共查询到20条相似文献,搜索用时 9 毫秒
1.
Mastoparan B (MP-B), an antimicrobial cationic tetradecapeptide amide isolated from the venom of the hornet Vespa basalis, is an amphiphilic alpha-helical peptide. MP-B possesses a variety of biological activities, such as mast cells degradation histamine release, erythrocyte lysis and inhibition of the growth of gram-positive and gram-negative bacteria. In order to study the relationship between the structure and the biological activity of MP-B, we used four analogs by replacing amino acids with alanine. Tertiary structures of MP-B and its analogs in 2,2,2-trifluoroethanol (TFE)-containing aqueous solution have been determined by NMR spectroscopy and molecular modeling. The results indicate that [Ala4]MP-B and [Ala12]MP-B with higher hydrophobicity adopt a higher content of amphiphilic helical structures, and have better antimicrobial and hemolytic activities than MP-B. However, [Ala3]MP-B and [Ala9]MP-B with lower hydrophobicity have disordered structures. [Ala3]MP-B and [Ala9]MP-B have low antimicrobial activity and much less hemolytic activity relative to MP-B. It is likely that tryptophan residue in MP-B and appropriate hydrophobicity of MP-B to induce alpha-helical structure is essential for the antibacterial and hemolytic activity of MP-B. This study can aid understanding of the structure-activity relationship of MP-B and to design peptides to possess lytic activity. 相似文献
2.
Mastoparan B (MP-B) is an antimicrobial cationic tetradecapeptide amide isolated from the venom of the hornet Vespa basalis. NMR spectroscopy was used to study the membrane associated structures of MP-B in various model membrane systems such as 120 mM DPC micelles, 200 mM SDS micelles, and 3%(w/v) DMPC/DHPC (1:2) bicelles. In all systems, MP-B has an amphiphilic alpha-helical structure from Lys2 to Leu14. NOESY experiments performed on MP-B in nondeuterated SDS micelles show that protons in the indole ring of Trp9 are in close contact with methylene protons of SDS micelles. T1 relaxation data and NOE data revealed that the bound form of MP-B may be dominant in SDS micelles. The interactions between MP-B and zwitterionic DPC micelles were much weaker than those between MP-B and anionic SDS micelles. By substitution of Trp9 with Ala9, the pore-forming activity of MP-B was decreased dramatically. All of these results imply that strong electrostatic interactions between the positively charged Lys residues in MP-B and the anionic phospholipid head groups must be the primary factor for MP-B binding to the cell membrane. Then, insertion of the indole ring of Trp9 into the membrane, as well as the amphiphilic alpha-helical structures of MP-B may allow MP-B to span the lipid bilayer through the C-terminal portion. These structural features are crucial for the potent antibiotic activities of MP-B. 相似文献
3.
Interactions of the peptides melittin and magainin with phospholipid vesicle membranes have been studied using fluorescence correlation spectroscopy. Molecular interactions of melittin and magainin with phospholipid membranes are performed in rhodamine-entrapped vesicles (REV) and in rhodamine-labelled phospholipid vesicles (RLV), which did not entrap free rhodamine inside. The results demonstrate that melittin makes channels into vesicle membranes since exposure of melittin to vesicles causes rhodamine release only from REV but not from RLV. It is obvious that rhodamine can not be released from RLV because the inside of RLV is free of dye molecules. In contrast, magainin breaks vesicles since addition of magainin to vesicles results in rhodamine release from both REV and RLV. As the inside of RLV is free of rhodamine, the appearance of rhodamine in solution confirms that these vesicles are broken into rhodamine-labelled phospholipid fragments after addition of magainin. This study is of pharmaceutical significance since it will provide insights that fluorescence correlation spectroscopy can be used as a rapid protocol to test incorporation and release of drugs by vesicles. 相似文献
4.
