共查询到20条相似文献,搜索用时 15 毫秒
1.
《Mammalian Biology》2014,79(3):189-194
Semiaquatic and terrestrial mammals frequently have to cross or move along water bodies, both trying to remain on the water surface using one or two pairs of limbs, combining different gaits and stride lengths and frequencies. This is the case of the semiaquatic water rats Nectomys and the cursorial Cerradomys, sister genera of the Oryzomyini tribe, capable of swimming using similar gaits. They provide an opportunity to investigate performance specializations involving the semiaquatic habitat, our objective in this study. Rodents were filmed at 30 frames s−1 in lateral view, swimming in a glass aquarium. Video sequences were analyzed dividing the swimming cycle into power and recovery phases. Differences in swimming performance were detected between species of Nectomys and Cerradomys, but not between species of the same genus. Absolute mean speed did not differ between the semiaquatic and terrestrial groups, but the semiaquatic Nectomys had longer stride lengths with lower stride frequency, whereas the terrestrial Cerradomys had higher stride frequency and relative swimming speed. The widest behavior repertoire of Nectomys allowed more efficient, but not necessarily faster swimming than the terrestrial Cerradomys. Efficient aquatic locomotion in Nectomys is ultimately a result of improved buoyancy by hydrophobic fur and subtle morphological specializations, which allow this genus to perform more efficiently in water than the terrestrial Cerradomys without compromising locomotion in the terrestrial environment. 相似文献
2.
T R Reynolds 《American journal of physical anthropology》1987,72(1):101-115
Primate stride lengths during quadrupedal locomotion are very long when compared to those of nonprimate quadrupedal mammals at the speed of trot/gallop transition. These exceptional lengths are a consequence of the relatively long limbs of primates and the large angular excursions of their limbs during quadrupedalism. When quadrupedal primates employ bipedal gaits they exhibit much lower angular excursions. Consequently their bipedal stride lengths do not appear to be exceptional in length when compared to other mammals. Angular excursions of the lower limbs of modern humans are not exceptionally large. However, when running, humans exhibit relatively long periods of flight (i.e., they have low duty factors) when compared to other mammals including primates. Because of these long periods of flight and their relative long lower limbs, humans have running stride lengths that are at the lower end of the range of stride lengths of quadrupedal primates. The stride length of the Laetoli hominid trails are evaluated in this context. 相似文献
3.
Anis Chaalali Khalil Bouriel Mehdi Rouissi Moktar Chtara Bessem Mkaouer John Cronin Anis Chaouachi Karim Chamari 《Biology of sport / Institute of Sport》2022,39(2):379
The purpose of this study was to examine the effects of non-resisted (NRS) and partner-towing resisted (RS) sprint training on legs explosive force, sprint performance and sprint kinematic parameters. Sixteen young elite soccer players (age 16.6 ± 0.2 years, height 175.6 ± 5.7 cm, and body mass 67.6 ± 8.2 kg) were randomly allocated to two training groups: resisted sprint RS (n = 7) and non-resisted sprint NRS (n = 9). The RS group followed a six-week sprint training programme consisting of two “sprint training sessions” per week in addition to their usual soccer training. The NRS group followed a similar sprint training programme, replicating the distances of sprints but without any added resistance. All players were assessed before and after training: vertical and horizontal jumping (countermovement jump (CMJ), squat jump (SJ), and 5-jump test (5JT)), 30 m sprint performance (5, 10, and 20 m split times), and running kinematics (stride length and frequency). In the RS group significant (p < 0.05) changes were: decreased sprint time for 0–5 m, 0–10 m and 0–30 m (-6.31, -5.73 and -2.00%; effect size (ES) = 0.70, 1.00 and 0.41, respectively); higher peak jumping height (4.23% and 3.59%; ES = 0.35 and 0.37, for SJ and CMJ respectively); and 5JT (3.10%; ES = 0.44); and increased stride frequency (3.96%; ES = 0.76). In the NRS group, significant (p < 0.05) changes were: decreased sprint time at 0–30 m (-1.34%, ES = 0.33) and increased stride length (1.21%; ES = 0.17). RS training (partner towing) for six weeks in young soccer players showed more effective performances in sprint, stride frequency and lower-limb explosive force, while NRS training improved sprint performance at 0–30 m and stride length. Consequently, coaches and physical trainers should consider including RS training as part of their sprint training to ensure optimal sprint performance. 相似文献
4.
