首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We had previously characterised a cDNA which encodes a novel GTP-binding protein DRG. The expression of drg gene is down-regulated during the embryonic development of murine central nervous system. Further analysis of drg mRNA and protein in adult mouse tissues and various cell lines of different origins indicated that it is expressed widely, albeit at low and variable levels. In situ hybridisation analysis of mRNA expression in sections of mouse embryos indicated that drg is expressed strongly in various embryonic tissues. The expression of drg mRNA is greatly reduced in newborn animals. At cellular level, DRG protein can be detected in the cytoplasm. These observations suggest that DRG may play multiple roles in development and normal cell metabolism.  相似文献   

4.
Previous studies indicated that nitric oxide (NO) is involved in secondary damage of spinal cord injury (SCI), which worsens the primary physical injury to the central nervous systems. Recently, nitric oxide synthase interacting protein (NOSIP) has been identified to interact with neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase by inhibiting the NO production. However, its expression and function after a central nervous system injury remains unclear. In this study, we examined the expression and cellular localization of NOSIP in the spinal cord of an adult rat. Western blot analysis indicated that NOSIP protein levels increased at day1 post-injury and peaked at day 14. Double immunofluorescence staining showed that NOSIP was primarily expressed in neurons and glial cells in the intact spinal cord. Interestingly, this study also showed that the expression of NOSIP significantly increased in astrocytes after injury. Furthermore, injury-induced expression of NOSIP was co-expressed with proliferating cell nuclear antigen (PCNA) positive astrocytes after injury. We also showed the NOSIP was co-localized with nNOS in gray matter and white matter after SCI. All these data taken together suggested that NOSIP may play an important roles in astrogliogenesis after a spinal cord injury.  相似文献   

5.
6.
7.
It has been previously described the presence of GnRH receptor in spinal cord neurons of rat embryos and adult rats. However, the functional role of these receptors has not been studied. In this work, the effect of GnRH on neurite outgrowth and cytoskeletal protein expression in cultured spinal cord neurons of rat embryos was analyzed. Specifically, neurofilaments of 68 and 200 kDa by immunoblot assays and spinophilin mRNA expression by RT-PCR. Results show that GnRH stimulates neurite outgrowth in addition to an increase in neurofilaments and spinophilin expression. These findings suggest that GnRH may play a role as neuromodulator in neuronal plasticity and that could be considered as a potential factor for neuronal regeneration in spinal cord injuries.  相似文献   

8.
Xenopus embryos contain a considerable amount of a polysialo-ganglioside not yet fully characterized; in this paper, we will refer to it as ganglioside X1. Preliminary experiments indicate asialo-GM1 as the core structure of the ganglioside X1 and palmitic and oleic acid as the fatty acids of the ceramide moiety. Further analyses by comparative 2D-TLC with adult fish and chick embryo brains indicate the pentasialilated ganglioside GP1c as the possible structure of X1. In the adult Xenopus, X1 characterizes the ganglioside pattern of the central nervous system while is absent in all the other tested tissues. At least two other more polar (presumably richer in sialic acid) bands are often visible under X1, both in embryos and in brain and spinal cord tissues of adult Xenopus. The persistence of polysialo-gangliosides in the brain and spinal cord of adult amphibians could serve to guarantee a proper functioning of the central nervous system at low body temperature.  相似文献   

9.
10.
APG-2 protein is a member of the heat shock protein 110 family, and it is thought to play an important role in the maintenance of neuronal functions under physiological and stress conditions. However, neither the tissue-distribution of APG-2 protein nor developmental change of its expression has been studied at the protein level. Therefore, we generated an antiserum against APG-2 protein and studied expression of this protein in rat brain and other tissues by use of the Western blot method. The results showed a high expression of APG-2 protein in various regions of the central nervous system (cerebral cortex, hippocampus, striatum, midbrain, hypothalamus, cerebellum, medulla pons, and spinal cord) throughout the entire postnatal stage. Similarly, a high level of APG-2 protein was detected in the whole brain of rat embryos and in adult rat tissues such as liver, lung, spleen, and kidney. In contrast, its expression in heart was high at postnatal days 1 and 3, but thereafter drastically decreased to a low level. Furthermore, APG-2 protein was detected in neuronal primary cultures prepared from rat cerebral cortex, and its level did not change notably during neuronal differentiation. These results show that APG-2 protein is constitutively expressed in various tissues and also in neuronal cells throughout the entire embryonic and postnatal period. suggesting that it might play an important role in these tissues under non-stress conditions.  相似文献   

