首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Social dynamics are an important but poorly understood aspect of bat ecology. Herein we use a combination of graph theoretic and spatial approaches to describe the roost and social network characteristics and foraging associations of an Indiana bat (Myotis sodalis) maternity colony in an agricultural landscape in Ohio, USA. We tracked 46 bats to 50 roosts (423 total relocations) and collected 2,306 foraging locations for 40 bats during the summers of 2009 and 2010. We found the colony roosting network was highly centralized in both years and that roost and social networks differed significantly from random networks. Roost and social network structure also differed substantially between years. Social network structure appeared to be unrelated to segregation of roosts between age classes. For bats whose individual foraging ranges were calculated, many shared foraging space with at least one other bat. Compared across all possible bat dyads, 47% and 43% of the dyads showed more than expected overlap of foraging areas in 2009 and 2010 respectively. Colony roosting area differed between years, but the roosting area centroid shifted only 332 m. In contrast, whole colony foraging area use was similar between years. Random roost removal simulations suggest that Indiana bat colonies may be robust to loss of a limited number of roosts but may respond differently from year to year. Our study emphasizes the utility of graphic theoretic and spatial approaches for examining the sociality and roosting behavior of bats. Detailed knowledge of the relationships between social and spatial aspects of bat ecology could greatly increase conservation effectiveness by allowing more structured approaches to roost and habitat retention for tree-roosting, socially-aggregating bat species.  相似文献   

2.
Female Noctilio leporinus roost in groups that remain together, associated with the same individuals and in the same location, for several years regardless of turnover in resident males and movements of the group to alternate roosts. Females scent marked themselves with the sub-axial secretions of other females by rubbing their heads beneath other bats' wings. Males residing with female groups retain their tenure for two or more reproductive seasons. Bachelor males roost solitarily or in small groups apart from females. Together, these characteristics appear to form the basis of a polygynous social organization. Female N. leporinus foraged solitarily or in small groups with other females from the same roost group. Stable female roost groups forage together and return to the same foraging areas over long periods of time. Bats assembled into small groups outside of the roost and flew together to foraging areas. Females from one roost group were monitored using the same foraging area for over a year. Bats foraged close enough to each other to communicate the location of prey either passively or actively. Roosts were not used as information centres, as bats rarely followed each other from the roost to forage. Males foraged solitarily, utilizing areas that were different from, and larger than, those of the females.  相似文献   

3.
The decision where to live has far-reaching fitness consequences for animals. In contrast to most other mammals or birds that use sheltered nest sites, female Bechstein's bats frequently switch day roosts during one breeding season, and therefore must often decide where to spend the day. Selecting the right roost is important, because roost quality, e.g. microclimatic condition, influences survival and reproduction in bats. Although thermal factors are very important for the quality of roosts occupied by bats, whether bats base their day roost selection directly on roost temperature has not been tested in the field. Over one summer, we examined and tested the roost choice of 21 individually marked female Myotis bechsteinii living in one maternity colony. In a field experiment, we allowed the bats to choose between relatively warm versus cold bat boxes, while controlling for site preferences. We expected females to exhibit a preference for warm roosts during pregnancy and lactation to accelerate gestation and shorten the period of growth of their young. Roost occupancy over 160 census days reflected significant temperature differences among 89 surveyed roosts (14 tree holes and 75 bat boxes), and preferences changed with the season. Females significantly preferred cold roosts before parturition, whereas post-partum, they significantly favoured warm roosts. Temperature preferences were independent of the roost site, and thus roost selection was based directly on temperature. Boxes with significantly different daytime temperatures did not differ significantly at night. Consequently, bats would have to spend at least 1 day in a new roost to test it. Information transfer among colony members might facilitate knowledge of roost availability. Access to many roosts providing different microclimates is likely to be important for successful reproduction in the endangered Bechstein's bat.  相似文献   

