首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Almost four decades of research in the field of membrane guanylate cyclases is discussed in this review. Primarily, it focuses on the chronological development of the field, recognizes major contributions of the original investigators, corrects certain misplaced facts, and projects its future trend.  相似文献   

2.
This review focuses on the principles of the Ca2+-modulated ROS-GC subfamily transduction system linked with the mammalian olfactory transduction field, its historical development, and the present day status on its constitution and operational mechanisms controlling the process of olfactory-transduction. Beginning parts of this article are freely borrowed from the earlier reviews of the authors (Sharma RK, Duda T, Venkataraman V, Koch KW, Curr Topics Biochem Res 6:111–144, 2004; Duda T, Venkataraman V, Sharma RK, Neuronal calcium sensor proteins, pp 91–113, Nova Science Publishers, Inc., 2007).  相似文献   

3.
Summary This minireview highlights the studies which suggest that guanylate cyclase is a single-component transducing system, containing distinct signaling modules in a single membrane-spanning protein. A guanylate cyclase signaling model is proposed which envisions the following sequential events: (1) a signal is initiated by the binding of the hormone to the ligand binding module; (2) the signal is potentiated by ATP at ARM; and (3) the amplified signal is finally transduced at the catalytic site. All of these signaling steps together constitute a switch, which when turned on, generates the second messenger cyclic GMP.  相似文献   

4.
The mechanism by which the individual odor signals are translated into the perception of smell in the brain is unknown. The signal processing occurs in the olfactory system which has three major components: olfactory neuroepithelium, olfactory bulb, and olfactory cortex. The neuroepithelial layer is composed of ciliated sensory neurons interspersed among supportive cells. The sensory neurons are the sites of odor transduction, a process that converts the odor signal into an electrical signal. The electrical signal is subsequently received by the neurons of the olfactory bulb, which process the signal and then relay it to the olfactory cortex in the brain. Apart from information about certain biochemical steps of odor transduction, there is almost no knowledge about the means by which the olfactory bulb and cortical neurons process this information. Through biochemical, functional, and immunohistochemical approaches, this study shows the presence of a Ca(2+)-modulated membrane guanylate cyclase (mGC) transduction system in the bulb portion of the olfactory system. The mGC is ROS-GC1. This is coexpressed with its specific modulator, guanylate cyclase activating protein type 1 (GCAP1), in the mitral cells. Thus, a new facet of the Ca(2+)-modulated GCAP1--ROS-GC1 signaling system, which, until now, was believed to be unique to phototransduction, has been revealed. The findings suggest a novel role for this system in the polarization and depolarization phenomena of mitral cells and also contradict the existing belief that no mGC besides GC-D exists in the olfactory neurons.  相似文献   

5.
Ca2+-modulated rod outer segment membrane guanylate cyclase (ROS-GC1) has been cloned and reconstituted to show that it is regulated by two processes: one inhibitory, the other stimulatory. The inhibitory process is consistent with its linkage to phototransduction; the physiology of the stimulatory process is probably linked to neuronal transmission. In both regulatory processes, calcium modulation of the cyclase takes place through the calcium binding proteins; guanylate cyclase activating proteins (GCAP1 and GCAP2) in the case of the phototransduction process and calcium-dependent GCAP (CD-GCAP) in the case of the stimulatory process. The cyclase domains involved in the two processes are located at two different sites on the ROS-GC1 intracellular region. The GCAP1-modulated domain resides within the aa 447-730 segment of ROS-GC1 and the CD-GCAP-modulated domain resides within the aa 731-1054 segment. In the present study the GCAP2-dependent Ca2+ modulation of the cyclase activity has been reconstituted using recombinant forms of GCAP2 and ROS-GC1, and its mutants. The results indicate that consistent to phototransduction, GCAP2 at low Ca2+ concentration (10 nM) maximally stimulates the cyclase activity of the wild-type and its mutants: ext- (deleted aa 8-408); kin- (deleted aa 447-730) and hybrid consisting of the ext, transmembrane and kin domains of ANF-RGC and the C-terminal domain, aa 731-1054, of ROS-GC1. In all cases, it inhibits the cyclase activity with an IC50 of about 140 nM. A previous study has shown that under identical conditions the kin- and the hybrid mutant are at best only minimally stimulated. Thus, the GCAP1 and GCAP2 signal transduction mechanisms are different, occurring through different modules of ROS-GC1. These findings also demonstrate that the intracellular region of ROS-GC1 is composed of multiple modules, each designed to mediate a particular calcium-specific signalling pathway.  相似文献   