J Padulo S Vando K Chamari A Chaouachi D Bagno F Pizzolato 《Biology of sport / Institute of Sport》2015,32(1):53-58
The aim of this study was to validate the MarkWiiR (MW) captured by the Nintendo Wii-Remote (100-Hz) to assess active marker displacement by comparison with 2D video analysis. Ten participants were tested on a treadmill at different walking (1<6 km · h−1) and running (10<13 km · h−1) speeds. During the test, the active marker for MW and a passive marker for video analysis were recorded simultaneously with the two devices. The displacement of the marker on the two axes (x-y) was computed using two different programs, Kinovea 0.8.15 and CoreMeter, for the camera and MW, respectively. Pearson correlation was acceptable (x-axis r≥0.734 and y-axis r≥0.684), and Bland–Altman plots of the walking speeds showed an average error of 0.24±0.52% and 1.5±0.91% for the x- and y-axis, respectively. The difference of running speeds showed average errors of 0.67±0.33% and 1.26±0.33% for the x- and y-axes, respectively. These results demonstrate that the two measures are similar from both the x- and the y-axis perspective. In conclusion, these findings suggest that the MarkWiiR is a valid and reliable tool to assess the kinematics of an active marker during walking and running gaits. 相似文献
5.
The forwards-walking portly crab, Libinia emarginata is an ancient brachyuran. Its phylogenetic position and behavioral repertoire make it an excellent candidate to reveal the adaptations, which were required for brachyuran crabs to complete their transition to sideways-walking from their forwards-walking ancestors. Previously we showed that in common with other forwards-walking (but distantly related) crustaceans, L. emarginata relies more heavily on its more numerous proximal musculature to propel itself forward than its sideways-walking closer relatives. We investigated if the proximal musculature of L. emarginata is innervated by a greater number of motor neurons than that of sideways-walking brachyurans. We found the distal musculature of spider crabs is innervated by a highly conserved number of motor neurons. However, innervation of its proximal musculature is more numerous than in closely-related (sideways-walking) species, resembling in number and morphology those described for forwards-walking crustaceans. We propose that transition from forward- to sideways-walking in crustaceans involved a decreased role for the proximal leg in favor of the more distal merus–carpus joint. 相似文献
6.
Langridge KV 《Proceedings. Biological sciences / The Royal Society》2006,273(1589):959-967
The salience of bilateral symmetry to humans has led to the suggestion that camouflage may be enhanced in asymmetrical patterns. However, the importance of bilateral symmetry in visual signals (and overall morphology) may constrain the evolution of asymmetrical camouflage, resulting in the bilaterally symmetrical cryptic patterns that we see throughout the animal kingdom. This study investigates the cuttlefish (Sepia officinalis), which can control the degree of symmetry in its coloration. Ten juvenile S. officinalis were filmed in two behavioural contexts (cryptic and threatened) to test the prediction that cryptic patterns will be expressed more asymmetrically than an anti-predator signal known as the 'deimatic display'. Cryptic body patterns, particularly those with a disruptive function, were found to exhibit a high degree of bilateral symmetry. By contrast, the components of the deimatic display were often expressed asymmetrically. These results are contrary to the predicted use of symmetry in defensive coloration, indicating that the role of symmetry in both crypsis and visual signalling is not as straightforward as previously suggested. 相似文献
7.
