首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The crystal structure of yeast orotidine 5'-monophosphate decarboxylase (ODCase) complexed with the inhibitor 6-hydroxyuridine 5'-phosphate (BMP) reveals the presence of a series of strong interactions between enzyme residues and functional groups of this ligand. Enzyme contacts with the phosphoribofuranosyl moiety of orotidine 5'-phosphate (OMP) have been shown to contribute at least 16.6 kcal/mol of intrinsic binding free energy to the stabilization of the transition state for the reaction catalyzed by yeast ODCase. In addition to these enzyme-ligand contacts, active site residues contributed by both subunits of the dimeric enzyme are positioned to form hydrogen bonds with the 2'- and 3'-OH groups of the ligand's ribosyl moiety. These involve Thr-100 of one subunit and Asp-37 of the opposite subunit, respectively. To evaluate the contributions of these ribofuranosyl contacts to ground state and transition state stabilization, Thr-100 and Asp-37 were each mutated to alanine. Elimination of the enzyme's capacity to contact individual ribosyl OH groups reduced the k(cat)/K(m) value of the T100A enzyme by 60-fold and that of the D37A enzyme by 300-fold. Removal of the 2'-OH group from the substrate OMP decreased the binding affinity by less than a factor of 10, but decreased k(cat) by more that 2 orders of magnitude. Upon removal of the complementary hydroxymethyl group from the enzyme, little further reduction in k(cat)/K(m) for 2'-deoxyOMP was observed. To assess the contribution made by contacts involving both ribosyl hydroxyl groups at once, the ability of the D37A mutant enzyme to decarboxylate 2'-deoxyOMP was measured. The value of k(cat)/K(m) for this enzyme-substrate pair was 170 M(-1) s(-1), representing a decrease of more than 7.6 kcal/mol of binding free energy in the transition state. To the extent that electrostatic repulsion in the ground state can be tested by these simple alterations, the results do not lend obvious support to the view that electrostatic destabilization in the ground state enzyme-substrate complex plays a major role in catalysis.  相似文献   

2.
The roles of particular amino acids in substrate and coenzyme binding and catalysis of glucose-6-phosphate dehydrogenase of Leuconostoc mesenteroides have been investigated by site-directed mutagenesis, kinetic analysis, and determination of binding constants. The enzyme from this species has functional dual NADP(+)/NAD(+) specificity. Previous investigations in our laboratories determined the three-dimensional structure. Kinetic studies showed an ordered mechanism for the NADP-linked reaction while the NAD-linked reaction is random. His-240 was identified as the catalytic base, and Arg-46 was identified as important for NADP(+) but not NAD(+) binding. Mutations have been selected on the basis of the three-dimensional structure. Kinetic studies of 14 mutant enzymes are reported and kinetic mechanisms are reported for 5 mutant enzymes. Fourteen substrate or coenzyme dissociation constants have been measured for 11 mutant enzymes. Roles of particular residues are inferred from k(cat), K(m), k(cat)/K(m), K(d), and changes in kinetic mechanism. Results for enzymes K182R, K182Q, K343R, and K343Q establish Lys-182 and Lys-343 as important in binding substrate both to free enzyme and during catalysis. Studies of mutant enzymes Y415F and Y179F showed no significant contribution for Tyr-415 to substrate binding and only a small contribution for Tyr-179. Changes in kinetics for T14A, Q47E, and R46A enzymes implicate these residues, to differing extents, in coenzyme binding and discrimination between NADP(+) and NAD(+). By the same measure, Lys-343 is also involved in defining coenzyme specificity. Decrease in k(cat) and k(cat)/K(m) for the D374Q mutant enzyme defines the way Asp-374, unique to L. mesenteroides G6PD, modulates stabilization of the enzyme during catalysis by its interaction with Lys-182. The greatly reduced k(cat) values of enzymes P149V and P149G indicate the importance of the cis conformation of Pro-149 in accessing the correct transition state.  相似文献   