4.
Conflict can arise when bats roost in human dwellings and householders are affected adversely by their presence. In the United Kingdom, the exclusion of bats from roosts can be licensed under exceptional circumstances to alleviate conflict, but the fate of excluded bats and the impact on their survival and reproduction is not well understood. Using radio-tracking, we investigated the effects of exclusion on the soprano pipistrelle Pipistrellus pygmaeus, a species that commonly roosts in buildings in Europe. Exclusions were performed under licence at five roosts in England in spring, when females were in the early stages of pregnancy. Following exclusion, all bats found alternative roosts and colonies congregated in nearby known roosts that had been used by radio-tagged bats prior to exclusion. We found no difference in roosting behaviour before and after exclusion. Both the frequency of roost switching and the type of roosts used by bats remained unchanged. We also found no change in foraging behaviour. Bats foraged in the same areas, travelled similar distances to reach foraging areas and showed similar patterns of habitat selection before and after exclusion. Population modelling suggested that any reduction in survival following exclusion could have a negative impact on population growth, whereas a reduction in productivity would have less effect. While the number of soprano pipistrelle exclusions currently licensed each year is likely to have little effect on local populations, the cumulative impacts of licensing the destruction of large numbers of roosts may be of concern.  相似文献   

5.
Distribution and minimum population densities for seven UK bat species known to be resident in northern England were calculated in an area covering 2500 km2. The species present were pipistrelle ( Pipistrellus pipistrellus ), brown long-eared ( Plecotus auritus ), Daubenton's ( Myotis daubentonii ), whiskered ( Myotis mystacinus ), Natterer's (Myotis nattereri) , noctule ( Nyctalus noctula ) and Brandt's (Myotis brandtii). Data were collected primarily from counts at summer roosts over the period 1983 to 1990. A total of 310 bat roosts were discovered within the study area. Of the 256 roosts at which the species present was identified, the majority, 127 (49.6%) were P. pipistrellus , with a mean maternity roost size of 69.6 bats. A minimum population density of 12.6 batskm−2 was estimated for P. pipistrellus , based on summer (maternity) roosts. The minimum population density estimate was higher than previous studies in northern England but substantially lower than those reported in Scotland (18.2 bats km-−2). The combined density of M. mystacinus, M. brandtii, and P. pipistrellus , which have similar foraging styles (15.8 bats km−2), is comparable to Scottish P. pipistrellus densities. The density of M. duubentonii was also lower than in Scotland, although the density of P. auritus was comparable. The majority of summer roosts for all species were found in buildings, except N. noctula and M. duubentonii which used bridges/tunnels or trees.  相似文献   

6.
For habitat specialists, fragmentation has major consequences as it means less suitable habitat for the species to live in. In a fragmented landscape, we would expect larger, but spatially more clustered, foraging ranges. We studied the impact of landscape fragmentation on the foraging range and habitat exploitation of a specialised forest bat by radiotracking 16 female lesser horseshoe bats Rhinolophus hipposideros in a landscape with connected woodland structures and in a highly fragmented landscape in Carinthia, Austria.Contrary to our expectations, spatial foraging behaviour was not influenced by fragmentation. No differences in the behaviour of the bats between the sites were evident for the foraging ranges (minimum convex polygon, MCP), the core foraging areas (50% kernel), nor the mean or the maximum distances from the roost. However, in the highly fragmented landscape, the foraging activity of individuals was spatially more clustered and the overall MCP of all bats of a colony was greater compared to the less fragmented landscape.Woodland was the most important foraging habitat for the lesser horseshoe bats at both study sites. Habitat selection at the individual MCPs was evident only at the site with low fragmentation. However, in the core foraging areas, woodland was significantly selected over all other habitat types at both study sites.We conclude that (1) conservation measures for colonies of lesser horseshoe bats should be undertaken within 2.5 km of the nursery roost, (2) woodland is the key foraging habitat particularly in the vicinity of the roost, and (3) any loss of woodland near the colonial roosts are likely to negatively influence the colony, since these bats do not seem to be able to adapt their spatial foraging behaviour in a degraded landscape. The inflexible spatial behaviour of this specialised bat highlights the need to compensate for any habitat loss within the foraging range of a bat colony.  相似文献   