Yoshihiro Kuroda Yoshitaka Maeda Shinichi Sawa Kiyohiro Shibata Kazuhide Miyamoto Terumichi Nakagawa 《Journal of peptide science》2003,9(4):212-220
Pathogenic prion proteins (PrP(Sc)) are thought to be produced by alpha-helical to beta-sheet conformational changes in the normal cellular prion proteins (PrP(C)) located solely in the caveolar compartments. In order to inquire into the possible conformational changes due to the influences of hydrophobic environments within caveolae, the secondary structures of prion protein peptides were studied in various kinds of detergents by CD spectra. The peptides studied were PrP(129-154) and PrP(192-213); the former is supposed to assume beta-sheets and the latter alpha-helices, in PrP(Sc). The secondary structure analyses for the CD spectra revealed that in buffer solutions, both PrP(129-154) and PrP(192-213) mainly adopted random-coils (approximately 60%), followed by beta-sheets (30%-40%). PrP(129-154) showed no changes in the secondary structures even in various kinds of detergents such as octyl-beta-D-glucopyranoside (OG), octy-beta-D-maltopyranoside (OM). sodium dodecyl sulfate (SDS), Zwittergent 3-14 (ZW) and dodecylphosphocholine (DPC). In contrast, PrP(192-213) changed its secondary structure depending on the concentration of the detergents. SDS, ZW, OG and OM increased the alpha-helical content, and decreased the beta-sheet and random-coil contents. DPC also increased the alpha-helical content, but to a lesser extent than did SDS, ZW, OG or OM. These results indicate that PrP(129-154) has a propensity to adopt predominantly beta-sheets. On the other hand, PrP(192-213) has a rather fickle propensity and varies its secondary structure depending on the environmental conditions. It is considered that the hydrophobic environments provided by these detergents may mimic those provided by gangliosides in caveolae, the head groups of which consist of oligosaccharide chains containing sialic acids. It is concluded that PrP(C) could be converted into a nascent PrP(Sc) having a transient PrP(Sc) like structureunder the hydrophobic environments produced by gangliosides. 相似文献
5.
Valery V. Andrushchenko 《生物化学与生物物理学报:生物膜》2006,1758(10):1596-1608
Structural changes for a series of antimicrobial peptides in various solvents were investigated by a combined approach of FTIR and CD spectroscopy. The well-characterized and potent antimicrobial peptides indolicidin and tritrpticin were studied along with several analogs of tritrpticin, including Tritrp1 (amidated analog of tritrpticin), Tritrp2 (analog of Tritrp1 with Arg → Lys substitutions), Tritrp3 (analog of Tritrp1 with Pro → Ala substitutions) and Tritrp4 (analog of Tritrp1 with Trp → Tyr substitutions). All peptides were studied in aqueous buffer, ethanol and in the presence of dodecylphosphocholine (DPC) micelles. It was shown that tritrpticin and its analogs preferentially adopt turn structures in all solvents studied. The turn structures formed by the tritrpticin analogs bound to DPC micelles are more compact and more conformationally restricted compared to indolicidin. While several peptides showed a slight propensity for an α-helical conformation in ethanol, this trend was only strong for Tritrp3, which also adopted a largely α-helical structure with DPC micelles. Tritrp3 also demonstrated along with Tritrp1 the highest ability to interact with DPC micelles, while Tritrp2 and Tritrp4 showed the weakest interaction. 相似文献
6.
Structural changes for a series of antimicrobial peptides in various solvents were investigated by a combined approach of FTIR and CD spectroscopy. The well-characterized and potent antimicrobial peptides indolicidin and tritrpticin were studied along with several analogs of tritrpticin, including Tritrp1 (amidated analog of tritrpticin), Tritrp2 (analog of Tritrp1 with Arg-->Lys substitutions), Tritrp3 (analog of Tritrp1 with Pro-->Ala substitutions) and Tritrp4 (analog of Tritrp1 with Trp-->Tyr substitutions). All peptides were studied in aqueous buffer, ethanol and in the presence of dodecylphosphocholine (DPC) micelles. It was shown that tritrpticin and its analogs preferentially adopt turn structures in all solvents studied. The turn structures formed by the tritrpticin analogs bound to DPC micelles are more compact and more conformationally restricted compared to indolicidin. While several peptides showed a slight propensity for an alpha-helical conformation in ethanol, this trend was only strong for Tritrp3, which also adopted a largely alpha-helical structure with DPC micelles. Tritrp3 also demonstrated along with Tritrp1 the highest ability to interact with DPC micelles, while Tritrp2 and Tritrp4 showed the weakest interaction. 相似文献
7.
8.