11.
Progesterone provides neuroprotection after spinal cord injury, but the molecular mechanisms involved in this effect are not completely understood. In this work, expression of two binding proteins for progesterone was studied in intact and injured rat spinal cord: the classical intracellular progesterone receptor (PR) and 25-Dx, a recently discovered progesterone membrane binding site. RT-PCR was employed to determine their relative mRNA levels, whereas cellular localization and relative protein levels were investigated by immunocytochemistry. We observed that spinal cord PR mRNA was not up-regulated by estrogen in contrast to what is observed in many brain areas and in the uterus, but was abundant as it amounted to a third of that measured in the estradiol-stimulated uterus. In male rats with complete spinal cord transection, levels of PR mRNA were significantly decreased, while those of 25-Dx mRNA remained unchanged with respect to control animals. When spinal cord-injured animals received progesterone treatment during 72 h, PR mRNA levels were not affected and remained low, whereas 25-Dx mRNA levels were significantly increased. Immunostaining of PR showed its intracellular localization in both neurons and glial cells, whereas 25-Dx immunoreactivity was localized to cell membranes of dorsal horn and central canal neurons. As the two binding proteins for progesterone differ with respect to their response to lesion, their regulation by progesterone, their cellular and subcellular localizations, their functions may differ under normal and pathological conditions. These observations point to a novel and potentially important role of the progesterone binding protein 25-Dx after injury of the nervous system and suggest that the neuroprotective effects of progesterone may not necessarily be mediated by the classical progesterone receptor but may involve distinct membrane binding sites.  相似文献   

12.
13.
TAG-1 is a 135,000 Mr axonal glycoprotein of the immunoglobulin superfamily that promotes axon extension in vitro. One distinguishing feature of TAG-1 is its transient expression on subsets of axons in the developing nervous system. To examine the mechanisms that regulate TAG-1, we have monitored the expression of this protein by developing central and peripheral neurons in vitro. TAG-1 was detected on the surface of a subset of E11 to E13 spinal cord neurons in vitro and was also released by these neurons. Expressions of TAG-1 on the cell surface was transient but it was possible to detect a released form of TAG-1 at all times in vitro. Spinal cord neurons isolated from older embryos did not express surface TAG-1 when they regenerated axons in vitro. Changes in the environment of spinal cord neurons did not alter the time course of TAG-1 expression, suggesting that regulation of the protein is cell autonomous. In contrast to these results with spinal cord neurons, surface expression of TAG-1 by DRG neurons persisted in vitro and adult DRG neurons re-expressed TAG-1 when grown in vitro. The cell surface and released forms of TAG-1 therefore appear to be regulated differently by central and peripheral neurons.  相似文献   

14.
脊髓损伤是一个重要的公共卫生难题,脊髓损伤可划分为三个病理生理阶段:原发性损伤期、继发性损伤期和慢性损伤期。基因表达的改变在脊髓损伤中起到了重要作用,miRNAs可以调控转录后所有基因的表达,所以miRNAs是脊髓损伤中一个很具有研究价值的研究对象。miRNAs是20-25碱基组成的非编码RNA,通过与靶mRNAs 3‘UTR结合下调其表达实现的对mRNA翻译进程的调控。miRNAs与中枢神经系统的发育、功能和疾病有密切关系。脊髓损伤后miRNAs通过调节中性粒细胞和炎性反应通路在炎性应答中起到了重要作用;miRNAs在细胞凋亡中表现出了复杂的功能,其表达的改变可能同时刺激和抑制凋亡;miRNAs可通过增强星形胶质细胞肥大和调节胶质瘢痕的进程;miRNAs的下调可能通过促进轴突靶向作用、神经元存活和轴突生长来促进损伤脊髓部位再生进程。目前脊髓损伤仍是现代医学的难题,对神经系统疾病中miRNAs作用的研究,为脊髓损伤治疗提供了一种新的治疗方案,也是将来研究中的热点。  相似文献   