The adoption of a specific gait sequence pattern during symmetrical locomotion has been proposed to have been a key advantage for the exploitation of the fine branch niche in early primates. Diverse aspects of primate locomotion have been extensively studied in technically equipped laboratory settings, but evolutionary conclusions derived from these investigations have rarely been verified in wild primates. Bridging the gap from the lab to the field, we conducted an actual performance determination of symmetrical gaits in two free-ranging tamarin species (Saguinus mystax and Saguinus fuscicollis) of Amazonian Peru by analyzing high-speed video recordings of naturally occurring locomotor bouts. Tamarins arguably represent viable models for aspects of early primate locomotion. We tested three specific hypotheses derived from laboratory studies to test for the influence of support size and orientation and to gain further insight into the functional significance of primate gait sequence patterns: (1) The tamarins utilize symmetrical gaits at a higher rate on small supports than on larger ones. (2) During symmetrical locomotion on small supports, diagonal sequences are utilized at a higher rate than on larger supports. (3) On inclines, diagonal sequences are predominantly used and on declines, lateral sequences are predominantly used. Our results corroborated hypotheses 1 and 3. We found no clear support for hypothesis 2. In conclusion, our results add to the notion that primate gait plasticity, rather than uniform adoption of diagonal sequence gaits, enabled early primates to accommodate different support types and effectively exploit the small branch niche. 相似文献
8.
Quadrupedal locomotion of primates is distinguished from the quadrupedalism of many other mammals by several features, including a diagonal sequence (DS) footfall used in symmetrical gaits. This presumably unique feature of primate locomotion has been attributed to an ancestral adaptation for cautious arboreal quadrupedalism on thin, flexible branches. However, the functional significance of DS gait remains largely hypothetical. The study presented here tests hypotheses about the functional significance of DS gait by analyzing the gait mechanics of a primate that alternates between DS and lateral sequence (LS) gaits, Cebus apella. Kinematic and kinetic data were gathered from two subjects as they moved across both terrestrial and simulated arboreal substrates. These data were used to test four hypotheses: (1) locomotion on arboreal supports is associated with increased use of DS gait, (2) DS gait is associated with lower peak vertical substrate reaction forces than LS gait, (3) DS gait is associated with greater forelimb/hind limb differentiation in force magnitudes, and (4) DS gait offers increased stability. Our results indicate that animals preferred DS gait on the arboreal substrate, and LS gait while on the ground. Peak vertical substrate reaction forces showed a tendency to be lower in DS gait, but not consistently so. Pole ("arboreal") forces were lower than ground forces in DS gait, but not in LS gait. The preferred symmetrical gait on both substrates was a grounded run or amble, with the body supported by only one limb throughout most of the stride. During periods of bilateral support, the DS gait had predominantly diagonal support couplets. This benefit for stability on an arboreal substrate is potentially outweighed by overstriding, its associated ipsilateral limb interference in DS gait and hind foot positioning in front of the hand on untested territory. DS gait also did not result in an optimal anchoring position of the hind foot under the center of mass of the body at forelimb touchdown. In sum, the results are mixed regarding the superiority of DS gait in an arboreal setting. Consequently, the notion that DS gait is an ancestral adaptation of primates, conditioned by the selection demands of an arboreal environment, remains largely hypothetical. 相似文献
9.
10.
Daichi Yamashita Masahiro Shinya Keisuke Fujii Shingo Oda Motoki Kouzaki 《Journal of electromyography and kinesiology》2013,23(6):1480-1484
The purpose of this study is to examine the characteristics of gait patterns in human preferred sideways locomotion at increasing speeds. Fifteen healthy young males were asked to step sideways on a treadmill at various speeds of 1.3–6.1 km/h. The times of foot contact and take-off were analyzed. Three gait patterns were observed. At slow speeds, all of the subjects performed a walk-like pattern. When the treadmill speed exceeded approximately 3.5 km/h, the subjects preferred gait patterns with a flight phase. Most of the subjects performed an asymmetric gait pattern that was similar to a forward gallop, whereas only two out of fifteen subjects performed a run-like gait pattern. Because the left and right legs are positioned along the movement direction, it might be more efficient to divide roles between the leading and trailing limbs at high speeds: the leading limb functions to produces breaking and vertical force, and the trailing limb mainly absorbs the impact of foot contact and generates propulsive forces. 相似文献
11.
