly, giving rise to an increasing number of anucleate cytasters.  相似文献   

11.
Heteropeza pygmaea (syn. Oligarces paradoxus) can reproduce as larvae by paedogenesis or as imagines (Fig. 1). The eggs of imagines may develop after fertilization or parthenogenetically. The fertilized eggs give rise to female larvae, which develop into mother-larvae with female offspring (Weibchenmütter). Only a few of the larvae which hatch from unfertilized eggs become motherlarvae with female offspring; the others die. Spermatogenesis is aberrant, as it is in all gall midges studied to date. The primary spermatocyte contains 53 or 63 chromosomes. The meiotic divisions give rise to two sperms each of which contains only 7 chromosomes (Figs. 5–11). The eggs of the imago are composed of the oocyte and the nurse-cell chamber. In addition to the oocyte nucleus and the nurse-cell nuclei there are three other nuclei in the eggs (Figs. 15–17). They are called small nuclei (kleine Kerne). In prometaphase stages of the first cleavage division it could be seen that these nuclei contain about 10 chromosomes. Therefore it is assumed that these nuclei originate from the soma of the mother-larva. The chromosome number of the primary oocyte is approximately 66. The oocyte completes two meiotic divisions. The reduced egg nucleus contains approximately 33 chromosomes. The polar body-nuclei degenerate during the first cleavage divisions. The fertilized egg contains 2–3 sperms. The primary cleavage nucleus is formed by the egg nucleus and usually all of the sperm nuclei and the small nuclei (Figs. 21–29). The most frequent chromosome numbers in the primary cleavage nuclei are about 77 and 67. The first and the second cleavage divisions are normal. A first elimination occurs in the 3rd, 4th, and 5th cleavage division (Fig. 30). All except 6 chromosomes are eliminated from the future somatic nuclei. Following a second elimination (Figs. 33, 34), the future somatic nuclei contain 5 chromosomes. No elimination occurs in the divisions of the germ line nucleus. In eggs which develop parthenogenetically the primary cleavage nucleus is formed by the egg nucleus and 2–3 small nuclei. It's chromosome number is therefore about 53 or 63. After two eliminations, which are similar to the ones which occur in fertilized eggs, the soma contains 5 chromosomes. The somatic nuclei of male larvae which arrise by paedogenesis contain 5 chromosomes; while the somatic nuclei of female larvae of paedogenetic origin contain 10 chromosomes. It was therefore assumed earlier that sex was determined by haploidy or diploidy. But the above results show that larvae from fertilized as well as from unfertilized eggs of imagines have 5 chromosomes in the soma, but are females, and the female paedogenetic offspring of larvae from unfertilized eggs have either 5 or 10 chromosomes in their somatic cells. Therefore sex determination is not by haploidy-diploidy but by some other, unknown, mechanism. The cytological events associated with paedogenetic, bisexual, and parthenogenetic reproduction in Heteropeza pygmaea are compared (Fig. 37). The occurrence and meaning of the small nuclei which are found in the eggs of most gall midges are discussed. It has been shown here that these nuclei function to restore the chromosome number in fertilized eggs; it is suggested that they function similarity in certain other gall midges. Consideration of the mode of restoration of the germ-line chromosome number leads to the conclusion that in Heteropeza few, if any, of the chromosomes are limited to the germ-line, i.e. can never occur in somatic cells (p. 124).  相似文献   

12.
The localization of DNA polymerases in Xenopus laevis oocytes and eggs was studied. Oocytes have a high level of DNA polymerase alpha activity detected exclusively in the nuclei, while mitochondria contain all the DNA polymerase activity of the gamma type. No DNA polymerase beta activity is present in the nuclear fraction. Moreover, the beta activity is not present in unfertilized eggs. In oocytes, DNA polymerase alpha is weakly bound to the nucleoplasm. The leakage of the enzyme from whole nuclei can be prevented using polyvinylpyrrolidone, a nuclear pore sealing agent.  相似文献   