3.
Colicin E1 was altered by oligonucleotide-directed mutagenesis at the site of three charged residues on the COOH side of the 35-residue hydrophobic segment in the channel-forming domain. Asp-509 is one of five conserved acidic residues in the channel domain of colicins A, B, E1, Ia, and Ib and is the first charged residue following the hydrophobic segment, followed by the basic residues Lys-510 and Lys-512. Asp-509 and Lys-512 were changed to amber and ochre stop codons, respectively, while Lys-510 was mutated to a Met codon. Proteins truncated after residue 508 or 511, and missing the last 14 or 11 residues, were obtained from a nonsuppressing cell strain harboring the mutant plasmid while full-length colicin molecules with single residue changes at Asp-509 to Leu, Ser, and Gln, and Lys-512 to Tyr, were obtained by using appropriate suppressor strains. The truncated colicins displayed (i) a low cytotoxicity, approximately 1% of intact wild-type colicin, (ii) 10-fold less in vitro channel activity with liposomes, and (iii) reduced labeling of the colicin in liposomes by a phospholipid photoaffinity probe, showing that one or more of the residues following Asn-511 is necessary for both in vivo and in vitro activity and insertion into the bilayer. (iv) The truncated mutants also displayed an altered conformation at pH 6 that allowed greater binding and activity with liposomes at this pH relative to wild type. The cytotoxicity of single residue substitutions at Asp-509 showed a range of cytotoxicities, wild type greater than Ser-509 greater than Gln-509 greater than Leu-509, although none of these changes greatly affected the in vitro channel activity or pH dependence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Manithody C  Rezaie AR 《Biochemistry》2005,44(30):10063-10070
It has been hypothesized that two antiparallel structures comprised of residues 82-91 and 102-116 in factor Xa (fXa) may harbor a factor Va- (fVa-) dependent prothrombin recognition site in the prothrombinase complex. There are 11 charged residues in the 82-116 loop of human fXa (Glu-84, Glu-86, Lys-90, Arg-93, Lys-96, Glu-97, Asp-100, Asp-102, Arg-107, Lys-109, and Arg-115). With the exception of Glu-84, which did not express, and Asp-102, which is a catalytic residue, we expressed the Ala substitution mutants of all other residues and evaluated their proteolytic and amidolytic activities in both the absence and presence of fVa. K96A and K109A activated prothrombin with 5-10-fold impaired catalytic efficiency in the absence of fVa. All mutants, however, exhibited normal activity toward the substrate in the presence of fVa. K109A also exhibited impaired amidolytic activity and affinity for Na(+); however, both fVa and higher Na(+) restored the catalytic defect caused by the mutation. Analysis of the X-ray crystal structure of fXa indicated that Glu-84 may interact by a salt bridge with Lys-109, explaining the lack of expression of E84A and the lower activity of K109A in the absence of fVa. These results suggest that none of the residues under study is a fVa-dependent recognition site for prothrombin in the prothrombinase complex; however, Lys-96 is a recognition site for the substrate independent of the cofactor. Moreover, the 82-116 loop is energetically linked to fVa and Na(+) binding sites of the protease.  相似文献   

5.
The crystal structure of the complex formed between recombinant yeast orotidine 5'-phosphate decarboxylase and the competitive inhibitor 6-hydroxyuridine 5'-phosphate reveals the presence of four hydrogen bonds between active site residues Tyr-217 and Arg-235 and the phosphoryl group of this inhibitor. When Tyr-217 and Arg-235 are individually mutated to alanine, values of k(cat)/K(m) are reduced by factors of 3000- and 7300-fold, respectively. In the Y217A/R235A double mutant, activity is reduced more than 10(7)-fold. Experiments with highly enriched [(14)C]orotic acid show that when ribose 5'-phosphate is deleted from substrate orotidine 5'-phosphate, k(cat)/K(m) is reduced by more than 12 orders of magnitude, from 6.3 x 10(7) M(-1) s(-1) for OMP to less than 2.5 x 10(-5) M(-1) s(-1) for orotic acid. Activity toward orotate is not "rescued" by 1 M inorganic phosphate. The K(i) value of ribose 5'-phosphate, representing the part of the natural substrate that is absent in orotic acid, is 8.1 x 10(-5) M. Thus, the effective concentration of the 5'-phosphoribosyl group, in stabilizing the transition state for enzymatic decarboxylation of OMP, is estimated to be >2 x 10(8) M, representing one of the largest connectivity effects that has been reported for an enzyme reaction.  相似文献   

