首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Physical characterization of Caulobacter crescentus flagella.   总被引:23,自引:18,他引:5       下载免费PDF全文
Preparations of intact flagella isolated from Caulobacter crescentus CB13B1a were found to contain two protein species of apparent molecular weights 28,000 and 25,000. Both proteins cross-reacted completely with each other and with purified flagella in Ouchterlony double-immunodiffusion assays. The amino acid compositions of the isolated proteins were similar to one another but precluded any precursor-product relationship. Absence of both the 25,000- and 28,000-molecular-weight proteins from a number of nonmotile mutants and the simultaneous reappearance of these proteins in a motile revertant provide further evidence of the relationship of these two proteins to flagellar structure.  相似文献   

2.
We have studied the proteins encoded by the transforming region of the closely related human adenovirus serotypes 2 and 5. Messenger RNAs complementary to the two parts of this region, E1A and E1B, were prepared separately by hybridization to cloned DNA fragments encompassing 0.8 to 4.5 map units (for E1A) and 9.8 to 11.1 map units (for E1B). These RNAs were further fractionated by electrophoresis through agarose gels containing methylmercuric hydroxide, and then translated in vitro to identify the proteins encoded by each RNA species. E1A and E1B RNAs isolated at early and at late times after infection were compared. Three size classes of E1A mRNA direct the synthesis of at least five proteins: a28K3 protein encoded by a 0.6 kb mRNA, 42K and 54K proteins encoded by a 0.9 kb mRNA(s), and 48K and 58K proteins encoded by a 1.1 kb mRNA(s). The mRNA for the 28K protein accumulates preferentially at late times. Three size classes of early E1B mRNA direct the synthesis of three proteins: a 15K protein encoded by a 0.9 kb mRNA, an 18K protein encoded by a 1.2 kb mRNA, and a 57K protein encoded by a 2.6 kb mRNA. The mRNA for the 15K protein continues to accumulate at late times, and an additional 22K protein is made, while the 18K and 57K proteins are synthesized poorly, if at all, with late RNA.Substantially different E1A and E1B proteins are encoded by RNA from cells infected with the adenovirus type 5 mutants dl311, dl312, dl313, dl314 and hr1, which are all defective for replication on human cells and, except for dl311, for transformation. dl312, dl314 and hr1 are also defective for early viral gene expression. No viral mRNA could be detected in either dl312 or dl314-infected cells. hr1-infected cells contain a 0.9 kb mRNA encoding E1A 54K and 42K, but instead of 58K and 48K, the 1.1 kb hr1-E1A mRNA is translated into a 26K protein. The E1B mRNAs are present in substantially decreased amounts in hr1-infected cells. dl311-infected cells contain E1A mRNAs of 1.1 and 0.9 kb, encoding 38K and 34K proteins, respectively, and normal E1B mRNAs. The dl313 mRNAs of 1.1 and 0.9 kb contained fused E1A and E1B sequences and were translated into 40K and 36K proteins, respectively. These results are related to the mRNA structures and the biological activity of regions of the individual proteins.  相似文献   

