首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《BBA》1985,807(1):81-95
(1) The apparent Km for nitrate of the electron-transport system in intact cells of Paracoccus denitrificans was less than 5 μM. In contrast the apparent Km for nitrate of inverted membrane vesicles oxidising NADH was greater than 50 μM. When azide, a competitive inhibitor, was present, the apparent Km observed with the vesicles was raised to 0.64 mM, consistent with values previously reported for purified preparations of the reductase. In membrane vesicles the nitrate reductase is probably not rate-limiting for NADH-nitrate oxido-reductase activity, and thus a lower limit for Km (NO3) is obtained. It is suggested that the very low Km (NO3) in intact cells must arise from either a transport process or a nitrate-specific pore that allows access of nitrate directly to the active site of its reductase from the periplasm. (2) The swelling of spheroplasts has been studied under both aerobic and anaerobic conditions to probe possible mechanisms of nitrate and nitrite transport across the plasma membrane of P. denitrificans. Nitrate reductase was inhibited by azide to prevent reduction of internal nitrate. No evidence for operation of either nitrate-nitrite antiport or proton-nitrate symport was obtained. (3) Measurements from the fluorescence intensity of 8-anilino-naphthalene-1-sulphonate of the rates of decay of diffusion potentials generated by addition of potassium salts to valinomycin-treated plasma membrane vesicles from P. denitrificans showed that the permeability of the membrane to anions is SCN > NO3, NO2, pyruvate, acetate > CI > SO42−. In the presence of a protonophore the rate of decay of the diffusion potential was considerably enhanced with potassium acetate or potassium nitrite, but not with potassium salts of nitrate, chloride or pyruvate. This result indicates that HNO2 and CH3COOH can rapidly and passively diffuse across the cell membrane. This finding suggests that transport systems for nitrite are in general probably not required in bacteria. The failure of a protonophore to enhance the dissipation of the diffusion potential generated by potassium nitrate is evidence against the operation of a proton-nitrate symporter. (4) Low concentrations of added nitrite very strongly inhibit electron flow to oxygen in anaerobically grown cells, provided that they have been treated with Triton X-100 or an uncoupler. This inhibition is not observed with aerobically grown cells. It is concluded that the inhibitory species is a reaction product or an intermediate of the nitrite reductase reaction. The requirement for collapse of protonomotive force by uncoupler or permeabilising the plasma membrane suggests that any such species could be negatively charged. Nitroxyl anion (NO) can be considered, as its conjugate acid is a postulated intermediate between nitrite and nitrous oxide; nitroxyl anion can bind to heme centres to give nitrosyl derivatives. (5) The basis for the ability of permeabilised, but not intact, cells of P. denitrificans to reduce oxygen and nitrate simultaneously is discussed.  相似文献   

2.
The preferential utilization of oxygen, the terminal acceptor, in anaerobically grown cells of Paracoccus denitrificans was abolished in the presence of uncoupler (3 microM carbonyl cyanide m-chlorophenylhydrazone) which brought about a switch to the reduction of nitrite. It has been proved by measuring the redox state of cytochromes that this effect is due to the inhibition of the electron flow to oxygen caused by nitrite, which attains the site of its inhibitory action when the membrane potential is lowered.  相似文献   

3.
Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), in the presence of the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or with osmotic shock-treated cells indicated that phosphate transport over the cytoplasmic membrane of this bacterium was mediated by primary and secondary transport systems. By examining the redox transitions of whole cells at 553 nm we found that phosphate addition caused a significant oxidation of a c-type cytochrome. Based on these findings, we propose that this c-type cytochrome serves as an intermediate in the electron transfer to both nitrite reductase and the site responsible for active phosphate transport. In previous studies with this bacterium we found that the oxidation state of this c-type cytochrome was significantly higher in acetate-supplemented, nitrite-respiring cells (incapable of phosphate uptake) than in phosphate-accumulating cells incubated with different combinations of electron donors and acceptors. Based on the latter finding and results obtained in the present study it is suggested that phosphate uptake in this bacterium is subjected to a redox control of the active phosphate transport site. By means of this mechanism an explanation is provided for the observed absence of phosphate uptake in the presence of nitrite and inhibition of nitrite reduction by phosphate in this organism. The implications of these findings regarding denitrifying, phosphate removal wastewater plants is discussed.  相似文献   