13.
In the lesser-spotted dogfish (Scyliorhinus canicula), spermatogenesis takes place within spermatocysts made up of Sertoli cells associated with stage-synchronized germ cells. As shown in testicular cross sections, cysts radiate in maturational order from the germinative area, where they are formed, to the opposite margin of the testis, where spermiation occurs. In the germinative zone, which is located in a specific area between the tunica albuginea of the testis and the dorsal testicular vessel, individual large spermatogonia are surrounded by elongated somatic cells. The aim of this study has been to define whether these spermatogonia share characteristics with spermatogonial stem cells described in vertebrate and non-vertebrate species. We have studied their ultrastructure and their mitotic activity by 5′-bromo-2′-deoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) immunodetection. Additionally, immunodetection of c-Kit receptor, a marker of differentiating spermatogonia in rodents, and of α- and β-spectrins, as constituents of the spectrosome and the fusome, has been performed. Ultrastructurally, nuclei of stage I spermatogonia present the same mottled aspect in dogfish as undifferentiated spermatogonia nuclei in rodents. Moreover, intercellular bridges are not observed in dogfish spermatogonia, although they are present in stage II spermatogonia. BrdU and PCNA immunodetection underlines their low mitotic activity. The presence of a spectrosome-like structure, a cytological marker of the germline stem cells in Drosophila, has been observed. Our results constitute the first step in the study of spermatogonial stem cells and their niche in the dogfish. G.L. is supported by a CIFRE grant (ANRT and C.RIS Pharma).  相似文献   

14.
1. The development of the amphiaster is associated with the formation of two semisolid masses within the more fluid egg substance. 2. The elongation of the egg during cleavage is possibly produced as a consequence of the mutual pressure of these two growing semisolid masses. 3. The division of the egg into two blastomeres consists essentially in a growth, within the egg, of two masses of material at the expense of the surrounding cytoplasm. When all the cytoplasm of the egg is incorporated in these two masses cleavage occurs. 4. After a certain period of time the semisolid masses revert to a more fluid state. In the eggs studied this normally occurs after the cleavage furrow has completed the separation of the two blastomeres. The formation of the furrow, however, may be prevented in various ways, upon which the egg reverts to a single spherical semifluid mass containing two nuclei. 5. An egg mutilated during its semisolid state (amphiaster stage) may or may not revert to a more fluid state. If the more solid state is maintained, the cleavage furrow persists and proceeds till cleavage is completed. If the mutilation causes the egg to revert to the more fluid state the furrow becomes obliterated and a new cleavage plane is subsequently adopted. 6. The nuclei of eggs in the semifluid state are able to alter their positions. In semifluid mutilated eggs the nuclei tend to move to positions which may assure symmetry in aster formation and cleavage.  相似文献   

15.
When nuclei of somatic cells are transplanted to enucleated eggs ofXenopus, a complete reprogramming of nuclear function can take place. To identify mechanisms of nuclear reprogramming, somatic nuclei can be transplanted to growing meiotic oocytes ofXenopus, and stem cell genes activated without DNA replication. The combination of somatic cell nuclear transfer with morphogen signalling and the community effect may lead towards the possibility of cell replacement therapy. When mechanisms of nuclear reprogramming are understood, it may eventually be possible to directly reprogramme human somatic cell nuclei without the use of eggs.  相似文献   

16.
Human spermatozoa were demembranated with Triton X-100 (TX) and injected into the mature eggs of Xenopus laevis. The nuclei of these spermatozoa decondensed and developed into pronuclei. Chromosomes did not appear in the eggs until the end of a 5-hr incubation period. When the demembranated human spermatozoa were further treated with dithiothreitol (DTT) before they were injected into the eggs, the sperm nuclear decondensation and pronuclear development took place considerably faster than in spermatozoa treated with the detergent alone. By the end of the 5-hr incubation period, decondensed chromatin threads or chromosome-like structures appeared, but none of the eggs cleaved. When human spermatozoa were injected into full-grown ovarian oocytes with intact germinal vesicle (GV) or oocytes which had matured without GV, the nuclei of a proportion of TX-treated and all TX-DTT-treated sperm decondensed but showed no sign of developing into pronuclei. Sperm nuclei injected into maturing oocytes formed condensed chromatin fragments as long as the oocytes were not activated, but they transformed into pronuclei when the oocytes were stimulated with electric shock. These results indicate that the cytoplasmic factors responsible for the decondensation of human sperm nuclei are present in egg cytoplasm independent of GV-materials. We also suggest that the factors controlling development of decondensed sperm nuclei into pronuclei are dependent on GV materials.  相似文献   