3.
Phosphoproteins produced by the incubation of crude extracts of Salmonella typhimurium and Escherichia coli with either [32P]phosphoenolpyruvate or [gamma 32P]ATP have been resolved and detected using sodium dodecyl sulphate polyacrylamide gel electrophoresis and autoradiography. Simple techniques were found such that distinctions could be made between phosphoproteins containing acid-labile or stable phosphoamino acids and between N1-P-histidine and N3-P-histidine. Phosphoproteins were found to be primarily formed from phosphoenolpyruvate, but because of an efficient phosphoexchange, ATP also led to the formation of the major phosphoenolpyruvate-dependent phosphoproteins. These proteins had the following apparent subunit molecular weights: 65,000, 65,000, 62,000, 48,000, 40,000, 33,000, 25,000, 20,000, 14,000, 13,000, 9,000, 8,000. Major ATP-dependent phosphoproteins were detected with apparent subunit molecular weights of 75,000, 46,000, 30,000, and 15,000. Other minor phosphoproteins were detected. The phosphorylation of the 48,000- and 25,000-MW proteins by phosphoenolpyruvate was independent of the phosphoenolpyruvate:sugar phosphotransferase system (PTS). The PTS phosphoproteins were identified as enzyme I (soluble; MW = 65,000); enzyme IIN-acetylglucosamine (membrane bound; MW = 65,000); enzyme IImannitol (membrane bound; MW = 62,000); IIIfructose (soluble; MW = 40,000); IIImannose (partially membrane associated; MW = 33,000); IIIglucose (soluble; MW = 20,000); IIIglucitol (soluble; MW = 13-14,000); HPr (soluble; MW = 9,000); FPr (fructose induced HPr-like protein (soluble; MW = 8,000). HPr and FPr are phosphorylated on the N-1 position of a histidyl residue while all the others appear to be phosphorylated on an N-3 position of a histidyl residue. These studies identify some previously unknown proteins of the PTS and show the phosphorylation of others, which although previously known, had not been shown to be phosphoproteins.  相似文献   

4.
5.
Coronaviruses     
Taguchi F 《Uirusu》2011,61(2):205-210
Coronaviruses contain positive-stranded RNA with ca. 30 kb as a genome, which is wrapped by the envelope, and constitute Nidovirales together with Arteriviridae. The feature of viruses in Nidovirales is the unique structure of the mRNA set, called 3' co-terminal nested set. Coronaviruses have several to more than 10 different species of subgenomic mRNA and generally only the OFR located in the 5' end of each mRNA is translated. The 5' 20 kb of the coronavirus genome or mRNA-1 consists of two ORFs, 1a and 1b, between that there is a unique RNA structure called pseudoknot. From mRNA-1, 1a as well as 1a+1b are translated; the latter 1a+1b results from the translation due to ribosomal frame-shifting facilitated by the pseudoknot structure. From those two proteins, totally 16 proteins are produced as a result of auto-cleavage by the proteases included in la protein. Those proteins exhibit different functions, such as RNA-dependent RNA polymerase, helicase, proteases and proteins that regulate cellular functions, mRNAs smaller than mRNA-2 translate in general the structural proteins, nucleocapsid (N) protein, spike (S) protein, integrated membrane (M) protein and envelope (E) proteins. Those proteins assemble to the vesicles located from ER to Golgi (ER Golgi intermediate compartment) and virions bud into the vesicles. Those virions are released from infected cells via exocytosis.  相似文献   

6.
Black beetle virus is an insect virus with a split genome consisting of two single-stranded, messenger-active RNA molecules with molecular weights of 1.0 x 10(6) (RNA 1) and 0.5 x 10(6) (RNA 2), respectively. Virions contained two proteins, beta with a molecular weight of 43,000 (43K) and gamma (5K), and traces of a third protein, alpha (47K). When translated in cell-free extracts of rabbit reticulocytes, RNA 1 directed the synthesis of protein A (104K), whereas RNA 2 synthesized protein alpha. The in vitro translation efficiency of the two RNAs was roughly equal. Infection of cultured Drosophila cells induced the synthesis of five new proteins: A, alpha, beta, gamma, and B (10K), detected by autoradiography of polyacrylamide gels after electrophoresis of extracts from [(35)S]methionine-labeled cultures. All but protein gamma could also be detected by staining with Coomassie brilliant blue, indicating vigorous synthesis of viral proteins. Pulse-chase experiments in infected cells revealed the disappearance of protein alpha and the coordinate appearance of proteins beta and gamma, supporting an earlier proposal that coat protein of mature virions is made by cleavage of precursor alpha. Proteins A and B were stable in such pulse-chase experiments. The three classes of virus-induced proteins, represented by A, B, and alpha, were synthesized in markedly different amounts and with different kinetics. Synthesis of proteins A and B peaked early in infection and then declined, whereas synthesis of coat protein precursor alpha peaked much later. These results suggest that RNA 1 controls early replication functions via protein A (and also possibly protein B), whereas RNA 2 controls synthesis of coat protein required later for virion assembly.  相似文献   