The salt concentration dependence of the aggregation properties of calf thymus and chicken erythrocyte histones has been investigated by using fluorescence spectroscopy. The isolated H2A/H2B and H3/H4 subunit preparations were labeled with 5-(dimethylamino)naphthalene-1- sulfonyl (dansyl). This long-lived fluorescence probe allows for the observation of rotations due to tumbling of the particle and thus is a probe for changes in the size of macromolecular assemblies. The fluorescence polarization and lifetime were measured as a function of salt concentration for these isolated preparations. Next, each labeled preparation was reconstituted with its unlabeled complement, and the salt concentration dependence of histone core octamer interactions was investigated in the same manner. Salt-induced core particle formation was observed by monitoring the dansyl-labeled dimers for both the calf thymus and chicken erythrocyte preparations. Evidence for subunit dissociation of the isolated H2A-H2B preparations was also found, as well as aggregation of the isolated H3/H4 subunits to at least dimers of tetramers. The calf thymus H3/H4 preparation was in aggregated form under all conditions studied, whereas the chicken erythrocyte H3/H4 only formed aggregates at high protein or salt concentrations. We have found evidence that the dimer can displace the tetramer from the higher order aggregate in order to form core particles. Such competition between the subunit interfaces in the histone system suggests that they may play a regulatory role in histone-DNA interactions. 相似文献
9.
DNA fragments of various lengths and YOYO-1 iodide (YOYO) were mixed at various ratios, and fluorescence was measured using fluorescence correlation spectroscopy. The number of substantially emitting YOYO molecules binding to the DNA and the binding intervals between the YOYO molecules were estimated for DNA-YOYO complexes of various lengths. In the present study, we found an interesting phenomenon: triplet buildup. Because fluorophores that fall into the triplet state do not emit fluorescence, a part of the dark period can be recovered by emitting photons from other excited YOYO molecules in the same DNA strings in the confocal elements. The remaining dark period can be considered to be the total miss-emission rate. Estimates of the total miss-emission rate are important for calculation of the length and amount of DNA. 相似文献
10.
The thermal unfolding pathway for dihydrolipoamide dehydrogenase (LipDH) isolated from Bacillus stearothermophilus was investigated focusing on the transient intermediate state characterized through time-resolved fluorescence studies. The decrease in ellipticity in the far UV region in the CD spectrum, the fluorescence spectral change of Trp-91 and FAD, and the thermal enzymatic inactivation curve consistently demonstrated that LipDH unfolded irreversibly on heat treatment at higher than 65 degrees C. LipDH took a transient intermediate state during the thermal unfolding process which could refold back into the native state. In this state, the internal rotation of FAD was activated in the polypeptide cage and correspondingly LipDH showed a peculiar conformation. The transient intermediate state of LipDH characterized in time-resolved fluorescence depolarization studies showed very similar properties to the molten-globule state, which has been confirmed in many studies on protein folding. 相似文献
11.
MARCKS-related protein (MRP) is a peripheral membrane protein whose binding to membranes is mediated by the N-terminal myristoyl moiety and a central, highly basic effector domain. MRP mediates cross-talk between protein kinase C and calmodulin and is thought to link the actin cytoskeleton to the plasma membrane. Since MRP contains no tryptophan residues, we mutated a phenylalanine in the effector domain to tryptophan (MRP F93W) and used fluorescence spectroscopy to monitor binding of the protein to phospholipid vesicles. We report in detail the evaluation procedure necessary to extract quantitative information from the raw data. The spectra of MRP F93W obtained in the presence of increasing amounts of lipid crossed at an isosbestic point, indicating a simple transition between two states: free and membrane-bound protein. The change in fluorescence toward values typical of a more hydrophobic environment was used to quantify membrane binding. The partition coefficient agreed well with values obtained previously by other methods. To study the interaction of the N-terminus of MRP with membranes, a tryptophan residue was also introduced at position 4 (MRP S4W). Our data suggest that only the myristoylated N-terminus interacted with liposomes. These results demonstrate the versatility of site-directed incorporation of tryptophan residues to study protein-membrane interactions. 相似文献
12.