6.
A new construct carrying the hemC gene was transformed into Escherichia coli, resulting in approx. 1000-fold over-expression of hydroxymethylbilane synthase (HMBS). This construct was used to generate HMBS in which (a) Lys-55, (b) Lys-59 and (c) both Lys-55 and Lys-59 were replaced by glutamine (K55Q, K59Q and K55Q-K59Q respectively). All three modified enzymes are chromatographically separable from wild-type enzyme. Kinetic studies showed that the substitution K55Q has little effect whereas K59Q causes a 25-fold decrease in Kapp. cat./Kapp. m. Treatment of K55Q, K59Q and K55Q-K59Q separately with pyridoxal 5'-phosphate and NaBH4 resulted in incomplete and non-specific reaction with the remaining lysine residues. Pyridoxal modification of Lys-59 in the K55Q mutant caused greater enzymic inactivation than similar modification of Lys-55 in K59Q. The results in sum show that, though Lys-55 and Lys-59 may be at or near the active site, neither is indispensable for the catalytic activity of HMBS.  相似文献   

7.
Strictly conserved charged residues among polygalacturonases (Asp-180, Asp-201, Asp-202, His-223, Arg-256, and Lys-258) were subjected to site-directed mutagenesis in Aspergillus niger endopolygalacturonase II. Specific activity, product progression, and kinetic parameters (K(m) and V(max)) were determined on polygalacturonic acid for the purified mutated enzymes, and bond cleavage frequencies on oligogalacturonates were calculated. Depending on their specific activity, the mutated endopolygalacturonases II were grouped into three classes. The mutant enzymes displayed bond cleavage frequencies on penta- and/or hexagalacturonate different from the wild type endopolygalacturonase II. Based on the biochemical characterization of endopolygalacturonase II mutants together with the three-dimensional structure of the wild type enzyme, we suggest that the mutated residues are involved in either primarily substrate binding (Arg-256 and Lys-258) or maintaining the proper ionization state of a catalytic residue (His-223). The individual roles of Asp-180, Asp-201, and Asp-202 in catalysis are discussed. The active site topology is different from the one commonly found in inverting glycosyl hydrolases.  相似文献   

8.
S-Adenosylhomocysteine hydrolase (AdoHcyase) catalyzes the hydrolysis of S-adenosylhomocysteine to form adenosine and homocysteine. On the bases of crystal structures of the wild type enzyme and the D244E mutated enzyme complexed with 3'-keto-adenosine (D244E.Ado*), we have identified the important amino acid residues, Asp-130, Lys-185, Asp-189, and Asn-190, for the catalytic reaction and have proposed a catalytic mechanism (Komoto, J., Huang, Y., Gomi, T., Ogawa, H., Takata, Y., Fujioka, M., and Takusagawa, F. (2000) J. Biol. Chem. 275, 32147-32156). To confirm the proposed catalytic mechanism, we have made the D130N, K185N, D189N, and N190S mutated enzymes and measured the catalytic activities. The catalytic rates (k(cat)) of D130N, K185N, D189N, and N190S mutated enzymes are reduced to 0.7%, 0.5%, 0.1%, and 0.5%, respectively, in comparison with the wild type enzyme, indicating that Asp-130, Lys-185, Asp-189, and Asn-190 are involved in the catalytic reaction. K(m) values of the mutated enzymes are increased significantly, except for the N190S mutation, suggesting that Asp-130, Lys-185, and Asp-189 participate in the substrate binding. To interpret the kinetic data, the oxidation states of the bound NAD molecules of the wild type and mutated enzymes were measured during the catalytic reaction by monitoring the absorbance at 340 nm. The crystal structures of the WT and D244E.Ado*, containing four subunits in the crystallographic asymmetric unit, were re-refined to have the same subunit structures. A detailed catalytic mechanism of AdoHcyase has been revealed based on the oxidation states of the bound NAD and the re-refined crystal structures of WT and D244E.Ado*. Lys-185 and Asp-130 abstract hydrogen atoms from 3'-OH and 4'-CH, respectively. Asp-189 removes a proton from Lys-185 and produces the neutral N zeta (-NH(2)), and Asn-190 facilitates formation of the neutral Lys-185. His-54 and His-300 hold and polarize a water molecule, which nucleophilically attacks the C5'- of 3'-keto-4',5'-dehydroadenosine to produce 3'-keto-Ado.  相似文献   

