首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have studied the distribution of cytoskeletal elements in detergent-extracted mouse embryo fibroblasts using the platinum replica technique. It was shown that lamelloplasm can be subdivided into three zones: 1) the ruffle edge with dense microfilament meshwork; 2) the sparse zone adjacent to the ruffle edge and containing relatively few cytoskeletal elements; 3) the lamella proper occupied with a three-dimensional network of microfilaments, microtubules, intermediate filaments; this zone contained adhesion plaques corresponding to cell-substrate focal contacts and associated with the microfilament bundle ends. The cytoskeleton structure of the central (endoplasm) region of the cell was markedly different from that of the lamelloplasm. Its main feature was a dense microfilament sheath at the dorsal cell surface. Sites of microfilament bundle convergence can be visualized near the nucleus after partial removal of the sheath by more complete detergent extraction.  相似文献   

2.
T M Svitkina 《Tsitologiia》1989,31(10):1158-1164
Spreading of mouse embryo fibroblasts in the presence of cytochalasin D (1 microgram/ml) was studied using scanning electron microscopy, immunofluorescence, and electron microscopy of platinum replicas. Whereas circular lamellae were formed around the cell body during normal spreading, separate processes appeared at the cell periphery during spreading in cytochalasin-containing medium. The processes gradually elongated and branched. Cytoskeletons of fibroblasts spreading in the cytochalasin-containing medium were obtained by Triton X-100 extraction. They contained microtubules, intermediate filaments, actin "paracrystals" looking like short microfilament bundles, and patches of a meshwork-granular material. Immunogold coating of the cytoskeletons with anti-actin antibody showed that some meshwork-granular patches were decorated with gold particles, whereas the others were not. Non-actin patches were usually located on the distal ends of the processes, thus leaving behind the actin cytoskeletal components during the process growth. Another characteristic feature of this unidentified material is its usual association with the substratum and microtubules. These results suggest that the process protrusion during cell spreading in cytochalasin-containing medium may occur not due to actin polymerization as in the control cells, but due to involvement of some other non-actin cytoskeletal components. These components seem to be able to move along microtubules and to bind to the substratum.  相似文献   

3.
Fibroblast spreading was studied using immunofluorescent method that provided visualization of actin structures and adhesion contacts in the same cell. Four stages of actin system formation were observed. 1. Actin concentration in ruffles at the cell periphery. Formation of numerous dot-like contacts along the whole perimeter of the cell. 2. Formation of a circumferential actin bundle. Focal contacts are located at the outer edge of the bundle. 3. Gradual transformation of the circumferential bundle into actin network with triangular meshes. Peripheral (rather than internal) filaments of the network are associated with the focal contacts. 4. Appearance of the system of long straight actin bundles (stress fibers) associated with dash-like focal contacts. The stress fibers are supposed to arise from the triangular actin network which in its turn arises from the circumferential bundle. It is suggested that the formation of actin cytoskeleton is a process driven by the development of tensions in actin structures attached to the focal contacts at the cell periphery.  相似文献   

4.
Indirect immunofluorescent microscopy was used to study the distribution of eukaryotic elongation factor 2 (EF-2) in cultured mouse embryo fibroblasts. The perinuclear area (endoplasm) of all the cells and many straight cables running along the whole cytoplasm were stained with monospecific goat or rabbit antibodies to rat liver EF-2. Double staining of the cells with antibodies to EF-2 and rhodaminyl-phalloidin (used for actin microfilament detection) showed that EF-2 containing cables coincided with bundles of actin microfilaments. Not all actin microfilament bundles contained EF-2: sometimes EF-2 was not observed in bundles running along the cell edges or in actin microfilament junctions. Triton X-100 extracted most of EF-2 from the cells and no actin microfilament bundles were stained with the EF-2 antibodies in the Triton-extracted cells. Thus, in mouse embryo fibroblasts EF-2 can be found along actin microfilament bundles, but it is unlikely to be their integral protein.  相似文献   

5.
The correlation between the extracellular deposition of fibronectin and the development of the actin-containing cytoskeleton was studied during the attachment and spreading of the rat mammary epithelial cell line Rama 25. During the initial phase of cell spreading, actin is localised in peripheral microfilament bundles. As cell spreading increases, the peripheral ring is displaced towards the perinuclear region. Fibronectin, deposited beneath the basal surface, co-localises with the actin-containing peripheral ring. The peripheral ring subsequently disappears and is replaced by a system of radial microfilaments that extend from the perinuclear region to the cell periphery. At this stage, there is no correlation between the distribution of fibronectin and actin. As cells form colonies, radial microfilament bundles are replaced by peripheral microfilament bundles which do not co-localise with fibronectin. Cells at the edges of colonies extend lamellae that contain microfilament stress fibres. In these structures there is co-localisation of actin, fibronectin and the a5 beta 1-integrin fibronectin receptor.  相似文献   

