共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Structural organization of the human CaMIII calmodulin gene 总被引:4,自引:0,他引:4
5.
6.
7.
Hisataka Awata Fumio Endo Akito Tanoue Akito Kitano Yoshikuni Nakano Ichiro Matsuda 《生物化学与生物物理学报:疾病的分子基础》1994,1226(2):168-172
Fumarylacetoacetate hydrolase (FAH) is a metabolic enzyme functioning at the last steo of tyrosine catabolism. Deficiency in this enzyme activity is associated with tyrosinemia type I, characterized by hypertyrosinemia, liver dysfunction, renal tubular dysfunction, liver cirrhosis, and hepatic tumors. We isolated from a human gene library a chromosomal gene related to FAH. The human FAH gene is 30 kilobases long and is split into 14 exons. All of the splice donor and acceptor sites conform to the GT/AG rule. We also analyzed findings in a patient with tyrosinemia type I with respect to the mutation responsible for detects in the enzyme. A nucleotide change from T to G was found in the exon 2 of the gene and this change was accompanied by an amino acid substitution (Phe62Cys). Transfection and expression analysis of the cDNA is cultured BMT-10 cells with the nucleotide substitution demonstrated that the substitution was indeed responsible for the decreased activity of the enzyme in the patient. These results confirmed that the T to G mutation was one of the causes of tyrosinemia type I. Structure of the FAH gene and tests for expression of the mutant FAH will facilitate further understanding of various aspects of FAH. 相似文献
8.
We have examined uncoupling protein-2 (UCP2) gene expression in the adipose tissue of obese and normal rats and mice, and also in differentiated rat adipocytes in primary culture. Expression of the UCP2 gene was examined in rat and mouse adipose tissues using both RT-PCR and Northern blotting. Although the RT-PCR was not quantitative, the band corresponding to the UCP2 mRNA was stronger in white adipose tissue than in brown fat, regardless of the body weight of the rats. In agreement with the RT-PCR data, there was a higher level of UCP2 mRNA in the white adipocytes than in brown adipocytes, the level being greater in obese mice. Fibroblastic preadipocytes were obtained from the inguinal fat pad of suckling rats. Lipid droplets developed inside the cells upon differentiation and adipsin and UCP2 mRNAs were detected by Northern blotting. Both mRNAs were evident in the adipocytes at 4, 6, and 10 d after the induction of differentiation. There was no indication that the expression of UCP2 was markedly affected by the addition of leptin, dexamethasone or isoprenaline. 相似文献
9.
First evidence of uncoupling protein-2 (UCP-2) and -3 (UCP-3) gene expression in piglet skeletal muscle and adipose tissue 总被引:14,自引:0,他引:14
Uncoupling proteins (UCPs) facilitate proton transport inside the mitochondria and decrease the proton gradient, leading to heat production. Until now, the presence of UCP1 or other UCP homologs had not been detected in tissues of pig, a species where evidence for the presence of brown adipose tissue has only been provided in 2-3 month old animals. In the light of the improving knowledge on the UCPs family, we decided to examine both UCP2 and UCP3 mRNA expression in piglet skeletal muscle and adipose tissue. Using RT-PCR we have successfully cloned a partial UCP2 sequence and a complete UCP3 cDNA. UCP3's open reading frame (936bp) shares 90, 89 and 85% similarity with bovine, human and rat UCP3 nucleotide sequences, respectively. In 3-5 day old piglets, these genes are expressed in adipose tissue and in both longissimus thoracis (LT) and rhombo?deus (RH) muscles, without any effect of muscle metabolic type. This is in good agreement with the measurement of the same membrane potential in mitochondria isolated from both types of muscles. In triiodothyronine-treated piglets, UCP3 mRNA is more expressed in LT than in RH muscle. These genes may be involved in the control of the energy metabolism of the piglet. 相似文献
10.