Scarlata SF 《Biophysical chemistry》1997,69(1):9-21
We have studied the effects of cholesterol on membrane surfaces using fluorescence spectroscopy at high pressure. At atmospheric pressure, the dissociation state of a pH-sensitive fluorophore (6-decanylnaphthol or DECNA) incorporated into several types of membranes showed an apparent increase in dissociation with cholesterol content coming somewhat closer to its dissociation state in solution. Previous studies have shown that when DECNA is free in solution, pressure induces proton dissociation due to the volume decrease that occurs when water electrostricts around the ions. But in phosphatidylcholine (PC) bilayers, proton dissociation is inhibited, either due to the inability of the surface to expand and allow for increased hydration, or other changes in lipid structure. The pressure behavior of DECNA in dioleoyl-PC, dioleoylphosphatidic acid and dioleylphosphatidylglycerol bilayers shows that incorporation of 5-10% cholesterol causes DECNA to behave like it is in a more unrestricted environment. This trend is reversed at higher cholesterol concentrations. These data, together with compressibility measurements, support the model of Sankaram and Thompson [M. Sankaram, T.E. Thompson, Biochemistry 29 (1990) 10676.] whereby in the disordered phase, cholesterol can span the two leaflets causing an increase in the area between the head groups; whereas in the ordered phase, no expansion occurs. Thus, the effect of cholesterol on membrane surfaces depends on its phase diagram. 相似文献
13.
14.
Investigation on the effect of fluorescence quenching of bovine serum albumin by cefoxitin sodium using fluorescence spectroscopy and synchronous fluorescence spectroscopy 下载免费PDF全文
The reaction mechanism of cefoxitin sodium with bovine serum albumin was investigated using fluorescence spectroscopy and synchronous fluorescence spectroscopy at different temperatures. The results showed that the change of binding constant of the synchronous fluorescence method with increasing temperature could be used to estimate the types of quenching mechanisms of drugs with protein and was consistent with one of fluorescence quenching method. In addition, the number of binding sites, type of interaction force, cooperativity between drug and protein and energy‐transfer parameters of cefoxitin sodium and bovine serum albumin obtained from two methods using the same equation were consistent. Electrostatic force played a major role in the conjugation reaction between bovine serum albumin and cefoxitin sodium, and the type of quenching was static quenching. The primary binding site for cefoxitin sodium was sub‐hydrophobic domain IIA, and the number of binding sites was 1. The value of Hill's coefficients (nH) was approximately equal to 1, which suggested no cooperativity in the bovine serum albumin–cefoxitin sodium system. The donor‐to‐acceptor distance r < 7 nm indicated that static fluorescence quenching of bovine serum albumin by cefoxitin sodium was also a non‐radiation energy‐transfer process. The results indicated that synchronous fluorescence spectrometry could be used to study the reaction mechanism between drug and protein, and was a useful supplement to the conventional method. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
15.
Britt-Marie Backlund Tadeusz Kulinski Rudolf Rigler Astrid Gräslund 《European biophysics journal : EBJ》1995,23(6):407-412
Time resolved fluorescence was used to study the dynamics on the nanosecond and subnanosecond time scale of the peptide hormone motilin. The peptide is composed of 22 amino acid residues and has one tyrosine residue in position 7, which was used as an intrinsic fluorescence probe. The measurements show that two rotational correlation times, decreasing with increasing temperature, are needed to account for the fluorescence polarization anisotropy decay data. Viscosity measurements combined with the fluorescence measurements show that the rotational correlation times vary approximately as viscosity with temperature. The shorter rotational correlation time (0.08 ns in an aqueous solution with 30% hexafluoropropanol, HFP at 20°C) should be related to internal movement of the tyrosine side chain in the peptide while the longer rotational correlation time (2.2 ns in 30% HFP at 20°C) describes the motion of the whole peptide. In addition, the interaction of motilin or the derivative motilin (Y7F) –23W (with tyrosine substituted by phenylalanine and with a tryptophan fluorophore added to the C-terminal) with negatively charged phospholipid vesicles (DOPG) was studied. The results show the development of a long anisotropy decay time which reflects partial immobilization of the peptide by interaction with the vesicles.Correspondence to: A. Gräslund 相似文献
16.
17.