6.
The actin cytoskeleton stress fiber is an actomyosin-based contractile structure seen as a bundle of actin filaments. Although tension development in a cell is believed to regulate stress fiber formation, little is known for the underlying biophysical mechanisms. To address this question, we examined the effects of tension on the behaviors of individual actin filaments during stress fiber (actin bundle) formation using cytosol-free semi-intact fibroblast cells that were pre-treated with the Rho kinase inhibitor Y-27632 to disassemble stress fibers into a meshwork of actin filaments. These filaments were sparsely labeled with quantum dots for live tracking of their motions. When ATP and Ca(2+) were applied to the semi-intact cells to generate actomyosin-based forces, actin meshwork in the protruded lamellae was dragged toward the cell body, while the periphery of the meshwork remained in the original region, indicating that centripetally directed tension developed in the meshwork. Then the individual actin filaments in the meshwork moved towards the cell body accompanied with sudden changes in the direction of their movements, finally forming actin bundles along the direction of tension. Dragging the meshwork by externally applied mechanical forces also exerted essentially the same effects. These results suggest the existence of tension-dependent remodeling of cross-links within the meshwork during the rearrangement of actin filaments, thus demonstrating that tension is a key player to regulate the dynamics of individual actin filaments that leads to actin bundle formation.  相似文献   

7.
The projection of knobby protuberances at the cell surface (zeiosis) is a general cellular response to cytochalasin D (CD), resulting from herniation of endoplasm through undefended places of the cortex during cell contractions and displacement of microfilaments induced by CD. Zeiosis is prevented by agents that interfere with the contractile response to CD, such as inhibitors of energy metabolism or cyclic AMP. The developed protrusions, which remain relatively stable in the presence of CD, contain chiefly mono- or subribosomes, and occasionally other organelles normally resident in endoplasm; compact microfilament felt occupies their bases and extends into their proximal stalks. Protein synthesis in the knobs is less than half of that in the polyribosome-containing endoplasm residual in the main body of the cell. Knobs first protrude singly near the margin of the contracting cells and rapidly cluster into small groups in the periphery even at lower temperature. The clusters then migrate centripetally and coalesce into a large aggregate near the apex of the immobilized and retracted cell: this movement is energy- and temperature-dependent. Aggregation is more prominent and stable in cell lines of epithelial derivation than in fibroblastic or other lines in which nuclear extrusion occurs more readily. The latter is regarded as a special manifestation of zeiosis. Macromarkers, such as latex spherules, migrate like the zeiotic knobs on the cell surfaces in the presence of CD. The aggregated knobs, although persistent for days in the presence of CD, are rapidly recessed after withdrawal of the agent as ruffling is resumed and the cells spread. These movements are discussed in terms of current concepts of mobility of the cell membrane.  相似文献   

8.
Cytoskeletons of colcemid-treated mouse embryo fibroblasts were studied using platinum replica technique. In the control cells, cytoskeletal components were oriented along direction of cell polarization. Structure of the control cytoskeleton changed regularly from the cell active edge to its centre forming several zones. Distribution of microtubules by colcemid led to significant changes in the organization of actin cytoskeleton. Both orientation and zonal differentiation of cytoskeleton disappeared in colcemid-treated fibroblasts. Changes in the fine structure of microfilament sheath were most prominent. Control sheath was composed of stretched tightly packed microfilaments. Colcemid treatment transformed it into fine microfilament meshwork, normally characteristic only for ruffle zone. Alterations of the fine structure of focal contacts and ruffles were also observed in treated cells. The role of microtubules in the organization of intracellular tensions and in the distribution of sites of actin polymerization is discussed.  相似文献   