4.
The effect of water stress (reduced osmotic potential) on photosynthetic nitrite reduction was investigated using intact, isolated spinach (Spinacia oleracea) chloroplasts. Nitrite-dependent O2 evolution was inhibited 39% at −29.5 bars osmotic potential, relative to a control at −11 bars. In the presence of an uncoupler of photophosphorylation this inhibition was not seen. Reduced osmotic potential did not inhibit either methyl viologen reduction or photosynthetic O2 reduction. These results indicate that an inhibition of electron transport to ferredoxin cannot account for the observed inhibition of nitrite-dependent O2 evolution. In vitro assay of nitrite reductase activity showed that the interaction of the enzyme with nitrite was not affected by changes in the concentrations of ions or molecules that might be caused by water stress conditions. These results indicate that the most likely site for the effect of water stress on chloroplastic nitrite reduction is the interaction of ferredoxin with nitrite reductase.  相似文献   

5.
Protoplasts were isolated from the leaves of nitrate-cultured wheat (Triticum aestivum L. var. Frederick) seedlings. When incubated in the dark, protoplasts accumulated nitrite under anaerobic, but not under aerobic, conditions. The assimilation of [15N]nitrite by protoplasts was strictly light-dependent, and no loss of nitrite from the assay medium was observed under dark aerobic conditions. Therefore, the absence of nitrite accumulation under dark aerobic conditions was the result of an O2 inhibition of nitrate reduction and not a stimulation of nitrite reduction. In the presence of antimycin A, protoplasts accumulated nitrite under dark aerobic conditions. The oxygen inhibition of nitrate reduction was apparently due to a competition between nitrate reduction and dark respiration for cytoplasmic-reducing equivalents.  相似文献   

6.
The synthesis and accumulation of nitrite has been suggested as a causative factor in the inhibition of legume nodules supplied with nitrate. Plants were grown in sand culture with a moderate level of nitrate (2.1 to 6.4 millimolar) supplied continuously from seed germination to 30 to 50 days after planting. In a comparison of nitrate treatments, a highly significant negative correlation between nitrite concentration in soybean (Glycine max [L.] Merr.) nodules and nodule fresh weight per shoot dry weight was found even when bacteroids lacked nitrate reductase (NR). However, in a comparison of two Rhizobium japonicum strains, there was only 12% as much nitrite in nodules formed by NRR. japonicum as in nodules formed by NR+R. japonicum, and growth and acetylene reduction activity of both types of nodules was about equally inhibited. In a comparison of eight other NR+ and NRR. japonicum strains, and a comparison of G. max, Phaseolus vulgaris, and Pisum sativum, the concentration of nitrite in nodules was unrelated to nodule weight per plant or to specific acetylene reduction activity. The very small concentration of nitrite found in P. vulgaris nodules (0.05 micrograms NO2-N per gram fresh weight) was probably below that required for the inhibition of nitrogenase based on published in vitro experiments, and yet the specific acetylene reduction activity was inhibited 83% by nitrate. The overall results do not support the idea that nitrite plays a role in the inhibition of nodule growth and nitrogenase activity by nitrate.  相似文献   

7.
Storey BT 《Plant physiology》1971,48(6):694-701
Energy-linked reverse electron transport from succinate to endogenous NAD in tightly coupled mung bean (Phaseolus aureus) mitochondria may be driven by ATP if the two terminal oxidases of these mitochondria are inhibited, or may be driven by the free energy of succinate oxidation. This reaction is specific to the first site of energy conservation of the respiratory chain; it does not occur in the presence of uncoupler. If mung bean mitochondria become anaerobic during oxidation of succinate, their endogenous NAD becomes reduced in the presence of uncoupler, provided that both inorganic phosphate (Pi) and ATP are present. No reduction occurs in the absence of Pi, even in the presence of ATP added to provide a high phosphate potential. If fluorooxaloacetate is present in the uncoupled, aerobic steady state, no reduction of endogenous NAD occurs on anaerobiosis; this compound is an inhibitor of malate dehydrogenase. This result implies that endogenous NAD is reduced by malate formed from the fumarate generated during succinate oxidation. The source of free energy is most probably the endogenous energy stores in the form of acetyl CoA, or intermediates convertible to acetyl CoA, which removes the oxaloacetate formed from malate, thus driving the reaction towards reduction of NAD.  相似文献   