7.
Knowledge of roost selection by northern yellow bats (Lasiurus intermedius) is limited to a small number of known roost locations. Yet knowledge of basic life history is fundamental to understanding past response to anthropogenic change and to predict how species will respond to future environmental change. Therefore, we examined male northern yellow bat roost selection on 2 Georgia, USA, barrier islands with different disturbance histories. Sapelo Island has a history of extensive disturbance and is dominated by pine (Pinus spp.) forests; Little Saint Simons Island has a limited disturbance history with maritime oak (Quercus spp.) forest as the dominant cover type. From March–July 2012 and 2013, we radio-tracked 35 adult male northern yellow bats to diurnal roosts and modeled roost characteristics at the plot and landscape scales. We located 387 roosts, of which 95% were in Spanish moss (Tillandsia usneoides) hanging in hardwood trees. On both islands, bats selected roost trees with larger diameters than surrounding trees and selected roost locations with greater open flight space (i.e., low midstory clutter) underneath. Roosts were located farther from open areas on Sapelo and closer to fresh water on Little Saint Simons compared to random locations. Lower availability of hardwood forest on Sapelo may have resulted in small-scale roost site selection (i.e., plot level) despite potential increased costs of commuting to water and open areas for foraging. In contrast, greater availability of hardwood forest on Little Saint Simons likely allowed selection of roosts closer to fresh water, which provides foraging and drinking opportunities. Our results indicate that mature hardwood trees in areas with low midstory clutter are important in male northern yellow bat roost selection, but landscape-level features have varying influences on roost selection, likely as a result of differences in disturbance history. Therefore, management will differ depending on the landscape context. Further research is needed to examine roost selection by females, which may have different habitat requirements. © 2020 The Wildlife Society.  相似文献   

8.
Regional migrations are important elements of the biology of bats, but remain poorly understood. We obtained a large dataset of recoveries of ringed Miniopterus schreibersii to study the patterns and drivers of migration of a Mediterranean cave-dwelling bat. In spite of the mildness of Mediterranean winters, in average years bats hibernated, and few movements were recorded during this period. After hibernation, females migrated to spring roosts, and again to maternity roosts just before parturition. This late arrival at nurseries could be a strategy to avoid a harmful build-up of parasites. Soon after the juveniles were weaned, the mothers migrated to the roosts where they spent autumn and sometimes also winter. Juveniles remained in the warm nurseries longer, presumably because high roost temperatures speed up growth. The pattern of migration of males was similar to that of females, but they left hibernacula later and remained more mobile during the maternity season. They also arrived at the hibernacula later, possibly because they needed time to build up fat stores after the energetically costly mating season. Maternity colonies spent the yearly cycle in well-defined home ranges (mean=19 030 km2), which overlapped greatly. Bats were furthest from the maternity sites during hibernation, but even then 80% remained within 90 km of them. Each hibernaculum attracted bats from multiple nurseries, from within a mean range of 10 770 km2. We tested two potential drivers for migration – temperature in the roosts and at the foraging areas – but our results supported only the first one. Bats migrated to reach the roosts most thermally suited for each phase of their life cycle, indicating that roost temperature and associated metabolic advantages are key drivers for regional migrations of cave-dwelling bats.  相似文献   