9.
Lysine-54 of human dihydrofolate reductase (hDHFR) appears to be involved in the interaction with the 2'-phosphate of NADPH and is conserved as a basic residue in other species. Studies have suggested that in Lactobacillus casei dihydrofolate reductase Arg-43, the homologous residue at this position, plays an important role in the binding of NADPH and in the differentiation of Km values for NADPH and NADH. A Lys-54 to Gln-54 mutant (K54Q) of hDHFR has been constructed by oligodeoxynucleotide-directed mutagenesis in order to study the role of Lys-54 in differentiating Km and Kcat values for NADPH and NADH as well as in other functions of hDHFR. The purpose of this paper is to delineate in quantitative terms the magnitude of the effect of the Lys-54 to Gln-54 replacement on the various kinetic parameters of hDHFR. Such quantitative effects cannot be predicted solely on the basis of X-ray structures. The Km for NADPH for the K54Q mutant enzyme is 58-fold higher, while the Km for NADH for K54Q is only 3.9-fold higher than that of the wild type, indicating that the substitution of Lys-54 with Gln-54 decreases the apparent affinity of the enzyme for NADPH dramatically, but has a lesser effect on the apparent affinity for NADH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Binding of agonists to nicotinic acetylcholine receptors generates a sequence of conformational changes resulting in channel opening. Previously, we have shown that the aspartate residue Asp-266 at the M2-M3 linker of the alpha7 nicotinic receptor is involved in connecting binding and gating. High resolution structural data suggest that this region could interact with the so-called loops 2 and 7 of the extracellular N-terminal region. In this case, certain charged amino acids present in these loops could integrate together with Asp-266 and other amino acids, a mechanism involved in channel activation. To test this hypothesis, all charged residues in these loops, Asp-42, Asp-44, Glu-45, Lys-46, Asp-128, Arg-130, and Asp-135, were substituted with other amino acids, and expression levels and electrophysiological responses of mutant receptors were determined. Mutants at positions Glu-45, Lys-46, and Asp-135 exhibited poor or null functional responses to different nicotinic agonists regardless of significant membrane expression, whereas D128A showed a gain of function effect. Because the double reverse charge mutant K46D/D266K did not restore receptor function, a gating mechanism controlled by the pairwise electrostatic interaction between these residues is not likely. Rather, a network of interactions formed by residues Lys-46, Asp-128, Asp-135, Asp-266, and possibly others appears to link agonist binding to channel gating.  相似文献   

11.
RhoGTPases are central switches in all eukaryotic cells. There are at least two known families of guanine nucleotide exchange factors that can activate RhoGTPases: the Dbl-like eukaryotic G nucleotide exchange factors and the SopE-like toxins of pathogenic bacteria, which are injected into host cells to manipulate signaling. Both families have strikingly different sequences, structures, and catalytic core elements. This suggests that they have emerged by convergent evolution. Nevertheless, both families of G nucleotide exchange factors also share some similarities: (a) both rearrange the G nucleotide binding site of RhoGTPases into virtually identical conformations, and (b) two SopE residues (Gln-109SopE and Asp-124SopE) engage Cdc42 in a similar way as equivalent residues of Dbl-like G nucleotide exchange factors (i.e. Asn-810Dbs and Glu-639Dbs). The functional importance of these observations has remained unclear. Here, we have analyzed the effect of amino acid substitutions at selected SopE residues implicated in catalysis (Asp-124SopE, Gln-109SopE, Asp-103SopE, Lys-198SopE, and Gly-168SopE) on in vitro catalysis of G nucleotide release from Cdc42 and on in vivo activity. Substitutions at Asp-124SopE, Gln-109SopE, and Gly-168SopE severely reduced the SopE activity. Slight defects were observed with Asp-103SopE variants, whereas Lys-198SopE was not found to be required in vitro or in vivo. Our results demonstrate that G nucleotide exchange by SopE involves both catalytic elements unique to the SopE family (i.e. 166GAGA169 loop, Asp-103SopE) and amino acid contacts resembling those of key residues of Dbl-like guanine nucleotide exchange factors. Therefore, besides all of the differences, the catalytic mechanisms of the SopE and the Dbl families share some key functional aspects.  相似文献   