17.
Nuclear DNA amounts (C values) were measured in Feulgen-stained sections of anthers and ovules of sexual plant B-2s (genotype aaaa) and aposporous cultivar Higgins (genotype AAaa) of buffelgrass (Pennisetum ciliare). The mass of the unreplicated nuclear genome of a gamete equals 1C DNA. In both lines, pollen mother cell nuclei were 4C before leptotene; anther wall, dyad, 1-nucleate pollen, and generative cell nuclei were 2C; microspore tetrad, enlarging microspore, and sperm nuclei were 1C. The tapetum persisted as uninucleate cells with 4C DNA. Archespores (2-4C) of both lines initiated meiosis to form megaspore tetrad nuclei with 1-2C DNA. In B-2s, chalazal megaspores (2-4C) formed reduced 8-nucleate Polygonum type embryo sacs, and sacs at 2- and 4-nucleate stages showed distributions with peaks near C1 and C2, corresponding to G1 and G2 cell cycle phases; this is characteristic of active mitosis. Nuclei of 8-nucleate sacs and of eggs and polars were 1C, indicating chromosomes were not duplicated before fertilization. Antipodal nuclei had levels from 1 to 36C, possibly due to polyteny or endopolyploidy. In Higgins, aposporous initials and 2-nucleate embryo sacs showed bimodal distributions of 2n nuclei with peaks at 2C and 4C DNA. Nuclei of newly formed 4-nucleate Panicum type aposporous sacs and of polars were 2C; aposporous eggs stained too faintly for reliable measurement.Names of products are included for the benefit of the reader and do not imply endorsement or preferential treatment by USDA  相似文献   

18.
19.
Taxol blocks the migrations of the sperm and egg nuclei in fertilized eggs and induces asters in unfertilized eggs of the sea urchins Lytechinus variegatus and Arbacia punctulata. Video recordings of eggs inseminated in 10 microM taxol demonstrate that sperm incorporation and sperm tail motility are unaffected, that the sperm aster formed is unusually pronounced, and that the migration of the egg nucleus and pronuclear centration are inhibited. The huge monopolar aster persists for at least 6 h; cleavage attempts and nuclear cycles are observed. Colcemid (10 microM) disassembles both the large taxol-stabilized sperm aster in fertilized eggs and the numerous asters induced in unfertilized eggs. Antitubulin immunofluorescence microscopy demonstrates that in fertilized eggs all microtubules are within the prominent sperm aster. Within 15 min of treatment with 10 microM taxol, unfertilized eggs develop numerous (greater than 25) asters de novo. Transmission electron microscopy of unfertilized eggs reveals the presence of microtubule bundles that do not emanate from centrioles but rather from osmiophilic foci or, at times, the nuclear envelope. Taxol-treated eggs are not activated as judged by the lack of DNA synthesis, nuclear or chromosome cycles, and the cortical reaction. These results indicate that: (a) taxol prevents the normal cycles of microtubule assembly and disassembly observed during development; (b) microtubule disassembly is required for the nuclear movements during fertilization; (c) taxol induces microtubules in unfertilized eggs; and (d) nucleation centers other than centrioles and kinetochores exist within unfertilized eggs; these presumptive microtubule organizing centers appear idle in the presence of the sperm centrioles.  相似文献   

20.
《The Journal of cell biology》1984,98(4):1222-1230
A cell-free cytoplasmic preparation from activated Rana pipiens eggs could induce in demembranated Xenopus laevis sperm nuclei morphological changes similar to those seen during pronuclear formation in intact eggs. The condensed sperm chromatin underwent an initial rapid, but limited, dispersion. A nuclear envelope formed around the dispersed chromatin and the nuclei enlarged. The subcellular distribution of the components required for these changes was examined by separating the preparations into soluble (cytosol) and particulate fractions by centrifugation at 150,000 g for 2 h. Sperm chromatin was incubated with the cytosol or with the particulate material after it had been resuspended in either the cytosol, heat-treated (60 or 100 degrees C) cytosol or buffer. We found that the limited dispersion of chromatin occurred in each of these ooplasmic fractions, but not in the buffer alone. Nuclear envelope assembly required the presence of both untreated cytosol and particulate material. Ultrastructural examination of the sperm chromatin during incubation in the preparations showed that membrane vesicles of approximately 200 nm in diameter, found in the particulate fraction, flattened and fused together to contribute the membranous components of the nuclear envelope. The enlargement of the sperm nuclei occurred only after the nuclear envelope formed. The pronuclei formed in the cell-free preparations were able to incorporate [3H]dTTP into DNA. This incorporation was inhibited by aphidicolin, suggesting that the DNA synthesis by the pronuclei was dependent on DNA polymerase-alpha. When sperm chromatin was incubated greater than 3 h, the chromatin of the pronuclei often recondensed to form structures resembling mitotic chromosomes within the nuclear envelope. Therefore, it appeared that these ooplasmic preparations could induce, in vitro, nuclear changes resembling those seen during the first cell cycle in the zygote.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号