9.
Bats are a group of mammals well known for forming dynamic social groups. Studies of bat social structures are often based upon the frequency at which bats occupy the same roosts because observing bats directly is not always possible. However, it is not always clear how closely bats occupying the same roost associate with each other, obscuring whether associations result from social relationships or factors such as shared preferences for roosts. Our goal was to determine if bats cohabitating buildings were also found together inside roosts by using anti‐collision technology for PIT tags, which enables simultaneous detection of multiple tags. We PIT‐tagged 293 female little brown myotis (Myotis lucifugus) and installed antennas within two buildings used as maternity roosts in Yellowstone National Park. Antennas were positioned at roost entryways to generate cohabitation networks and along regions of attic ceilings in each building to generate intraroost networks based on proximity of bats to each other. We found that intraroost and cohabitation networks of buildings were significantly correlated, with the same bats tending to be linked in both networks, but that bats cohabitating the same building often roosted apart, leading to differing assessments of social structure. Cohabitation rates implied that bats associate with a greater number of their roost‐mates than was supported by observations within the roost. This caused social networks built upon roost cohabitation rates to be denser, smaller in diameter, and contain nodes with higher average degree centrality. These results show that roost cohabitation does not reflect preference for roost‐mates in little brown myotis, as is often inferred from similar studies, and that social network analyses based on cohabitation may provide misleading results.  相似文献   

10.
We evaluated the spatial and temporal patterns of roost switching behaviour by a tree-dwelling population of barbastelle bats Barbastella barbastellus in a beech forest of central Italy. Switching behaviour was common to both sexes and did not depend on group size. We observed both individual and group switching, the latter often involving the abandonment of a roost tree on a single night. We suggest that behaviours such as flight activity around roosts or cavity inspection by bats play a role in recruiting group mates and coordinating their occupation of another site. Bats almost never crossed mountain ridges to use roosts located beyond them, possibly because ridges are regarded as boundaries delimiting main roosting areas. The rate of switching was lowest during the middle of the lactation period, probably to minimise problems related to the transportation of non-volant young by their mothers. Although the maintenance of social relationship among bats spread over large forest areas may partly explain the occurrence of roost switching, the persistence of this behaviour in solitary bats and the movement of entire groups best fit the hypothesis that roost switching represents a way to maintain or increase knowledge of alternative roosts.  相似文献   

11.
During the highest spring tides the intertidal sediment flats of estuaries are fully inundated at high water, and waders have no choice but to move to supratidal roosts, e.g. on open farmland, saltpans or beaches. However, in many estuaries during the lowest neap or intermediate tides there are sectors of upper intertidal sediment flats that remain exposed even at the peak of high water, and so waders have the choice of roosting either there or in supratidal sites. In the Tagus Estuary, Portugal, as elsewhere, waders use both types of roosts during high water. Our main objective was to understand what makes waders opt for one of these two types of available roosts. We monitored wader use of saltpans and intertidal roosts from spring to neap tides, and measured foraging and alarm behaviour, prey availability and disturbance by predators. Most of the wader species studied chose intertidal (mudflat) roosts whenever these were available, and only roosted in saltpans during the peak of spring tides. We hypothesized that this preference was explained either by an attempt (i) to continue feeding into the high water period, or (ii) to minimize predation risk. Extending feeding time into the high water period did not seem to be very relevant for roost choice because both prey availability and foraging activity were low in both types of roosts. However, predator disturbance was several times higher in the saltpans than in the intertidal roosts, suggesting that this factor may be the determinant in the choice of roost type.  相似文献   

12.
Summary The insectivorous bat Myotis lucifugus typically apportions the night into two foraging periods separated by an interval of night roosting. During this interval, many bats occupy roosts that are used exclusively at night and are spatially separate from maternity roosts. The proportion of the night which bats spend roosting, and thus the proportion spent foraging, vary both daily and seasonally in relation to the reproductive condition of the bats, prey density, and ambient temperature. A single, continuous night roosting period is observed during pregnancy. During lactation, females return to maternity roosts between foraging bouts, and night roosts are used only briefly and sporadically. Maximum use of night roosts occurs in late summer after young become volant. Superimposed upon these seasonal trends is day-to-day variation in the bats' nightly time budget. Long night roosting periods and short foraging periods are associated with cool nights and low prey density. This behavioral response may minimize energetic losses during periods of food scarcity.  相似文献   