15.
A number of neuropeptides have been described which are present in the insect nervous system. The physiological role of these neuropeptides has not yet been clarified. We have characterized a Drosophila melanogaster cDNA coding for a protein, NKD, whose sequence resembles that of mammalian G protein-coupled neuropeptide receptors. This protein shows 38% homology with the mammalian tachykinin NK3 receptor within the transmembrane domain region. Stable cell lines expressing this cDNA are responsive to Locusta migratoria tachykinin but not to other peptides of the tachykinin family. The expression of this gene is detected principally in adult fly heads, but also in the adult body and in embryos. Interestingly, NKD mRNA is detected at very early stages of Drosophila embryonic development (3 h) and reaches the highest level of expression at 12-16 h, a time which correlates with the period of major neuronal development. In situ hybridization experiments demonstrate that NKD is expressed in the central nervous system, as well as in subsets of neurons in each segment of the developing ventral ganglia. The cytological localization of this gene is at position 86C on the Drosophila third chromosome.  相似文献   

16.
Xiao F  Fei M  Cheng C  Ji Y  Sun L  Qin J  Yang J  Liu Y  Zhang L  Xia Y  Shen A 《Neurochemical research》2008,33(9):1735-1748
Src suppressed C kinase substrate (SSeCKS) was identified as a PKC substrate/PKC-binding protein, which plays a role in mitogenic regulatory activity and has a function in the control of cell signaling and cytoskeletal arrangement. However its distribution and function in the central nervous system (CNS) lesion remain unclear. In this study, we mainly investigated the mRNA and protein expression and cellular localization of SSeCKS during spinal cord injury (SCI). Real-time PCR and Western blot analysis revealed that SSeCKS was present in normal whole spinal cord. It gradually increased, reached a peak at 3 days for its mRNA level and 5 days for its protein level after SCI, and then declined during the following days. In ventral horn, the expression of SSeCKS underwent a temporal pattern that was similar with the whole spinal cord in both mRNA and protein level. However, in dorsal horn, the mRNA and protein for SSeCKS expression were significantly increased at 1 day for its mRNA level and 3 days for its protein level, and then gradually declined to the baseline level, ultimately up-regulated again from 7 to 14 days. The protein expression of SSeCKS was further analysed by immunohistochemistry. The positively stained areas for SSeCKS changed with the similar pattern to that of protein expression detected by immunoblotting analysis. Double immunofluorescence staining showed that SSeCKS immunoreactivity (IR) was found in neurons, astrocytes, oligodendrocytes of spinal cord tissues within 5 mm from the lesion site. Importantly, injury-induced expression of SSeCKS was co-labeled by active caspase-3 (apoptotic marker), Tau-1 (the marker for pathological oligodendrocyte) and β-1,4-galactosyltransferase 1 (GalT). All the results suggested that SSeCKS might play important roles in spinal cord pathophysiology and further research is needed to have a good understanding of its function and mechanism. Feng Xiao and Min Fei contributed equally to this work.  相似文献   

17.
We previously reported that sorting nexin 3 (SNX3), a protein belonging to the sorting nexin family, regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The snx3 gene is disrupted in patients with microcephaly, microphthalmia, ectrodactyly, and prognathism (MMEP) and mental retardation, demonstrating that SNX3 plays an important role in the genesis of these organs during development. The present study was designed to determine the expression pattern of snx3 mRNA, particularly in the mouse central nervous system (CNS), from the embryonic stage to adulthood. Whole mount in situ hybridization of embryonic day (E) 9.5 and 10.5 mouse embryos revealed strong positive signals for snx3 mRNA in the forebrain, pharyngeal arches, eyes, and limb buds. In situ hybridization analyses of embryonic and neonatal brain sections revealed that snx3 mRNA is mainly expressed in the cerebral cortex, hippocampus, piriform cortex, cerebellum, and spinal cord. In adulthood, the expression of snx3 mRNA is observed in the cerebral cortex, hippocampus, piriform cortex, and cerebellar neurons. Thus, snx3 mRNA is expressed during neural development and in adult neural tissues, suggesting that SNX3 may play an important role in the development and function of the CNS.  相似文献   

18.
19.
Traumatic spinal cord injury causes an inflammatory reaction involving blood-derived macrophages and central nervous system (CNS)-resident microglia. Intra-vital two-photon microscopy enables the study of macrophages and microglia in the spinal cord lesion in the living animal. This can be performed in adult animals with a traumatic injury to the dorsal column. Here, we describe methods for distinguishing macrophages from microglia in the CNS using an irradiation bone marrow chimera to obtain animals in which only macrophages or microglia are labeled with a genetically encoded green fluorescent protein. We also describe a injury model that crushes the dorsal column of the spinal cord, thereby producing a simple, easily accessible, rectangular lesion that is easily visualized in an animal through a laminectomy. Furthermore, we will outline procedures to sequentially image the animals at the anatomical site of injury for the study of cellular interactions during the first few days to weeks after injury.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号