J. Hall I. A. Macdonald P. J. Maddison J. P. O''Hare 《European journal of applied physiology and occupational physiology》1998,77(3):278-284
This study compared the cardiorespiratory responses of eight healthy women (mean age 30.25 years) to submaximal exercise
on land (LTm) and water treadmills (WTm) in chest-deep water (Aquaciser). In addition, the effects of two different water
temperatures were examined (28 and 36°C). Each exercise test consisted of three consecutive 5-min bouts at 3.5, 4.5 and 5.5 km · h−1. Oxygen consumption (V˙O2) and heart rate (HR), measured using open-circuit spirometry and telemetry, respectively, increased linearly with increasing
speed both in water and on land. At 3.5 km · h−1
V˙O2 was similar across procedures [χ = 0.6 (0.05) l · min−1]. At 4.5 and 5.5 km · h−1
V˙O2 was significantly higher in water than on land, but there was no temperature effect (WTm: 0.9 and 1.4, respectively; LTm:
0.8 and 0.9 l · min−1, respectively). HR was significantly higher in WTm at 36°C compared to WTm at 28°C at all speeds, and compared to LTm at
4.5 and 5.5 km · h−1 (P ≤ 0.003). The HR-V˙O2 relationship showed that at a V˙O2 of 0.9 l · min−1, HR was higher in water at 36°C (115 beats · min−1) than either on land (100 beats · min−1) or in water at 28°C (99 beats · min−1). The Borg scale of perceived exertion showed that walking in water at 4.5 and 5.5 km · h−1 was significantly harder than on land (WTm: 11.4 and 14, respectively; LTm: 9.9 and 11, respectively; P ≤ 0.001). These cardiorespiratory changes occurred despite a slower cadence in water (the mean difference at all speeds was
27 steps/min). Thus, walking in chest-deep water yields higher energy costs than walking at similar speeds on land. This data
has implications for therapists working in hydrotherapy pools.
Accepted: 3 September 1997 相似文献
12.
Jinger S. Gottschall Riley C. Sheehan Danielle S. Downs 《Journal of electromyography and kinesiology》2013,23(5):1237-1242
Falls are the leading cause of nonfatal injury across all age groups and a common incident for pregnant women. Thus, there is a critical demand for research to evaluate if walking strategies in pregnant women change throughout pregnancy in order to effectively intervene and minimize the incidence rate. The aim of the present study was to analyze modifications in temporal–spatial parameters as well as muscle activity during hill walking transitions in pregnant women between gestational week 20 and 32. Based upon previous literature, we hypothesized that in comparison to level walking, the transition strides of pregnant women would be distinct between trimesters in order to accommodate the physical changes within twelve weeks. Thirteen pregnant women completed a series of randomly assigned walking conditions on level and hill surfaces during gestational week 20 and 32. Our results demonstrated that pregnant women modulated their gait patterns throughout pregnancy with additional joint flexion as well as muscle activity at the ankle, knee and hip. In summary, pregnant women exaggerate cautious gait patterns by walking slower and wider with greater joint flexion and muscle activity in order to safely transition between level and hill surfaces. 相似文献
13.
14.
We quantified gait and stride characteristics (velocity, frequency, stride length, stance and swing duration, and duty factor) in the bursts of locomotion of two small, intermittently moving, closely related South American gymnophthalmid lizards: Vanzosaura rubricauda and Procellosaurinus tetradactylus. They occur in different environments: V. rubricauda is widely distributed in open areas with various habitats and substrates, while P. tetradactylus is endemic to dunes in the semi-arid Brazilian Caatinga. Both use trot or walking trot characterised by a lateral sequence. For various substrates in a gradient of roughness (perspex, cardboard, sand, gravel), both species have low relative velocities in comparison with those reported for larger continuously moving lizards. To generate velocity, these animals increase stride frequency but decrease relative stride length. For these parameters, P. tetradactylus showed lower values than V. rubricauda. In their relative range of velocities, no significant differences in stride length and frequency were recorded for gravel. However, the slopes of a correlation between velocity and its components were lower in P. tetradactylus on cardboard, whereas on sand this was only observed for velocity and stride length. The data showed that the difference in rhythmic parameters between both species increased with the smoothness of the substrates. Moreover, P. tetradactylus shows a highly specialised locomotor strategy involving lower stride length and frequency for generating lower velocities than in V. rubricauda. This suggests the evolution of a central motor pattern generator to control slower limb movements and to produce fewer and longer pauses in intermittent locomotion. 相似文献
15.