7.
A rapid and simple, large-scale method for the purification of DNA-dependent RNA polymerase III (EC 2.7.7.6) from wheat germ is presented. The method involves enzyme extraction at low ionic strength, polyethyleneimine fractionation, (NH4)2SO4 precipitation, and chromatography on DEAE-Sepharose CL-6B, DEAE-cellulose, and heparin agarose. Milligram quantities of highly purified enzyme can be obtained from kilogram quantities of starting material in 2 to 3 days. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that RNA polymerase III contains 14 subunits with molecular weights of: 150,000; 130,000; 94,000; 55,000; 38,000; 30,000; 28,000; 25,000; 24,500; 20,500; 20,000; 19,500; 17,800; and 17,000. Subunit structure comparison of wheat germ RNA polymerases I, II, and III indicates that all three enzymes may contain common subunits with molecular weights 20,000, 17,800, and 17,000. In addition, RNA polymerases II and III may contain a common subunit with a molecular weight of 25,000, and RNA polymerases I and III may contain a common subunit with a molecular weight of 38,000.  相似文献   

8.
Critical epitopes in transmissible gastroenteritis virus neutralization.   总被引:23,自引:13,他引:10       下载免费PDF全文
Purified transmissible gastroenteritis (TGE) virus was found to be composed of three major structural proteins having relative molecular weights of 200,000, 48,000, and 28,000. The peplomer glycoprotein was purified by affinity chromatography with the monoclonal antibody (MAb) 1D.G3. A collection of 48 MAbs against TGE virus was developed from which 26, 10, and 3 were specific for proteins E2, N, and E1, respectively. A total of 14 neutralizing MAbs of known reactivity were E2 protein specific. In addition, MAb 1B.C11, of unknown specificity, was also neutralizing. These MAbs reduced the virus titer 10(2)- to 10(9)-fold. Six different epitopes critical in TGE virus neutralization were found, all of which were conformational based on their immunogenicity and antigenicity. Only the epitope defined by MAb 1G.A7 was resistant to sodium dodecyl sulfate treatment, although it was destroyed by incubation in the presence of both the detergent and beta-mercaptoethanol. The frequency of MAb-resistant (mar) mutants selected with four MAbs (1G.A7, 1B.C11, 1G.A6, and 1E.F9) ranged from 10(-6) to 10(-7), whereas the frequency of the putative mar mutant defined by MAb 1B.B11 was lower than 10(-9). Furthermore, the epitopes defined by these MAbs and by MAbs 1H.C2 and 1A.F10, were present in 11 viral isolated with different geographical locations, years of isolation, and passage numbers (with the exception of two epitopes absent or modified in the TOY 56 viral isolate), suggesting that the critical epitopes in TGE virus neutralization were highly conserved.  相似文献   

9.
10.
During the reproductive period (spring) the lizard epididymis secretes a soluble protein of an apparent molecular weight (MW) of 19,000, the protein L. This androgen dependent protein disappears during post-nuptial atrophy of the epididymis (summer). At two time intervals (spring and summer) total RNA were extracted and poly (A) RNA were prepared. The RNA were translated in a cell-free system (rabbit reticulocyte lysate) in the presence of 35S methionine. Labelled translation products were analyzed by polyacrylamide gel electrophoresis under denaturing conditions. Electrophoresis were preceded or not by immunoprecipitation with an antiserum raised against protein L. RNA extracted during spring coded for several unique bands including five immunoprecipitated proteins with close-related MW (21,000 to 25,000). When RNA were translated in the presence of dog microsomes, the five previously detected protein bands disappear although a 19,000 MW immunoprecipitated protein was clearly demonstrated. These proteins were not detected when RNA extracted in summer were used. The protein L appears to be synthesized as preprotein(s). Its (unique or several?) messenger is of poly A type; it is present in spring and absent or undetectable in these experimental conditions in summer.  相似文献   