The effects of bovine alpha-lactalbumin on the thermotropic properties of dimyristoylphosphatidylcholine liposomes are studied by Raman spectroscopy, fluorescence polarization and differential scanning calorimetry. The Raman spectrum reveals the drastic effects of the protein on the phospholipid structure. The transition temperature shifts downwards and the inter- and intrachain order in the lipid matrix progressively diminish with increasing protein concentration. Up to a lipid to protein molar ratio R = 25, the bilayer structure however is maintained. From fluorescence polarization data we conclude that the protein restricts the mobility of the DPH probe. In view of the Raman results, the lower probe mobility obviously cannot be associated with a more rigid lipid matrix. Nevertheless the transition temperatures of the alpha-lactalbumin-phospholipid complex increases. DSC measurements give no decisive way out for this discrepancy. These results confirm that different types of lipid order are involved in lipid-protein interactions. Compared to the free protein, the alpha-helicity of the protein has increased in the complex. 相似文献
18.
Detergent-induced conformational changes of Humicola lanuginosa lipase studied by fluorescence spectroscopy 下载免费PDF全文
Detergent (pentaoxyethylene octyl ether, C(8)E(5))-induced conformational changes of Humicola lanuginosa lipase (HLL) were investigated by stationary and time-resolved fluorescence intensity and anisotropy measurements. Activation of HLL is characterized by opening of a surface loop (the "lid") residing directly over the enzyme active site. The interaction of HLL with C(8)E(5) increases fluorescence intensities, prolongs fluorescence lifetimes, and decreases the values of steady-state anisotropy, residual anisotropy, and the short rotational correlation time. Based on these data, we propose the following model. Already below critical micellar concentration (CMC) the detergent can intercalate into the active site accommodating cleft, while the lid remains closed. Occupation of the cleft by C(8)E(5) also blocks the entry of the monomeric substrate, and inhibition of catalytic activity at [C(8)E(5)] less than or equal to CMC is evident. At a threshold concentration close to CMC the cooperativity of the hydrophobicity-driven binding of C(8)E(5) to the lipase increases because of an increase in the number of C(8)E(5) molecules present in the premicellar nucleates on the hydrophobic surface of HLL. These aggregates contacting the lipase should have long enough residence times to allow the lid to open completely and expose the hydrophobic cleft. Concomitantly, the cleft becomes filled with C(8)E(5) and the "open" conformation of HLL becomes stable. 相似文献
19.
Hydrogen exchange of the tryptophan residues in bovine alpha-lactalbumin studied by UV spectroscopy 总被引:1,自引:0,他引:1
The effect of Ca2+ ion on structural fluctuation of a milk Ca2+-binding protein, α-lactalbumin, under native conditions was investigated by comparing hydrogen-exchange reactions of tryptophan residues in the apo-form without Ca2+ and in the holo-form at 1 mM CaCl2 at pH 7.0 in the presence of 0.1M Na+. The reactions were followed by measuring time-dependent absorption changes at 298–300 nm due to the 2H-1H exchange of the tryptophan imino protons and were found to be biphasic under all the conditions examined. Two of the four tryptophan protons are insensitive to Ca2+ concentration and show a relatively fast exchange rate. The other two protons are much more extensively protected (a protection degree of 103–105) and are markedly affected by the presence of Ca2+. Examinations of the temperature dependence and pH dependence of the individual exchange rates have been utilized for elucidating the exchange mechanism. The fast protons show a low activation energy reaction with so-called EX2 kinetics. The exchange reaction of the slow protons is accompanied by a high activation energy, and the exchange mechanism of the protons depended on the presence or absence of stabilizing Ca2+ ions—the EX1 kinetics for the apo-protein and the EX2 kinetics for the holo-protein at 1 mM Ca2+. The exchange reaction in the thermally unfolded state was also found to be biphasic, but the fast phase, which has an exchange rate in the fully exposed state, becomes predominant with decreasing temperature. By taking this fact and using a structural unfolding model of hydrogen exchange, the present results are fully consistent with thermodynamic parameters of the thermal transition and kinetic parameters of refolding reactions induced by concentration jumps of guanidine hydrochloride obtained in previous studies. It is demonstrated that the reaction of the slow protons in the native state is mediated by a transient global unfolding equivalent to the “thermal” unfolding under a native condition and that switching of the exchange mechanism from the EX1 to EX2 kinetics results from acceleration of the refolding rate with an increase in Ca2+ concentration. The transient global unfolding takes place even under a strongly native condition, e.g., at a temperature 20° below the beginning of the thermal transition. 相似文献