9.
For cells to develop long-range forces and carry materials to the periphery, the microtubule and organelle-rich region at the center of the cell—the endoplasm—needs to extend to near the cell edge. Depletion of the actin cross-linking protein filamin A (FlnA) causes a collapse of the endoplasm into a sphere around the nucleus of fibroblasts and disruption of matrix adhesions, indicating that FlnA is involved in endoplasmic spreading and adhesion growth. Here, we report that treatment with the calpain inhibitor N-[N-(N-acetyl-l-leucyl)-l-leucyl]-l-norleucine (ALLN) restores endoplasmic spreading as well as focal adhesion (FA) growth on fibronectin-coated surfaces in a Fln-depleted background. Addback of calpain-uncleavable talin, not full-length talin, achieves a similar effect in Fln-depleted cells and indicates a crucial role for talin in endoplasmic spreading. Because FA maturation involves the vimentin intermediate filament (vIF) network, we also examined the role of vIFs in endoplasmic spreading. Wild-type cells expressing a vimentin variant incapable of polymerization exhibit deficient endoplasmic spreading as well as defects in FA growth. ALLN treatment restores FA growth despite the lack of vIFs but does not restore endoplasmic spreading, implying that vIFs are essential for endoplasm spreading. Consistent with that hypothesis, vIFs are always displaced from adhesions when the endoplasm does not spread. In Fln-depleted cells, vIFs extend beyond adhesions, nearly to the cell edge. Finally, inhibiting myosin II–mediated contraction blocks endoplasmic spreading and adhesion growth. Thus we propose a model in which myosin II–mediated forces and coalescence of vIFs at mature FAs are required for endoplasmic spreading.  相似文献   

10.
Immunofluorescence with an antiactin antibody and electron microscopy were used to study the distribution of actin in cultured mouse fibroblasts during treatment with inhibitors of energy metabolism. The inhibitors induce gradual disorganization of actin-containing microfilament bundles. At the first stage of the process the bundles degrade into separate fragments; later only small patches of actin can be found in the inhibitor-treated cells. This transformation takes about 90 min and is fully reversible as microfilament bundles are recovered after incubation of the cells in the inhibitor-free growth medium. The inhibitors do not alter actin distribution in the presence of glucose. This shows that their action is due to a reduction of the ATP level in the cells. A 90 min incubation with the inhibitors does not markedly alter either the cell shape or the microtubule system. Inhibitors of the energy metabolism prevent cytochalasin action on cells. Cytochalasin B (CB) or cytochalasin D (CD) rapidly disorganize the microfilament bundles and cause cell arborization. However, microfilament bundle destruction in the cells incubated in the mixture of cytochalasin and any of the inhibitors requires 90 min and is not accompanied by dramatic changes in the cell morphology, so the process is indistinguishable from microfilament bundle destruction in the presence of the inhibitors alone.  相似文献   

11.
Murine sarcoma virus-transformed rat fibroblasts (KNRK cells) undergo marked cytoarchitectural reorganization during in vitro exposure to sodium-n-butyrate (NaB) resulting in restoration of (1) a more typical fibroblastoid morphology, (2) proper cell-to-cell orientation, and (3) substratum adherence. Augmented cell spreading, involving greater than 90% of the population, was a function of culture density and time of exposure to NaB (2 mM final concentration). Induced cell spreading reflected a 2.5- to 3.0-fold increase in both total cellular actin content and deposition of actin into the detergent-resistant cytoskeleton. Cytoskeletal actin deposition in response to NaB was accompanied by the formation of occasionally dense, parallel alignments of F-actin-containing microfilaments and by a dramatic increase in the size and incidence of actin-enriched membrane ruffles. Long-term NaB-treated cells exhibited parallel orientations of microfilaments similar to those found in untransformed fibroblasts. Increased cytoskeletal actin occurred within 24 hr of NaB exposure, correlating with the initial reorganization of actin-containing microfilaments detected microscopically, and reflected concomitant 3-fold increases in cellular alpha-actinin and fibronectin content. In contrast, the amount of vimentin, tropomyosin, and tubulin in NaB-treated cells was significantly decreased. NaB-induced morphologic restructuring of sarcoma virus-transformed fibroblasts, thus, impacts on all three basic cytoskeletal systems. Selective increases, however, were evident in particular cytoskeletal proteins (actin, alpha-actinin, fibronectin) implicated in microfilament networking and cell spreading.  相似文献   