11.
Virus-specific cytoplasmic RNA was isolated from rat cell lines transformed by fragments of adenovirus type 5 DNA, and the RNAs were translated in cell-free systems derived from wheat germ or rabbit reticulocytes. RNA was isolated from cell lines transformed by the following fragments: XhoI-C (leftmost 15.5%), HindIII-G (leftmost 8%), and HpaI-E (leftmost 4.5%). In addition, the adenovirus type 5-transformed human embryonic kidney line 293.C31 was investigated. The products were immunoprecipitated with serum from tumor-bearing hamsters and analyzed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The results show that all transformed cells investigated contain early region 1a-specific RNAs which can be translated into proteins with molecular weights of 34,000 (34K), 36K, 40K, and 42K. Transformed cells that also contain an intact early region 1b synthesized RNA which can be translated into proteins with molecular weights of 19K and 65K. Minor proteins of 15K, 16K, 17.5K, 18K, 25K, and 29K were also observed, but these proteins could not be mapped unambiguously. Cells transformed by the 8% HindIII-G apparently lack RNA encoding the 65K protein, but they do contain RNA coding for the 19K protein.  相似文献   

12.
Sindbis virus-specific polypeptides were synthesized in lysates of rabbit reticulocytes in response to added 26 S or 49 S RNA. Sindbis 26 S RNA was translated into as many as three polypeptides which co-migrate in acrylamide gels with proteins found in infected cells.Wild type 26 S RNA was translated primarily into two polypeptides, which appear to be the Sindbis nucleocapsid protein (mol. wt 30,000) and the precursor of the two glycoproteins of the virion (mol. wt 100,000). A larger polypeptide (mol. wt 130,000) was synthesized in response to ts2 26 S RNA, a species of RNA which was isolated from cells infected with the ts2 mutant of Sindbis virus. This large polypeptide is apparently the protein which accumulates in cells infected with the mutant virus and which is thought to be a precursor of all three viral structural proteins.These results support the hypothesis that 26 S RNA is the messenger for the three structural proteins of the virion and that the RNA codes for one large polypeptide precursor. The precursor may then be cleaved at a specific site to yield the nucleocapsid protein and a second polypeptide which, in infected cells, is cleaved in a series of steps to yield the two glycoproteins of the virion.Sindbis 49 S RNA was translated into eight or nine polypeptides ranging from 60,000 to 180,000 molecular weights. The viral structural proteins, as such, were not synthesized in response to the added 49 S RNA.  相似文献   

13.
在大肠杆菌中对汉滩病毒S基因4种不同长度片段的重组表达质粒进行诱导表达。结果表明表达的4种GST-NP融合蛋白均以不溶性包含体形式存在于茵体细胞内,表达量分别占菌体蛋白总量的29-36%,分子量分别约为72kD、66kD、54kD和44kDD。Western blot显示54kD和72kD融合蛋白用酶标记汉滩病毒NPMcAblA8和抗GST McAb 3C11染色呈阳反应。66kD和44kD融合蛋  相似文献   

14.
Polyacrylamide gel electrophoresis of purified Junin virus revealed six distinct structural polypeptides, two major and four minor ones. Four of these polypeptides appeared to be covalently linked with carbohydrate. The molecular weights of the six proteins, estimated by coelectrophoresis with marker proteins, ranged from 25,000 to 91,000. One of the two major components (number 3) was identified as a nucleoprotein and had a molecular weight of 64,000. It was the most prominent protein and was nonglycosylated. The other major protein (number 5), with a molecular weight of 38,000, was a glucoprotein and a component of the viral envelope. The location on the virion of three additional glycopeptides with molecular weights of 91,000, 72,000, and 52,000, together with a protein with a molecular weight of 25,000, was not well defined.  相似文献   