8.
The kinetics of denitrification and the causes of nitrite and nitrous oxide accumulation were examined in resting cell suspensions of three denitrifiers. An Alcaligenes species and a Pseudomonas fluorescens isolate characteristically accumulated nitrite when reducing nitrate; a Flavobacterium isolate did not. Nitrate did not inhibit nitrite reduction in cultures grown with tungstate to prevent formation of an active nitrate reductase; rather, accumulation of nitrite seemed to depend on the relative rates of nitrate and nitrite reduction. Each isolate rapidly reduced nitrous oxide even when nitrate or nitrite had been included in the incubation mixture. Nitrate also did not inhibit nitrous oxide reduction in Alcaligenes odorans, an organism incapable of nitrate reduction. Thus, added nitrate or nitrite does not always cause nitrous oxide accumulation, as has often been reported for denitrifying soils. All strains produced small amounts of nitric oxide during denitrification in a pattern suggesting that nitric oxide was also under kinetic control similar to that of nitrite and nitrous oxide. Apparent Km values for nitrate and nitrite reduction were 15 μM or less for each isolate. The Km value for nitrous oxide reduction by Flavobacterium sp. was 0.5 μM. Numerical solutions to a mathematical model of denitrification based on Michaelis-Menten kinetics showed that differences in reduction rates of the nitrogenous compounds were sufficient to account for the observed patterns of nitrite, nitric oxide, and nitrous oxide accumulation. Addition of oxygen inhibited gas production from 13NO3 by Alcaligenes sp. and P. fluorescens, but it did not reduce gas production by Flavobacterium sp. However, all three isolates produced higher ratios of nitrous oxide to dinitrogen as the oxygen tension increased. Inclusion of oxygen in the model as a nonspecific inhibitor of each step in denitrification resulted in decreased gas production but increased ratios of nitrous oxide to dinitrogen, as observed experimentally. The simplicity of this kinetic model of denitrification and its ability to unify disparate observations should make the model a useful guide in research on the physiology of denitrifier response to environmental effectors.  相似文献   

9.
Jasbir Singh 《BBA》1974,333(1):28-36
Pseudomonas aeruginosa cytochrome oxidase, which reduces nitrite and oxygen, is also capable of reducing hydroxylamine to ammonia.The Km for hydroxylamine reduction is 6 · 10?4M compared to 5 · 10?5M for nitrite reduction. NADH, NADPH, reduced P. aeruginosa cytochrome c551, and reduced P. aeruginosa copper protein were ineffective as electron donors for hydroxylamine reduction whereas reduced pyocyanine and methylene blue acted as electron mediators.Hydroxylamine reduction did not require the presence of Mn2+ of FAD and was not inhibited by prolonged dialysis versus sodium diethyldithiocarbamate. Cyanide, nitrite, and CO were very effective inhibitors.Removal of heme d and its reconstitution, as well as inhibition by CO, suggest that the reduction of hydroxylamine, like the reduction of nitrite or oxygen, proceeds via the heme d.  相似文献   

10.
Thauera selenatis grows anaerobically with selenate, nitrate or nitrite as the terminal electron acceptor; use of selenite as an electron acceptor does not support growth. When grown with selenate, the product was selenite; very little of the selenite was further reduced to elemental selenium. When grown in the presence of both selenate and nitrate both electron acceptors were reduced concomitantly; selenite formed during selenate respiration was further reduced to elemental selenium. Mutants lacking the periplasmic nitrite reductase activity were unable to reduce either nitrite or selenite. Mutants possessing higher activity of nitrite reductase than the wild-type, reduced nitrite and selenite more rapidly than the wild-type. Apparently, the nitrite reductase (or a component of the nitrite respiratory system) is involved in catalyzing the reduction of selenite to elemental selenium while also reducing nitrite. While periplasmic cytochrome C 551 may be a component of the nitrite respiratory system, the level of this cytochrome was essentially the same in mutant and wild-type cells grown under two different growth conditions (i.e. with either selenate or selenate plus nitrate as the terminal electron acceptors). The ability of certain other denitrifying and nitrate respiring bacteria to reduce selenite will also be described.  相似文献   