6.
7.
8.
Rod outer segment membrane guanylate cyclase (ROS-GC) transduction system is a central component of the Ca(2+)-sensitive phototransduction machinery. The system is composed of two parts: Ca(2+) sensor guanylate cyclase activating protein (GCAP) and ROS-GC. GCAP senses Ca(2+) impulses and inhibits the cyclase. This operational feature of the cyclase is considered to be unique and exclusive in the phototransduction machinery. A combination of reconstitution, peptide competition, cross-linking, and immunocytochemical studies has been used in this study to show that the GCAP1/ROS-GC1 transduction system also exists in the photoreceptor synaptic (presynaptic) termini. Thus, the presence of this system and its linkage is not unique to the phototransduction machinery. A recent study has demonstrated that the photoreceptor-bipolar synaptic region also contains a Ca(2+)-stimulated ROS-GC1 transduction system [Duda, T., et al. (2002) EMBO J. 21, 2547-2556]. In this case, S100beta senses Ca(2+) and stimulates the cyclase. The inhibitory and stimulatory Ca(2+)-modulated ROS-GC1 sites are distinct. These findings allow the formation of a new topographic model of ROS-GC1 transduction. In this model, the catalytic module of ROS-GC1 at its opposite ends is flanked by GCAP1 and S100beta modules. GCAP1 senses the Ca(2+) impulse and inhibits the catalytic module; S100beta senses the impulse and stimulates the catalytic module. Thus, ROS-GC1 acts as a bimodal Ca(2+) signal transduction switch in the photoreceptor bipolar synapse.  相似文献   

9.
Atrial natriuretic factor (ANF) receptor guanylate cyclase (ANF-RGC), like the other members of the membrane guanylate cyclase family, is a single transmembrane-spanning protein. The transmembrane domain separates the protein into two regions, extracellular and intracellular. The extracellular region contains the ANF-binding domain and the intracellular region the catalytic domain located at the C-terminus of the protein. Preceding the catalytic domain, the intracellular region is comprised of the following functional domains: juxtaposed 40 amino acids to the transmembrane domain is the ATP-regulated module (ARM) domain [also termed the kinase homology domain (KHD)], and the putative dimerization domain. The ANF-RGC signaling is initiated by hormone, ANF, binding to its extracellular binding site. The binding signal is transduced through the transmembrane domain to the intracellular portion where ATP binding to the ARM domain partially activates the cyclase and prepares it for subsequent steps involving phosphorylation and attaining the fully activated state. This chapter reviews the signaling modules of ANF-RGC.  相似文献   

10.
Frequenin is a member of the neuronal Ca2+ sensor protein family, implicated in being the modulator of the neurotransmitter release, potassium channels, phosphatidylinositol signaling pathway and the Ca2+-dependent exocytosis of dense-core granules in the PC12 cells. Frequenin exhibits these biological activities through its Ca2+ myristoyl switch, yet the switch is functionally inactive. These structural and functional traits of frequenin have been derived through the use of recombinant frequenin. In the present study, frequenin (BovFrq) native to the bovine hippocampus has been purified, sequenced for its 9 internal fragments, cloned, and studied. The findings show that structure of the BovFrq is identical to its form present in chicken, rat, mouse and human, indicating its evolutionary conservation. Its Ca2+ myristoyl switch is active in the hippocampus. And, BovFrq physically interacts and turns on yet undisclosed ONE-GC-like ROS-GC membrane guanylate cyclase transduction machinery in the hippocampal neurons. This makes BovFrq a new Ca2+-sensor modulator of a novel ROS-GC transduction machinery. The study demonstrates the presence and mechanistic features of this cyclic GMP signaling pathway in the hippocampal neurons, and also provides one more support for the evolving concept where the Ca2+-modulated membrane guanylate cyclase transduction machinery in its variant forms is a central operational component of all neurons.  相似文献   

11.
To date, the calcium-regulated membrane guanylate cyclase Rod Outer Segment Guanylate Cyclase type 1 (ROS-GC1) transduction system in addition to photoreceptors is known to be expressed in three other types of neuronal cells: in the pinealocytes, mitral cells of the olfactory bulb and the gustatory epithelium of tongue. Very recent studies from our laboratory show that expression of ROS-GC1 is not restricted to the neuronal cells; the male gonads and the spermatozoa also express ROS-GC1. In this presentation, the authors review the existing information on the localization and function of guanylate cyclase with special emphasis on Ca2+-modulated membrane guanylate cyclase, ROS-GC1, in the testes. The role of ROS-GC1 and its Ca2+-sensing modulators in the processes of spermatogenesis and fertilization are discussed.  相似文献   