12.
Hall RS  Fedorov AA  Xu C  Fedorov EV  Almo SC  Raushel FM 《Biochemistry》2011,50(22):5077-5085
Cytosine deaminase (CDA) from E. coli is a member of the amidohydrolase superfamily. The structure of the zinc-activated enzyme was determined in the presence of phosphonocytosine, a mimic of the tetrahedral reaction intermediate. This compound inhibits the deamination of cytosine with a K(i) of 52 nM. The zinc- and iron-containing enzymes were characterized to determine the effect of the divalent cations on activation of the hydrolytic water. Fe-CDA loses activity at low pH with a kinetic pK(a) of 6.0, and Zn-CDA has a kinetic pK(a) of 7.3. Mutation of Gln-156 decreased the catalytic activity by more than 5 orders of magnitude, supporting its role in substrate binding. Mutation of Glu-217, Asp-313, and His-246 significantly decreased catalytic activity supporting the role of these three residues in activation of the hydrolytic water molecule and facilitation of proton transfer reactions. A library of potential substrates was used to probe the structural determinants responsible for catalytic activity. CDA was able to catalyze the deamination of isocytosine and the hydrolysis of 3-oxauracil. Large inverse solvent isotope effects were obtained on k(cat) and k(cat)/K(m), consistent with the formation of a low-barrier hydrogen bond during the conversion of cytosine to uracil. A chemical mechanism for substrate deamination by CDA was proposed.  相似文献   

13.
Although it is energetically extremely unfavorable to have charged amino acid residues of a polypeptide in the hydrophobic environment of the membrane phospholipid bilayer, a few such charged residues are found in membrane-spanning regions of membrane proteins. Ion pairs (salt bridges) would be much more stable in low dielectric media than single ionized residues. This paper provides indirect evidence for a salt bridge between Asp-240 and Lys-319 in the lactose carrier of Escherichia coli. When Asp-240 was changed to alanine by site-directed mutagenesis, there was a loss of the ability to accumulate methyl-beta-D-thiogalactopyranoside (TMG), melibiose, or lactose. Fast-growing revertants were isolated on melibiose minimal agar plates. Two second-site revertants were isolated: Asp-240-->Ala plus Gly-268-->Val and Asp-240-->Ala plus Lys-319-->Gln. These revertants showed extremely poor accumulation of TMG, melibiose, and lactose, but showed significant "downhill" lactose entry into beta-galactosidase-containing cells with sugar concentrations of 2 and 5 mM. It is concluded that there is some important interaction between Asp-240 and Lys-319, possibly a salt bridge.  相似文献   

14.
The two active sites of homodimeric ribulose bisphosphate carboxylase/oxygenase fromRhodospirillum rubrum are constituted by interacting domains of adjacent subunits, in which residues from each are required for catalytic activity. Active-site residues include Lys-166 of one domain and Glu-48 of the interacting domain from the adjacent subunit. Whereas all substitutions for Lys-166, introduced by site-directed mutagenesis, abolished catalytic activity, only a negatively charged residue (e.g., aspartic acid) resulted in the disruption of the subunit interactions (Lee et al., 1987). This disruption could result from improper folding of the individual polypeptide chains or to more localized effects (e.g., charge-charge repulsion due to proximal negative charges of Asp-166 and Glu-48 of adjacent domains or conformational changes restricted to a single domain). To address these questions, we have examined the ability of the Asp-166 mutant subunit to associate with a mutant subunit in which the negatively charged Glu-48 has been replaced by the neutral glutaminyl residue. Coexpression inEscherichia coli of the genes for both mutant subunits results in formation of a catalytically active hybrid, despite the absence of activity when either gene is expressed individually. Isolation and characterization of the hybrid show that it is composed of one Asp-166 subunit and one Gln-48 subunit, presumably with only one functional active site per dimeric molecule. This association of dissimilar subunits shows that introduction of a negative charge at position 166 does not lead to overall distortion of subunit conformation. In contrast to the wild-type enzyme, the hybrid dissociates spontaneously at low protein concentration but is stablized by elevated ionic strengths or by glycerol.  相似文献   

15.
Heparan sulfate interacts with antithrombin, a protease inhibitor, to regulate blood coagulation. Heparan sulfate 3-O-sulfotransferase isoform 1 performs the crucial last step modification in the biosynthesis of anticoagulant heparan sulfate. This enzyme transfers the sulfuryl group (SO(3)) from 3'-phosphoadenosine 5'-phosphosulfate to the 3-OH position of a glucosamine residue to form the 3-O-sulfo glucosamine, a structural motif critical for binding of heparan sulfate to antithrombin. In this study, we report the crystal structure of 3-O-sulfotransferase isoform 1 at 2.5-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate. This structure reveals residues critical for 3'-phosphoadenosine 5'-phosphosulfate binding and suggests residues required for the binding of heparan sulfate. In addition, site-directed mutagenesis analyses suggest that residues Arg-67, Lys-68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for enzymatic activity. Among these essential amino acid residues, we find that residues Arg-67, Arg-72, His-92, and Asp-95 are conserved in heparan sulfate 3-O-sulfotransferases but not in heparan N-deacetylase/N-sulfotransferase, suggesting a role for these residues in conferring substrate specificity. Results from this study provide information essential for understanding the biosynthesis of anticoagulant heparan sulfate and the general mechanism of action of heparan sulfate sulfotransferases.  相似文献   