Morten Juhl Corydon Brage Storstein Andresen Peter Bross Margrethe Kjeldsen Per Hove Andreasen Hans Eiberg Steen Kølvraa Nils Gregersen 《Mammalian genome》1997,8(12):922-926
Short-chain acyl-CoA dehydrogenase (SCAD) is a homotetrameric mitochondrial flavoenzyme that catalyzes the initial reaction in short-chain fatty acid β-oxidation. Defects in the SCAD enzyme are associated with failure to thrive, often with neuromuscular dysfunction and elevated urinary excretion of ethylmalonic acid (EMA). To define the genetic basis of SCAD deficiency and ethylmalonic aciduria in patients, we have determined the sequence of the complete coding portion of the human SCAD gene (ACADS) and all of the intron-exon boundaries. The SCAD gene is approximately 13 kb in length and consists of 10 exons. Four polymorphic sites have previously been detected by sequencing of cDNA from fibroblasts of patients excreting elevated amounts of EMA. Three of these polymorphisms (321T/C, 990C/T, 1260G/C) are silent variants, while a 625G/A polymorphism results in an amino acid replacement and has been shown to be associated with ethylmalonic aciduria. From analysis of 18 unrelated Danish families, we show that the four SCAD gene polymorphisms constitute five allelic variants of the SCAD gene, and that the 625A variant together with the less frequent variant form of the three other polymorphisms (321C, 990T, 1260C) constitutes an allelic variant with a frequency of 22% in the general Danish population. Using fluorescence in-situ hybridization, we confirm the localization of the human SCAD gene to the distal part of Chromosome (Chr) 12 and suggest that the SCAD gene is a single-copy gene. The evolutionary relationship between SCAD and five other members of the acyl-CoA dehydrogenase family was investigated by two independent approaches that gave similar phylogenetic trees. Received: 10 April 1997 / Accepted: 8 August 1997 相似文献
11.
12.
Structural and mutational analysis of KCNQ2, the major gene locus for benign familial neonatal convulsions 总被引:11,自引:0,他引:11
Mutations in the voltage-gated potassium channel gene KCNQ2 on chromosome 20q13.3 are responsible for benign familial neonatal convulsions (BFNC), a rare monogenic idiopathic epilepsy.
Here we report the determination of the detailed genomic structure of KCNQ2, and use of this information in mutational analysis. There are at least 18 exons, occupying more than 50 kb of genomic DNA.
Several formerly unknown polymorphisms and splice variants as well as a new single base pair deletion mutation of unusual
localization are described. In addition to facilitating more effective mutation detection among BFNC patients, the results
presented here provide the basis for analysing the role of KCNQ2 in other types of epilepsy.
Received: 24 November 1998 / Accepted: 8 January 1999 相似文献
13.
Medvedev AV Robidoux J Bai X Cao W Floering LM Daniel KW Collins S 《The Journal of biological chemistry》2002,277(45):42639-42644
14.
C H Tsai-Morris E Buczko W Wang X Z Xie M L Dufau 《The Journal of biological chemistry》1991,266(17):11355-11359
15.
16.
17.
Glucose induces and leptin decreases expression of uncoupling protein-2 mRNA in human islets 总被引:8,自引:0,他引:8
Elevated islet uncoupling protein-2 (UCP-2) impairs beta-cell function and UCP-2 may be increased in clinical obesity and diabetes. We investigated the effects of glucose and leptin on UCP-2 expression in isolated human islets. Human islets were incubated for 24 h with glucose (5.5-22 mmol/l)+/-leptin (0-10 nmol/l). Some islet batches were incubated at high (22 mmol/l), and subsequently lower (5.5 mmol/l), glucose to assess reversibility of effects. Leptin effects on insulin release were also measured. Glucose dose-dependently increased UCP-2 expression in all islet batches, maximally by three-fold. This was not fully reversed by subsequently reduced glucose levels. Leptin decreased UCP-2 expression by up to 75%, and maximally inhibited insulin release by 47%, at 22 mmol/l glucose. This is the first report of UCP-2 expression in human islets and provides novel evidence of its role in the loss of beta-cell function in diabetes. 相似文献
18.
19.