12.
Fibroblasts alter their shape, orientation, and direction of movement to align with the direction of micromachined grooves, exhibiting a phenomenon termed topographic guidance. In this study we examined the ability of the microtubule and actin microfilament bundle systems, either in combination with or independently from each other, to affect alignment of human gingival fibroblasts on sets of micromachined grooves of different dimensions. To assess specifically the role of microtubules and actin microfilament bundles, we examined cell alignment, over time, in the presence or absence of specific inhibitors of microtubules (colcemid) and actin microfilament bundles (cytochalasin B). Using time-lapse videomicroscopy, computer-assisted morphometry and confocal microscopy of the cytoskeleton we found that the dimensions of the grooves influenced the kinetics of cell alignment irrespective of whether cytoskeletons were intact or disturbed. Either an intact microtubule or an intact actin microfilament-bundle system could produce cell alignment with an appropriate substratum. Cells with intact microtubules aligned to smaller topographic features than cells deficient in microtubules. Moreover, cells deficient in microtubules required significantly more time to become aligned. An unexpected finding was that very narrow 0.5-μm-wide and 0.5-μm-deep grooves aligned cells deficient in actin microfilament bundles (cytochalasin B-treated) better than untreated control cells but failed to align cells deficient in microtubules yet containing microfilament bundles (colcemid treated). Thus, the microtubule system appeared to be the principal but not sole cytoskeletal substratum-response mechanism affecting topographic guidance of human gingival fibroblasts. This study also demonstrated that micromachined substrata can be useful in dissecting the role of microtubules and actin microfilament bundles in cell behaviors such as contact guidance and cell migration without the use of drugs such as cytochalasin and colcemid.  相似文献   

13.
Fascin is an actin-bundling protein that is found in membrane ruffles, microspikes, and stress fibers. The expression of fascin is greatly increased in many transformed cells, as well as in specialized normal cells including neuronal cells and antigen-presenting dendritic cells. A morphological characteristic common to these cells expressing high levels of fascin is the development of many membrane protrusions in which fascin is predominantly present. To examine whether fascin contributes to the alterations in microfilament organization at the cell periphery, we have expressed fascin in LLC-PK1 epithelial cells to levels as high as those found in transformed cells and in specialized normal cells. Expression of fascin results in large changes in morphology, the actin cytoskeleton, and cell motility: fascin-transfected cells form an increased number of longer and thicker microvilli on apical surfaces, extend lamellipodia-like structures at basolateral surfaces, and show disorganization of cell–cell contacts. Cell migration activity is increased by 8–17 times when assayed by modified Boyden chamber. Microinjection of a fascin protein into LLC-PK1 cells causes similar morphological alterations including the induction of lamellipodia at basolateral surfaces and formation of an increased number of microvilli on apical surfaces. Furthermore, microinjection of fascin into REF-52 cells, normal fibroblasts, induces the formation of many lamellipodia at all regions of cell periphery. These results together suggest that fascin is directly responsible for membrane protrusions through reorganization of the microfilament cytoskeleton at the cell periphery.  相似文献   

14.
RhoE Regulates Actin Cytoskeleton Organization and Cell Migration   总被引:20,自引:4,他引:16       下载免费PDF全文
The actin cytoskeleton is regulated by Rho family proteins: in fibroblasts, Rho mediates the formation of actin stress fibers, whereas Rac regulates lamellipodium formation and Cdc42 controls filopodium formation. We have cloned the mouse RhoE gene, whose product is a member of the Rho family that shares (except in one amino acid) the conserved effector domain of RhoA, RhoB, and RhoC. RhoE is able to bind GTP but does not detectably bind GDP and has low intrinsic GTPase activity compared with Rac. The role of RhoE in regulating actin organization was investigated by microinjection in Bac1.2F5 macrophages and MDCK cells. In macrophages, RhoE induced actin reorganization, leading to the formation of extensions resembling filopodia and pseudopodia. In MDCK cells, RhoE induced the complete disappearance of stress fibers, together with cell spreading. However, RhoE did not detectably affect the actin bundles that run parallel to the outer membranes of cells at the periphery of colonies, which are known to be dependent on RhoA. In addition, RhoE induced an increase in the speed of migration of hepatocyte growth factor/scatter factor-stimulated MDCK cells, in contrast to the previously reported inhibition produced by activated RhoA. The subcellular localization of RhoE at the lateral membranes of MDCK cells suggests a role in cell-cell adhesion, as has been shown for RhoA. These results suggest that RhoE may act to inhibit signalling downstream of RhoA, altering some RhoA-regulated responses, such as stress fiber formation, but not affecting others, such as peripheral actin bundle formation.  相似文献   

15.
T M Svitkina  I N Kaverina 《Tsitologiia》1989,31(12):1441-1447
The actin cytoskeleton of 8 transformed epithelial cell lines was studied using electron microscopy of platinum replicas. Seven of these lines belonged to the IAR series of rat liver epithelial cells, being at different stages of neoplastic progression. One cell line (FBT) was derived from the epithelium of bovine fetal trachea. The extent of actin cytoskeleton alteration in cell lines studied has been shown to correlate with other signs of neoplastic transformation. Among various actin-containing cell structures (microfilament bundles, actin meshwork at active edges, cell-cell adherence junctions, and endoplasmic microfilament sheath) the latter was the most sensitive to transformation. The loosening of the sheath and the alteration of its fine structure were observed in all the cell lines. The degree of these changes increased in the following order: FBT; non-tumorigenic IAR lines; IAR lines transformed in vitro; IAR lines obtained from the latter by single or double selection in vivo. The alteration of sheath was the only disturbance of actin cytoskeleton in FBT cells, whereas in other groups of epithelial cell lines some other changes occurred. These involved disruption of actin-containing intercellular junctions, the cell polarization accompanied by progressive shortening of length of the cell active edge containing actin meshwork, and disappearance or reorganization of microfilament bundles.  相似文献   