15.
Antisera were prepared against the amino acid sequences encoded within the N-terminal half of the adenovirus 12 (Ad12) early region 1A (E1A) gene. This was accomplished by construction of a plasmid vector which encoded the N-terminal 131 amino acids of Ad12 E1A joined in frame to the coding sequence of beta-galactosidase. After induced synthesis in Escherichia coli, the Ad12 E1A-beta-galactosidase fusion protein (12-1A-FP) was extracted with urea and used to raise antibodies in rabbits. The 12-1A-FP antisera immunoprecipitated major phosphoproteins of 39,000 and 37,000 apparent molecular weights from Ad12-transformed and infected cells. The 12-1A-FP antisera also immunoprecipitated E1A phosphoproteins from Ad5-transformed and infected cells. Immunospecificity of the 12-1A-FP antisera was demonstrated by the ability of 12-1A-FP antigen to block immunoprecipitation of E1A proteins. Furthermore, E1A proteins immunoprecipitated from in vivo-labeled cells comigrated with those translated in vitro by RNA that had been hybridization selected to E1A DNA.  相似文献   

16.
Solanum nodiflorum mottle virus RNA (Mr = 1.5 X 10(6)) was translated in vitro in a wheat embryo extract. Four major products were synthesized: 2 related proteins of molecular weight 100K (P100) and 67K (P67), a protein of molecular weight 38K (P38), and a methionine-lacking protein of molecular weight 28K (P28). P38 was synthesized by a minor RNA component (Mr approximately 0.4 X 10(6)) and comigrated with the only viral product detected in SNMV-infected N. clevelandii protoplasts. Antiserum raised against purified SNMV virions precipitated both in vitro- and in vivo-synthesized P38, suggesting that it is either a precursor to or an intact form of SNMV coat protein whose apparent molecular weight in purified virus preparations is 30K.  相似文献   

17.
DNA-dependent RNA polymerase II was purified from the mouse plasmacytoma, MOPC 315. Soluble enzyme was obtained from a nucleoplasmic fraction and subjected to chromatography on phosphocellulose, DEAE-cellulose, and DEAE-Sephadex ion exchange resins and was subjected to sedimentation in sucrose density gradients. A chromatographically homogeneous enzyme was obtained which was purified about 25,000-fold relative to whole cell extracts and which had a specific activity (on native DNA) similar to those reported for other purified eukaryotic class II RNA polymerase preparations. Analysis of purified RNA polymerase II by polyacrylamide gel electrophoresis under nondenaturing conditions revealed three protein bands, designated II-O, II-A, and II-B in order of electrophoretic mobility. The subunit compositions of these nondenatured bands were subsequently analyzed by electrophoresis under denaturing conditions. Each enzyme II form contained subunits with molecular weights of 140,000 (II-c), 41,000 (II-d), 30,000 (II-e), 25,000 (II-f), 22,000 (II-g), 20,000 (II-h), and 16,000 (II-i). Molar ratios were unity for all subunits except subunit II-h which had a molar ratio of 2. Each enzyme form was distinguished by its highest molecular weight subunit. II-O contained subunit II-o (molecular weight 240,000), II-A contained subunit II-a (molecular weight 205,000), and II-B contained subunit II-b (molecular weight 170,000). Total molecular weights for II-O, II-A, and II-B were calculated as 554,000, 519,000, and 484,000, respectively. In addition, the number of RNA polymerase II molecules per MOPC 315 tumor cell was calculated to be about 5 times 10-4.  相似文献   