16.
In bacterial D-amino acid transaminase, Lys-145, which binds the coenzyme pyridoxal 5'-phosphate in Schiff base linkage, was changed to Gln-145 by site-directed mutagenesis (K145Q). The mutant enzyme had 0.015% the activity of the wild-type enzyme and was capable of forming a Schiff base with D-alanine; this external aldimine was formed over a period of minutes depending upon the D-alanine concentration. The transformation of the pyridoxal-5'-phosphate form of the enzyme to the pyridoxamine-5'-phosphate form (i.e. the half-reaction of transamination) occurred over a period of hours with this mutant enzyme. Thus, information on these two steps in the reaction and on the factors that influence them can readily be obtained with this mutant enzyme. In contrast, these reactions with the wild-type enzyme occur at much faster rates and are not easily studied separately. The mutant enzyme shows distinct preference for D- over L-alanine as substrates but it does so about 50-fold less effectively than the wild-type enzyme. Thus, Lys-145 probably acts in concert with the coenzyme and other functional side chain(s) to lead to efficient and stereochemically precise transamination in the wild-type enzyme. The addition of exogenous amines, ethanolamine or methyl amine, increased the rate of external aldimine formation with D-alanine and the mutant enzyme but the subsequent transformation to the pyridoxamine-5'-phosphate form of the enzyme was unaffected by exogenous amines. The wild-type enzyme displayed a large negative trough in the circular dichroic spectrum at 420 nm, which was practically absent in the mutant enzyme. However, addition of D-alanine to the mutant enzyme generated this negative Cotton effect (due to formation of the external aldimine with D-alanine). This circular dichroism band gradually collapsed in parallel with the transformation to the pyridoxamine-5'-phosphate enzyme. Further studies on this mutant enzyme, which displays the characteristics of the wild-type enzyme but at attenuated rates, may yield information on the factors controlling the stereochemistry of the reaction as well as on the catalytic steps of the transaminase pathway.  相似文献   

17.
The Escherichia coli membrane-bound glucose dehydrogenase (mGDH) as the primary component of the respiratory chain possesses a tightly bound ubiquinone (UQ) flanking pyrroloquinoline quinone (PQQ) as a coenzyme. Several mutants for Asp-354, Asp-466, and Lys-493, located close to PQQ, that were constructed by site-specific mutagenesis were characterized by enzymatic, pulse radiolysis, and EPR analyses. These mutants retained almost no dehydrogenase activity or ability of PQQ reduction. CD and high pressure liquid chromatography analyses revealed that K493A, D466N, and D466E mutants showed no significant difference in molecular structure from that of the wild-type mGDH but showed remarkably reduced content of bound UQ. A radiolytically generated hydrated electron (e(aq)(-)) reacted with the bound UQ of the wild enzyme and K493R mutant to form a UQ neutral semiquinone with an absorption maximum at 420 nm. Subsequently, intramolecular electron transfer from the bound UQ semiquinone to PQQ occurred. In K493R, the rate of UQ to PQQ electron transfer is about 4-fold slower than that of the wild enzyme. With D354N and D466N mutants, on the other hand, transient species with an absorption maximum at 440 nm, a characteristic of the formation of a UQ anion radical, appeared in the reaction of e(aq)(-), although the subsequent intramolecular electron transfer was hardly affected. This indicates that D354N and D466N are prevented from protonation of the UQ semiquinone radical. Moreover, EPR spectra showed that mutations on Asp-466 or Lys-493 residues changed the semiquinone state of bound UQ. Taken together, we reported here for the first time the existence of a semiquinone radical of bound UQ in purified mGDH and the difference in protonation of ubisemiquinone radical because of mutations in two different amino acid residues, located around PQQ. Furthermore, based on the present results and the spatial arrangement around PQQ, Asp-466 and Lys-493 are suggested to interact both with the bound UQ and PQQ in mGDH.  相似文献   