16.
The outline of cells in sparse cultures consists predominantly of concave and convex segments; straight segments are rare and ephemeral. The convex segments are areas of active cell expansion. The concave segments are stationary and web-shaped, similar in profile to the cables of a suspension bridge. In 3T3 fibroblasts, we have found a single microfilament bundle following the outline of every webbed edge and have called it the actin edge-bundle (AEB). While the AEB is composed predominantly of actin, alpha-actinin and myosin are also present. In contrast to normal stress fibers, AEBs are more resistant to several treatments that depolymerize F-actin. Once an AEB disassembles, however, the webbed edge collapses and retracts, suggesting that the actin edge-bundle is a specialized cytoskeletal structure that supports the webbed edges of interphase 3T3 fibroblasts. The stability of AEBs is independent of microtubules. We suggest that the microfilament bundles that frequently line the lateral contacts between epithelial cells in vivo may be related to the actin edge-bundle.  相似文献   

17.
The polymerization of microfilaments and their subsequent rearrangements under the control of actin-myosin interactions are two major processes that underlie the morphogenetic reactions of cells. We studied their role in the spreading of normal and transformed REF52tetRas fibroblasts with adjustable ras-oncogene expression. Treatment with inhibitors of cell contractility (Y27632 or blebbistatin) led to the disappearance of actin bundles and focal adhesions; however, pseudopodial activity in both normal and transformed cells remained high. Under these conditions, spreading was more accelerated in normal cells then in ras-transformed cells. In normal cells treated with low concentrations of latrunculin A actin polymerization was suppressed, stress fibers and focal adhesions were preserved, but lamellipodial activity was lost and spreading was dramatically inhibited. In transformed fibroblasts treated with low doses of latrunculin, actin bundles and focal adhesions almost disappeared, but pseudopodial activity was apparent and spreading was less suppressed. Therefore, the most significant process in the regulation of cell spreading and polarization is the microfilament polymerization at the leading edge. ras-Transformed cells are less sensitive to inhibitors that affecting the cytoskeletal structure than nontransformed cells. Possible mechanisms that underlie the difference are discussed.  相似文献   

18.
19.
Studies of spreading fibroblasts and glial cells showed that the initial phase of the spreading process on a solid substratum proceeds by sequential development of different kinds of protrusions. Initially there is a high blebbing activity which is followed by development of small lamellipodia and somewhat later microspikes are formed. In the periphery of the spreading cells several types of microfilament organizations are displayed, these seem to be related to different stages in the cycles of extensions and retractions performed by the lamellipodia. The presence of microtubules and their relation to the different microfilament organizations are also shown.  相似文献   

20.
Surface movements during the spreading of blood platelets   总被引:3,自引:0,他引:3  
When human blood platelets spread on a substratum they increase their surface area as much as 4-fold. We investigated the mechanism of spreading by light microscopy and by scanning and transmission electron microscopy. Contact of a platelet with a glass surface induces formation of thin extensions which spread out over the substratum. These extensions resemble the actin-containing microspikes and lammelipodia of tissue cells in culture and appear to be drawn from the peripheral cortical layer associated with the plasma membrane. If platelets are initially labeled on their external surface with cationic ferritin or lentil-conjugated gold particles and then allowed to spread, the labels are retained in the central region, or granulomere. Proteins released by the spreading platelet--fibronectin and fibrinogen--also remain in this central unspread region. Peripheral regions of spread platelet surface (hyalomere) were unlabeled following the above procedures but could be labeled with cationic ferritin or lentil-conjugated gold provided these were applied after spreading was completed. These markers are cleared with time from the periphery, moving centripetally to accumulate at the granulomere. We suggest, on the basis of these observations, that platelets spread onto a substratum by a closely similar mechanism to that used by cells such as fibroblasts. In both cases the spreading involves the peripheral actin cortex and is accompanied by a continual centripetal movement of surface components--a "membrane flow"--which continues even after spreading is completed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号