12.
Light activation of guanylate cyclase at different calcium concentrations was studied in the rod outer segments of the toad retina. The enzyme becomes sensitive to calcium ions after a flash of light, showing an enhancement of its activity when Ca2+ concentration is lowered from 10(-4) M to 10(-8) M. A possible pathway of guanylate cyclase activation by light was also investigated by means of the antibody 4A to transducin. When added in excess to transducin, the antibody inhibits light activation of phosphodiesterase as well as of cyclase, suggesting a possible coupling of the two enzymes.  相似文献   

13.
Vertebrate phototransduction depends on the reciprocal relationship between two-second messengers, cyclic GMP and Ca2+. The concentration of both is reciprocally regulated including the dynamic synthesis of cyclic GMP by a membrane bound guanylate cyclase. Different from hormone receptor guanylate cyclases, the cyclases operating in phototransduction are regulated by the intracellular Ca2+-concentration via small Ca2+-binding proteins. Based on the site of their expression and their Ca2+ modulation, this sub-branch of the cyclase family was named sensory guanylate cyclases, of which the retina specific forms are named ROS-GCs (rod outer segment guanylate cyclases). This review focuses on the structure and function of the ROS-GC subfamily present in the mammalian retinal neurons: photoreceptors and inner layers of the retinal neurons. Portions and excerpts of the review are from a previous chapter (Curr Top Biochem Res 6:111–144, 2004).  相似文献   

14.
This article is a sequel to the four earlier comprehensive reviews which covered the field of membrane guanylate cyclase from its origin to the year 2002 (Sharma in Mol Cell Biochem 230:3–30, 2002) and then to the year 2004 (Duda et al. in Peptides 26:969–984, 2005); and of the Ca2+-modulated membrane guanylate cyclase to the year 1997 (Pugh et al. in Biosci Rep 17:429–473, 1997) and then to 2004 (Sharma et al. in Curr Top Biochem Res 6:111–144, 2004). This article contains three parts. The first part is “Historical”; it is brief, general, and freely borrowed from the earlier reviews, covering the field from its origin to the year 2004 (Sharma in Mol Cell Biochem, 230:3–30, 2002; Duda et al. in Peptides 26:969–984, 2005). The second part focuses on the “Ca2+-modulated ROS-GC membrane guanylate cyclase subfamily”. It is divided into two sections. Section “Historical” and covers the area from its inception to the year 2004. It is also freely borrowed from an earlier review (Sharma et al. in Curr Top Biochem Res 6:111–144, 2004). Section “Ca2+-modulated ROS-GC membrane guanylate cyclase subfamily” covers the area from the year 2004 to May 2009. The objective is to focus on the chronological development, recognize major contributions of the original investigators, correct misplaced facts, and project on the future trend of the field of mammalian membrane guanylate cyclase. The third portion covers the present status and concludes with future directions in the field.  相似文献   

15.
The rod outer segment membrane guanylate cyclase type 1 (ROS-GC1), originally identified in the photoreceptor outer segments, is a member of the subfamily of Ca(2+)-modulated membrane guanylate cyclases. In phototransduction, its activity is tightly regulated by its two Ca(2+)-sensor protein parts, GCAP1 and GCAP2. This study maps the GCAP2-modulatory site in ROS-GC1 through the use of multiple techniques involving surface plasmon resonance binding studies with soluble ROS-GC1 constructs, coimmunoprecipitation, functional reconstitution experiments with deletion mutants, and peptide competition assays. The findings show that the sequence motif of the core GCAP2-modulatory site is Y965-N981 of ROS-GC1. The site is distinct from the GCAP1-modulatory site. It, however, partially overlaps with the S100B-regulatory site. This indicates that the Y965-N981 motif tightly controls the Ca(2+)-dependent specificity of ROS-GC1. Identification of the site demonstrates an intriguing topographical feature of ROS-GC1. This is that the GCAP2 module transmits the Ca(2+) signals to the catalytic domain from its C-terminal side and the GCAP1 module from the distant N-terminal side.  相似文献   

16.
John JA  Key B 《Chemical senses》2003,28(9):773-779
During development, primary olfactory axons typically grow to their topographically correct target zone without extensive remodelling. Similarly, in adults, new axons arising from the normal turnover of sensory neurons essentially project to their target without error. In the present study we have examined axon targeting in the olfactory pathway following extensive chemical ablation of the olfactory neuroepithelium in the P2-tau:LacZ line of mice. These mice express LacZ in the P2 subpopulation of primary olfactory neurons whose axons target topographically fixed glomeruli on the medial and lateral surfaces of the olfactory bulb. Intraperitoneal injections of dichlobenil selectively destroyed the sensory neuroepithelium of the nasal cavity without direct physical insult to the olfactory neuron pathway. Primary olfactory neurons regenerated and LacZ staining revealed the trajectory of the P2 axons. Rather than project solely to their topographically appropriate glomeruli, the regenerating P2 axons now terminated in numerous inappropriate glomeruli which were widely dispersed over the olfactory bulb. While these errors in targeting were refined over time, there was still considerable mis-targeting after four months of regeneration.  相似文献   