A. D. Taylor R. Bronks 《European journal of applied physiology and occupational physiology》1994,69(6):508-515
This study analysed the changes in electromyographic (EMG) activity of the vastus lateralis, biceps femoris and gastrocnemius muscles during incremental treadmill running. The changes in EMG were related to the lactate and ventilatory thresholds. Ten trained subjects participated in the study. Minute ventilation, oxygen consumption, carbon dioxide expired and the fraction of oxygen in the expired gas were recorded continuously. Venous blood samples were collected at each exercise intensity and analysed for lactate concentration. The EMG were recorded at the end of each exercise intensity using surface electrodes. The EMG were quantified through integration (iEMG) and by calculating the mean power frequency (MPF). The iEMG measurements were characterized by a breakpoint in the vastus lateralis and/or gastrocnemius muscles in eight of the subjects tested. However, the results indicated that blood lactate concentrations had already begun to increase in a nonlinear fashion before the iEMG breakpoint had been surpassed. Consequently, the occurence of the lactate threshold cannot be attributed solely to the change in motor unit recruitment or rate coding patterns demonstrated by the iEMG breakpoint. The ventilatory threshold was shown to be a far more reliable and convenient noninvasive predictor of the lactate threshold in comparison with EMG techniques. In conclusion, the EMG measurements used in this study (i.e. iEMG and MPF) were not considered to be viable noninvasive determinants of the aerobic-anaerobic transition phase in treadmill running. 相似文献
16.
Masahiro Yamasaki Takashi Sasaki Masafumi Torii 《European journal of applied physiology and occupational physiology》1991,62(2):99-103
To evaluate the characteristics of stereo-typed movement of the lower limb during treadmill walking, the step length and duration of 200 steps were monitored consecutively and calculated by means of a computerized system, consisting of a position sensor, shoes with foot switches and a minicomputer. Eleven male and 10 female subjects walked at various constant speeds ranging from 60-130 m.min-1. Mean, standard deviation (SD) and coefficient of variation (CV) of the time-distance component at each speed were utilized for the assessment of stereotyped movement. When compared with males, females had a tendency to increase their speed by increasing their cadence. The difference of the walking pattern was specifically related to their height. The SD and CV of the time-distance component at a given speed were significantly greater in females than in males. Regression analyses revealed that in the relationship between the walking speeds and the SDs or CVs of the time-distance component, the significant quadratic equations could be fitted. The speed, at which the SD of step length was minimum, was estimated to be about 90 m.min-1 in both males and females. This was regarded as the free walking speed or as the walking speed resulting from a mechanically efficient step length which suited the subject's body size. 相似文献
17.
PurposeThe reliability of lower extremity muscle activation patterns has not been clearly studied in a dual-belt instrumented treadmill environment. The primary study objective was to quantify the day-to-day reliability of quadriceps, hamstrings, gastrocnemius and gluteus medius activation patterns in healthy young adult gait. Secondarily, the reliability of spatiotemporal, and knee/hip motion and moment-based gait outcomes was assessed.Scope: 20 young adults were recruited and tested on two separate days. Using standardized procedures, participants were prepared for surface electromyography and lower extremity motion capture. All individuals walked on a dual-belt instrumented treadmill while muscle activation, segment motions and ground reaction forces were recorded. Sagittal plane motion and net external sagittal and frontal plane moments were calculated. Discrete biomechanical and muscle activation measures were calculated, and non-negative matrix factorization extracted amplitude and temporal muscle activation features. Intraclass Correlation Coefficients, Standard Error of Measurement and Minimum Detectable Change were calculated.ConclusionsHigh to excellent Intraclass correlation coefficients were found between visits for most primary and secondary outcomes. The absolute and relative reliability, including Minimum Detectable Change values, provided in this study support the use of dual-belt instrumented treadmill walking as an acceptable medium to collect biomechanical and lower extremity EMG outcomes for future studies. 相似文献
18.