13.
Shade coffee plantations are considered important habitats for frugivorous bats. However, it is not known if bats use this agricultural habitat for shelter, food resources, or both. This study addresses these questions using the highland yellow‐shouldered bat (Sturnira hondurensis) as an example. Twenty‐six adult individuals of S. hondurensis were captured, 50 percent in tropical montane cloud forest (TMCF) and 50 percent in shade coffee plantations (SCP) in Veracruz, Mexico, and each was fitted with a radio transmitter for locating roosts and feeding areas. Data were obtained from 24 of them. The fieldwork was conducted between October 2010 and October 2011 covering all seasons. Twenty‐two day roosts were located in the cavities of twelve different species of tree. Roosts located in TMCF differed significantly from those in SCP, having a smaller crown area and a greater species richness and density of plants around the roost. In SCP, both the average home range and the average core use area were smaller than in TMCF, but the differences were not statistically significant. Distances travelled by bats were generally longer and more variable in the SCP; the distance between capture site and foraging site was significantly greater in SCP than in TMCF. In SCP, there were fewer understory chiropterochorous plants, which are the main item in the diet of this bat and many other sympatric species of frugivorous bats. Although S. hondurensis does use roosts and foraging sites in the SCP, it is important to note that this species and others with similar requirements primarily depend on the preservation of intact forest adjacent to modified landscapes, where roosts and fruit are constantly available in abundance. Management practices should guarantee a greater density and diverse of trees and the preservation of understory plants with fruits in the coffee plantations that allow a long‐term survival of frugivorous bats populations.  相似文献   

14.
As the human population continues to expand, increased encroachment on natural landscapes and wildlife habitats is expected. Organisms able to acclimate to human-altered environments should have a selective advantage over those unable to do so. Over the past two decades, bats have increasingly begun to roost and raise offspring in spaces beneath pre-cast concrete bridges. Few studies have examined the health or fitness of individuals living in these anthropogenic sites. In the present study, we examined birth size and postnatal growth, as surrogates of reproductive success, in Brazilian free-tailed bat pups born at a natural and a human-made roost. Based on putative stress-related conditions (noise from vehicular traffic, chemical pollutants and a modified social environment) present at bridges, we predicted that bats at these sites would have reduced reproductive success. Contrary to our prediction, pups born at a bridge site were on average heavier and larger at birth and grew faster than those born at a cave site. Also, both birth size and growth rates of pups differ between years. We attribute observed differences to a combination of roost-related conditions (i.e. roost temperature and proximity to foraging areas), climate and maternal effects with larger mothers raising larger pups. Thus, some bridge roosts, at least in the short term, are suitable, and in some cases may provide better conditions, for raising young bat pups than cave roosts.  相似文献   

15.
Spatial dynamics of foraging long-fingered bats (Myotis capaccinii) were studied in the Eastern Iberian Peninsula. We analysed the locations of 45 radio-tracked individuals during three discrete periods through the breeding season and measured the spatial parameters related to their foraging behaviour in order to test whether variations in spatial use occur. Colony range, measured as the minimum convex polygon through all the radiolocations, was 345 km2, but the area used during each period was smaller. During pre-breeding, foraging bats gathered at two stretches of different tributary rivers; during lactation, they scattered throughout the river system; and during weaning, they aggregated at a stretch of the main river. Individuals on average flew 5.7 km from roosts to foraging areas, with a maximum absolute distance of 22.7 km. Individual foraging ranges were measured linearly, because the bats foraged mostly along rivers; their values averaged 1.3 km/night and overlapped extensively between neighbouring bats (>65% on average). The sampling period, rather than the bats’ reproductive status, age, or sex, explained the observed variability in spatial distribution and size of hunting sites. We did not find differences in spatial parameters between lactating females and non-lactating bats, nor between juveniles and adults. This is the first study to split the independent effects of season and population class in order to enable unconfounded interpretations of the spatial dynamics of foraging reproductive females and juveniles. We speculate that the relationship between colony size and prey availability ruled the observed changes in foraging area through seasons. The considerable overlap in individual foraging ranges may be a necessary adaption to large colonies forced by the specific roost requirements of the long-fingered bat and the narrow foraging niche they appear to occupy.  相似文献   