18.
Chemical modification of Escherichia coli 5-enolpyruvylshikimate-3-phosphate synthase, a target for the nonselective herbicide glyphosate (N-phosphonomethylglycine), with pyridoxal 5'-phosphate suggested that Lys-22 (equivalent to Lys-23 of the Petunia hybrida enzyme) is a potential active site residue (Huynh, Q. K., Kishore, G. M., and Bild, G. S. (1988) J. Biol. Chem. 263, 735-739). To investigate the possible role of this residue in the reaction mechanism, we have used site-directed mutagenesis to replace Lys-23 of the P. hybrida enzyme with 3 other amino acid residues: Ala, Glu, and Arg. Analysis of these mutant enzymes indicates that of these only the Lys-23 to Arg mutant enzyme is active; the other two replacements (Ala and Glu) result in inactivation of the enzyme. Two of the mutant enzymes (Lys-23 to Arg and Ala) were purified to homogeneity and characterized. The purified Lys-23 to Arg mutant enzyme is less sensitive than the wild type enzyme to pyridoxal 5'-phosphate. It showed identical Km values for substrates and a 5-fold higher I50 value for glyphosate in comparison with those from the wild type enzyme. Binding studies using fluorescence measurements revealed that the substrate shikimate 3-phosphate and glyphosate were able to bind the purified Lys-23 to Arg mutant enzyme but not to the purified catalytically inactive Lys-23 to Ala mutant enzyme. The above results suggest that the cationic group at position 23 of the enzyme may play an important role in substrate binding.  相似文献   

19.
The melibiose carrier from Escherichia coli is a cation-substrate cotransporter that catalyzes the accumulation of galactosides at the expense of H(+), Na(+), or Li(+) electrochemical gradients. Charged residues on transmembrane domains in the amino-terminal portion of this carrier play an important role in the recognition of cations, while the carboxyl portion of the protein seems to be important for sugar recognition. In the present study, we substituted Lys-377 on helix XI with Val. This mutant carrier, K377V, had reduced melibiose transport activity. We subsequently used this mutant for the isolation of functional second-site revertants. Revertant strains showed the additional substitutions of Val or Asn for Asp-59 (helix II), or Leu for Phe-20 (helix I). Isolation of revertant strains where both Lys-377 and Asp-59 are substituted with neutral residues suggested the possibility that a salt bridge exists between helix II and helix XI. To further test this idea, we constructed three additional site-directed mutants: Asp-59-->Lys (D59K), Lys-377-->Asp (K377D), and a double mutant, Asp-59-->Lys/Lys-377-->Asp (D59K/K377D), in which the position of these charges was exchanged. K377D accumulated melibiose only marginally while D59K could not accumulate. However, the D59K/K377D double mutant accumulated melibiose to a modest level although this activity was no longer stimulated by Na(+). We suggest that Asp-59 and Lys-377 interact via a salt bridge that brings helix II and helix XI close to one another in the three-dimensional structure of the carrier.  相似文献   

20.
Choline kinase catalyzes the phosphorylation of choline by ATP, the first committed step in the CDP-choline pathway for phosphatidylcholine biosynthesis. To begin to elucidate the mechanism of catalysis by this enzyme, choline kinase A-2 from Caenorhabditis elegans was analyzed by systematic mutagenesis of highly conserved residues followed by analysis of kinetic and structural parameters. Specifically, mutants were analyzed with respect to K(m) and k(cat) values for each substrate and Mg(2+), inhibitory constants for Mg(2+) and Ca(2+), secondary structure as monitored by circular dichroism, and sensitivity to unfolding in guanidinium hydrochloride. The most severe impairment of catalysis occurred with the modification of Asp-255 and Asn-260, which are located in the conserved Brenner's phosphotransferase motif, and Asp-301 and Glu-303, in the signature choline kinase motif. For example, mutation of Asp-255 or Asp-301 to Ala eliminated detectable catalytic activity, and mutation of Asn-260 and Glu-303 to Ala decreased k(cat) by 300- and 10-fold, respectively. Additionally, the K(m) for Mg(2+) for mutants N260A and E303A was approximately 30-fold higher than that of wild type. Several other residues (Ser-86, Arg-111, Glu-125, and Trp-387) were identified as being important: Catalytic efficiencies (k(cat)/K(m)) for the enzymes in which these residues were mutated to Ala were reduced to 2-25% of wild type. The high degree of structural similarity among choline kinase A-2, aminoglycoside phosphotransferases, and protein kinases, together with the results from this mutational analysis, indicates it is likely that these conserved residues are located at the catalytic core of choline kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号