Energetics in Homo erectus and other early hominins: the consequences of increased lower-limb length
Steudel-Numbers KL 《Journal of human evolution》2006,51(5):445-453
Previous studies of daily energy expenditure (DEE) in hominin fossils have estimated locomotor costs using a formula that was based on six species, all 18 kg or less in mass, including no primates, and that has a number of other problems when applied in an ecological context. It is well established that the energetic cost of human walking is lower than that of representative mammals, particularly for individuals with long lower limbs. The current study reevaluates the daily energy expenditures of a variety of hominin species using more appropriate approaches to estimating locomotor costs. To estimate DEE for primates, I relied on published data on body mass, day range, and the percentage of time spent in various activities. Based on those data, I calculated a value for nonlocomotor DEE. I then used a variant of a method that I have suggested elsewhere to calculate the daily cost due to locomotion (DEEL) and summed the two to calculate total DEE. The more up-to-date methods for calculating the cost of travel result in lower estimates of this aspect of the energy budget than seen in previous studies. Values obtained here for DEE in various representatives of Australopithecus are lower than reported previously by around 200 kcal/day. Taking into account the greater economy of human walking, particularly the effect of the longer lower limbs found in many later Homo species, also results in lowered estimates of DEE. Elongation of the lower limbs in H. erectus reduced relative travel costs nearly 50% in comparison to A.L. 288-1 (A. afarensis). The present method for calculating DEE indicates that female H. erectus DEE was 84% greater than that of female Australopithecus; this disparity is even larger than that suggested by previous workers. 相似文献
19.
Most primates typically use a diagonal-sequence footfall pattern during walking. This footfall pattern, which is unusual for mammals, is believed to have originated in ancestral primates in association with the use of grasping extremities for movement and foraging on thin, flexible branches. This theory was tested by comparing gait parameters between the grey short-tailed opossum Monodelphis domestica and the woolly opossum Caluromys philander , two didelphid marsupials that are strongly differentiated in grasping morphology of the extremities and in their reliance on foraging strategies involving thin branches. One hundred and thirty gait cycles were analysed quantitatively from videotapes of subjects moving quadrupedally on a runway and on poles of different diameters (7 and 28 mm). Duty factor (i.e. duration of the stance phase as a percentage of the stride period) for the forelimb and hindlimb, as well as diagonality (i.e. phase relationship between the forelimb and hindlimb cycles), were calculated for each of these symmetrical gait cycles. We found that the highly terrestrial Monodelphis , like most other non-primate mammals, relies primarily on lateral-sequence walking gaits on both runway and poles, and has relatively higher forelimb duty factors. Like primates, the highly arboreal Caluromys uses primarily diagonal-sequence walking gaits on the runway and pole, with relatively higher hindlimb duty factors and diagonality. The fact that the woolly opossum, a marsupial with primate-like feet that moves and forages mainly on thin branches, uses primarily diagonal-sequence gaits when walking supports the view that primate gaits evolved to meet the demands of locomotion on narrow supports. This also demonstrates the functional role of a grasping foot, in association with relatively higher hindlimb duty factors, protraction, and substrate reaction forces, in the production of such walking gaits. 相似文献
20.
S. R. Soffe R. Perrins 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》1997,181(1):71-81
We have compared intrinsic firing properties of motoneurons with the way they fire during locomotion in young tadpoles of
four species of amphibian. Xenopus motoneurons have the highest current threshold for spiking; most fire a single spike to depolarising current steps; all fire
reliably once per cycle during fictive swimming. Xenopus motoneurons recorded with Cs+-filled microlelectrodes fire repetitively to current but still fire only once per swimming cycle. Rana, Bufo and Triturus motoneurons have lower current thresholds; most fire bursts of spikes to suprathreshold current but most do not fire reliably
during swimming and most still fire only once (if at all) per cycle. We conclude that neuronal firing patterns during locomotion
cannot reliably be predicted from intrinsic firing properties, and suggest the composition and form of the underlying synaptic
input is more important. We also measured cycle period, ventral root burst duration, and longitudinal delay during fictive
swimming. These basic swimming parameters range from relatively long in Rana to relatively short in Xenopus. By discounting differences in neuronal firing properties between the four species, we can start to relate differences in
fictive swimming to differences in synaptic drive, particularly the strong electrotonic input seen only in Xenopus.
Accepted: 27 January 1997 相似文献