16.
Forest roosting bats use a variety of ephemeral roosts such as snags and declining live trees. Although conservation of summer maternity habitat is considered critical for forest-roosting bats, bat response to roost loss still is poorly understood. To address this, we monitored 3 northern long-eared bat (Myotis septentrionalis) maternity colonies on Fort Knox Military Reservation, Kentucky, USA, before and after targeted roost removal during the dormant season when bats were hibernating in caves. We used 2 treatments: removal of a single highly used (primary) roost and removal of 24% of less used (secondary) roosts, and an un-manipulated control. Neither treatment altered the number of roosts used by individual bats, but secondary roost removal doubled the distances moved between sequentially used roosts. However, overall space use by and location of colonies was similar pre- and post-treatment. Patterns of roost use before and after removal treatments also were similar but bats maintained closer social connections after our treatments. Roost height, diameter at breast height, percent canopy openness, and roost species composition were similar pre- and post-treatment. We detected differences in the distribution of roosts among decay stages and crown classes pre- and post-roost removal, but this may have been a result of temperature differences between treatment years. Our results suggest that loss of a primary roost or ≤ 20% of secondary roosts in the dormant season may not cause northern long-eared bats to abandon roosting areas or substantially alter some roosting behaviors in the following active season when tree-roosts are used. Critically, tolerance limits to roost loss may be dependent upon local forest conditions, and continued research on this topic will be necessary for conservation of the northern long-eared bat across its range.  相似文献   

17.
We studied the roosting ecology of the long-tailed bat (Chalinolobus tuberculatus) during the springautumn months from 1998–2002 at Hanging Rock in the highly fragmented landscape of South Canterbury, South Island, New Zealand. We compared the structural characteristics and microclimates of roost sites used by communally and solitary roosting bats with those of randomly available sites, and roosts of C. tuberculatus occupying unmodified Nothofagus forest in the Eglinton Valley, Fiordland. Roosting group sizes and roost residency times were also compared. We followed forty radio-tagged bats to 94 roosts (20% in limestone crevices, 80% in trees) at Hanging Rock. Roosts were occupied for an average of 1 day and 86% were only used once during the study period. Colony size averaged 9.8 ± 1.1 bats (range 2–38) and colonies were dominated by breeding females and young. Indigenous forest, shrubland remnants and riparian zones were preferred roosting habitats. Communally roosting bats selected roosts in split trunks of some of the largest trees available. Selection of the largest available trees as roost sites is similar to behaviour of bat species occupying unmodified forested habitats. Temperatures inside 12 maternity roosts measured during the lactation period were variable. Five roosts were well insulated from ambient conditions and internal temperatures were stable, whereas the temperatures inside seven roosts fluctuated in parallel with ambient temperature. Tree cavities used by bats at Hanging Rock were significantly nearer ground level, had larger entrance dimensions, were less well insulated, and were occupied by fewer bats than roosts in the Eglinton Valley. These characteristics appear to expose their occupants to unstable microclimates and to a higher risk of threats such as predation. We suggest that roosts at Hanging Rock are of a lower quality than those in the Eglinton Valley, and that roost quality may be one of the contributory factors in the differential reproductive fitness observed in the two bat populations. The value of introduced willows (especially Salix fragilis) as bat roosts should be acknowledged. We recommend six conservation measures to mitigate negative effects of deterioration of roosting habitat: protection and enhancement of the quality of existing roosts, replanting within roosting habitat, provision of high quality artificial roosts, predator control, and education of landowners and statutory bodies.  相似文献   