18.
Evidence was obtained by gel electrophoresis that foot-and-mouth disease virus (FMDV) type A(12) protein migrates mainly in a zone corresponding to polypeptide(s) approximately 25,000 daltons in molecular weight. Additional minor components were observed, four with molecular weights ranging from 10,000 to 22,500 daltons and one with a molecular weight of 37,500 daltons. The minor components comprised about 10% of the total protein and were present in variable amounts. The 75S empty capsids contained primarily 25,000-, 37,500- and 50,000-dalton zones. These molecular weights were estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate versus proteins of known molecular weight, including poliovirus and vesicular stomatitis virus proteins. Maleylation of the amino residues of FMDV protein solubilized it to about 5 to 10 mg/ml in aqueous, nondenaturing solvents. This permitted molecular weights to be estimated also by gel filtration. Maleylation of 70% of the available amino groups of the FMDV protein produced heat and sodium dodecyl sulfate-stable polymeric aggregates of 10 to 20% of the 25,000-dalton zone. It also resulted in an increase in the molecular weight of this zone by an amount equivalent (ca. 1,000) to that expected from the added maleyl residues.  相似文献   

19.
The severe acute respiratory syndrome coronavirus (SARS-CoV) was recently identified as the etiology of SARS. The virus particle consists of four structural proteins: spike (S), small envelope (E), membrane (M), and nucleocapsid (N). Recognition of a specific sequence, termed the packaging signal (PS), by a virus N protein is often the first step in the assembly of viral RNA, but the molecular mechanisms involved in the assembly of SARS-CoV RNA are not clear. In this study, Vero E6 cells were cotransfected with plasmids encoding the four structural proteins of SARS-CoV. This generated virus-like particles (VLPs) of SARS-CoV that can be partially purified on a discontinuous sucrose gradient from the culture medium. The VLPs bearing all four of the structural proteins have a density of about 1.132 g/cm(3). Western blot analysis of the culture medium from transfection experiments revealed that both E and M expressed alone could be released in sedimentable particles and that E and M proteins are likely to form VLPs when they are coexpressed. To examine the assembly of the viral genomic RNA, a plasmid representing the GFP-PS580 cDNA fragment encompassing the viral genomic RNA from nucleotides 19715 to 20294 inserted into the 3' noncoding region of the green fluorescent protein (GFP) gene was constructed and applied to the cotransfection experiments with the four structural proteins. The SARS-CoV VLPs thus produced were designated VLP(GFP-PS580). Expression of GFP was detected in Vero E6 cells infected with the VLP(GFP-PS580), indicating that GFP-PS580 RNA can be assembled into the VLPs. Nevertheless, when Vero E6 cells were infected with VLPs produced in the absence of the viral N protein, no green fluorescence was visualized. These results indicate that N protein has an essential role in the packaging of SARS-CoV RNA. A filter binding assay and competition analysis further demonstrated that the N-terminal and C-terminal regions of the SARS-CoV N protein each contain a binding activity specific to the viral RNA. Deletions that presumably disrupt the structure of the N-terminal domain diminished its RNA-binding activity. The GFP-PS-containing SARS-CoV VLPs are powerful tools for investigating the tissue tropism and pathogenesis of SARS-CoV.  相似文献   

20.
The precursor proteins to the subunits of ubiquinol:cytochrome c reductase (cytochrome bc1 complex) of Neurospora crassa were synthesized in a reticulocyte lysate. These precursors were immunoprecipitated with antibodies prepared against the individual subunits and compared to the mature subunits immunoprecipitated or isolated from mitochondria. Most subunits were synthesized as precursors with larger apparent molecular weights (subunits I, 51,500 versus 50,000; subunit II, 47,500 versus 45,000; subunit IV (cytochrome c1), 38,000 versus 31,000; subunit V (Fe-S protein), 28,000 versus 25,000; subunit VII, 12,000 versus 11,500; subunit VIII, 11,600 versus 11,200). Subunit VI (14,000) was synthesized with the same apparent molecular weight. The post-translational transfer of subunits I, IV, V, and VII was studied in an in vitro system employing reticulocyte lysate and isolated mitochondria. The transfer and proteolytic processing of these precursors was found to be dependent on the mitochondrial membrane potential. In the transfer of cytochrome c1, the proteolytic processing appears to take place in two separate steps via an intermediate both in vivo and in vitro. In vivo, the intermediate form accumulated when cells were kept at 8 degrees C and was chased into mature cytochrome c1 at 25 degrees C. Both processing steps were energy-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号