17.
ANF-RGC membrane guanylate cyclase is the receptor for the hypotensive peptide hormones, atrial natriuretic factor (ANF) and type B natriuretic peptide (BNP). It is a single transmembrane spanning protein. Binding the hormone to the extracellular domain activates its intracellular catalytic domain. This results in accelerated production of cyclic GMP, a second messenger in controlling blood pressure, cardiac vasculature, and fluid secretion. ATP is the obligatory transducer of the ANF signal. It works through its ATP regulated module, ARM, which is juxtaposed to the C-terminal side of the transmembrane domain. Upon interaction, ATP induces a cascade of temporal and spatial changes in the ARM, which, finally, result in activation of the catalytic module. Although the exact nature and the details of these changes are not known, some of these have been stereographed in the simulated three-dimensional model of the ARM and validated biochemically. Through comprehensive techniques of steady state, time-resolved tryptophan fluorescence and Forster Resonance Energy Transfer (FRET), site-directed and deletion-mutagenesis, and reconstitution, the present study validates and explains the mechanism of the model-based predicted transduction role of the ARM’s structural motif, 669WTAPELL675. This motif is critical in the ATP-dependent ANF signaling. Molecular modeling shows that ATP binding exposes the 669WTAPELL675 motif, the exposure, in turn, facilitates its interaction and activation of the catalytic module. These principles of the model have been experimentally validated. This knowledge brings us a step closer to our understanding of the mechanism by which the ATP-dependent spatial changes within the ARM cause ANF signaling of ANF-RGC.  相似文献   

18.
19.
R R Anholt 《Biochemistry》1988,27(17):6464-6468
Chemosensory cilia isolated from the olfactory epithelium of Rana catesbeiana were solubilized with Lubrol PX in the presence of supplementary lipid, forskolin, and sodium fluoride. Subsequent removal of the detergent by adsorption onto Biobeads SM2 results in the formation of proteoliposomes that display forskolin- and GTP gamma S-sensitive adenylate cyclase activity. Sucrose gradient centrifugation of liposomes formed in the presence of fluorescently labeled phosphatidylcholine demonstrates association between the olfactory adenylate cyclase and the exogenously added lipid. Forskolin stimulates the enzyme in reconstituted membranes with the same potency as in native membranes (EC50 = 1-2 microM). However, GTP gamma S is 350-fold more potent in native membranes (EC50 = 4.0 +/- 0.5 nM) than in reconstituted membranes (EC50 = 1.4 +/- 0.3 microM). These studies represent a first step toward the functional reconstitution and molecular dissection of the olfactory membrane.  相似文献   

20.
Duda T  Pertzev A  Sharma RK 《Biochemistry》2012,51(23):4650-4657
Photoreceptor ROS-GC1 (rod outer segment membrane guanylate cyclase) is a vital component of phototransduction. It is a bimodal Ca(2+) signal transduction switch, operating between 20 and ~1000 nM. Modulated by Ca(2+) sensors guanylate cyclase activating proteins 1 and 2 (GCAP1 and GCAP2, respectively), decreasing [Ca(2+)](i) from 200 to 20 nM progressively turns it "on", as does the modulation by the Ca(2+) sensor S100B, increasing [Ca(2+)](i) from 100 to 1000 nM. The GCAP mode plays a vital role in phototransduction in both rods and cones and the S100B mode in the transmission of neural signals to cone ON-bipolar cells. Through a programmed domain deletion, expression, in vivo fluorescence spectroscopy, and in vitro reconstitution experiments, this study demonstrates that the biochemical mechanisms modulated by two GCAPs in Ca(2+) signaling of ROS-GC1 activity are totally different. (1) They involve different structural domains of ROS-GC1. (2) Their signal migratory pathways are opposite: GCAP1 downstream and GCAP2 upstream. (3) Importantly, the isolated catalytic domain, translating the GCAP-modulated Ca(2+) signal into the generation of cyclic GMP, in vivo, exists as a homodimer, the two subunits existing in an antiparallel conformation. Furthermore, the findings demonstrate that the N-terminally placed signaling helix domain is not required for the catalytic domain's dimeric state. The upstream GCAP2-modulated pathway is the first of its kind to be observed for any member of the membrane guanylate cyclase family. It defines a new model of Ca(2+) signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号