18.
Incorporating ecological processes and animal behaviour into Species Distribution Models (SDMs) is difficult. In species with a central resting or breeding place, there can be conflict between the environmental requirements of the ‘central place’ and foraging habitat. We apply a multi-scale SDM to examine habitat trade-offs between the central place, roost sites, and foraging habitat in Myotis nattereri. We validate these derived associations using habitat selection from behavioural observations of radio-tracked bats. A Generalised Linear Model (GLM) of roost occurrence using land cover variables with mixed spatial scales indicated roost occurrence was positively associated with woodland on a fine scale and pasture on a broad scale. Habitat selection of radio-tracked bats mirrored the SDM with bats selecting for woodland in the immediate vicinity of individual roosts but avoiding this habitat in foraging areas, whilst pasture was significantly positively selected for in foraging areas. Using habitat selection derived from radio-tracking enables a multi-scale SDM to be interpreted in a behavioural context. We suggest that the multi-scale SDM of M. nattereri describes a trade-off between the central place and foraging habitat. Multi-scale methods provide a greater understanding of the ecological processes which determine where species occur and allow integration of behavioural processes into SDMs. The findings have implications when assessing the resource use of a species at a single point in time. Doing so could lead to misinterpretation of habitat requirements as these can change within a short time period depending on specific behaviour, particularly if detectability changes depending on behaviour.  相似文献   

19.
Stable social bonds in group-living animals can provide greater access to food. A striking example is that female vampire bats often regurgitate blood to socially bonded kin and nonkin that failed in their nightly hunt. Food-sharing relationships form via preferred associations and social grooming within roosts. However, it remains unclear whether these cooperative relationships extend beyond the roost. To evaluate if long-term cooperative relationships in vampire bats play a role in foraging, we tested if foraging encounters measured by proximity sensors could be explained by wild roosting proximity, kinship, or rates of co-feeding, social grooming, and food sharing during 21 months in captivity. We assessed evidence for 6 hypothetical scenarios of social foraging, ranging from individual to collective hunting. We found that closely bonded female vampire bats departed their roost separately, but often reunited far outside the roost. Repeating foraging encounters were predicted by within-roost association and histories of cooperation in captivity, even when accounting for kinship. Foraging bats demonstrated both affiliative and competitive interactions with different social calls linked to each interaction type. We suggest that social foraging could have implications for social evolution if “local” within-roost cooperation and “global” outside-roost competition enhances fitness interdependence between frequent roostmates.

A combination of captive experiments and proximity sensing in the wild show that social bonds in vampire bats that are typically defined by cooperative interactions within the roost also extend beyond the roost and may provide benefits during foraging.  相似文献   

20.
Roost requirements of most North American forest bats are well-documented, but questions remain regarding the ultimate mechanisms underlying roost selection. Hypotheses regarding roost selection include provision of a stable microclimate, space for large colonies, protection from predators, and proximity to foraging habitat, among others. Although several hypotheses have been proposed, specific mechanisms likely vary by species and geographic region. Rafinesque's big-eared bat (Corynorhinus rafinesquii) commonly roosts in trees with large basal hollows in the Coastal Plain of the southeastern United States. Our objective was to weigh evidence for hypotheses regarding selection of diurnal summer roosts by Rafinesque's big-eared bat at 8 study sites across the Coastal Plain of Georgia, USA. We used transect searches and radiotelemetry to locate roosts and measured 22 characteristics of trees, tree cavities, and surrounding vegetation at all occupied roosts and for randomly selected unoccupied trees. We evaluated 10 hypotheses using single-season occupancy models and used Akaike's information criterion to select the most parsimonious models. We located 170 tree roosts containing approximately 870 bats for our analysis. The best supported model predicted bat presence from cavity size, interior wall texture, and number of entrances. Because large cavities allow bats to fly and smooth walls impede attacks by terrestrial predators, our results are consistent with the hypothesis that bats select roosts that allow them to evade predators. However, data on predation rates are needed for a conclusive determination. Because trees suitable as roosts for Rafinesque's big-eared bat are rare in the landscape, protection of suitable forested wetland habitat is essential to provide current and long-term roost tree availability. © 2012 The Wildlife Society.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号