11.
Under anaerobic conditions, Shewanella putrefaciens is capable of respiratory-chain-linked, high-rate dissimilatory iron reduction via both a constitutive and inducible Fe(III)-reducing system. In the presence of low levels of dissolved oxygen, however, iron reduction by this microorganism is extremely slow. Fe(II)-trapping experiments in which Fe(III) and O2 were presented simultaneously to batch cultures of S. putrefaciens indicated that autoxidation of Fe(II) was not responsible for the absence of Fe(III) reduction. Inhibition of cytochrome oxidase with CN resulted in a high rate of Fe(III) reduction in the presence of dissolved O2, which suggested that respiratory control mechanisms did not involve inhibition of Fe(III) reductase activities or Fe(III) transport by molecular oxygen. Decreasing the intracellular ATP concentrations by using an uncoupler, 2,4-dinitrophenol, did not increase Fe(III) reduction, indicating that the reduction rate was not controlled by the energy status of the cell. Control of electron transport at branch points could account for the observed pattern of respiration in the presence of the competing electron acceptors Fe(III) and O2.  相似文献   

12.
Chromatophores from Rhodopseudomonas capsulata cells grown semiaerobically in the dark oxidize NADH, succinate, and dichlorophenolindophenol. In the presence of N3? these activities are inhibited, but light induces oxidation of dichlorophenolindophenol with O2 as a terminal electron acceptor. Cyanide also inhibits electron transport but much higher concentrations are required to inhibit the photooxidation than the dark oxidation. The photooxidation was studied in a mutant strain of Rhodopseudomonas capsulata (YIV) which cannot grow anaerobically in the light, but similarly to the wild type, grows in the presence of oxygen. Chromatophores from YIV mutant catalyze photophosphorylation and dark oxidation activities with the same properties as those of the wild type. However, the rate of photooxidation in the mutant is only one-third that of the wild type. Based on the differential inhibitor sensitivity and on the mutation it is suggested that the photooxidase is different from the two respiratory oxidases and that this photooxidation activity might be essential for growth of the cells under anaerobic conditions in the light.  相似文献   

13.
Metabolic characteristics of a heterotrophic, nitrifier-denitrifier Alcaligenes sp. isolated from soil were further characterized. Pyruvic oxime and hydroxylamine were oxidized to nitrite aerobically by nitrification-adapted cells with specific activities (Vmax) of 0.066 and 0.003 μmol of N × min−1 × mg of protein−1, respectively, at 22°C. Km values were 15 and 42 μM for pyruvic oxime and hydroxylamine, respectively. The greater pyruvic oxime oxidation activity relative to hydroxylamine oxidation activity indicates that pyruvic oxime was a specific substrate and was not oxidized appreciably via its hydrolysis product, hydroxylamine. When grown as a denitrifier on nitrate, the bacterium could not aerobically oxidize pyruvic oxime or hydroxylamine to nitrite. However, hydroxylamine was converted to nearly equimolar amounts of ammonium ion and nitrous oxide, and the nature of this reaction is discussed. Cells grown as heterotrophic nitrifiers on pyruvic oxime contained two enzymes of denitrification, nitrate reductase and nitric oxide reductase. The nitrate reductase was the dissimilatory type, as evidenced by its extreme sensitivity to inhibition by azide and by its ability to be reversibly inhibited by oxygen. Cells grown aerobically on organic carbon sources other than pyruvic oxime contained none of the denitrifying enzymes surveyed but were able to oxidize pyruvic oxime to nitrite and reduce hydroxylamine to ammonium ion.  相似文献   

14.
(1) Under anaerobic conditions the respiratory chain in cells of Paracoccus denitrificans, from late exponential cultures grown anaerobically with nitrate as electron acceptor and succinate as carbon source, has been shown to reduce added nitrate via nitrite and nitrous oxide to nitrogen without any accumulation of these intermediates. (2) Addition of nitrous oxide to cells reducing nitrate strongly inhibited the latter reaction. The inhibition was reversed by preventing electron flow to nitrous oxide with either antimycin or acetylene. Electron flow to nitrous oxide thus resembles electron flow to oxygen in its inhibitory effect on nitrate reduction. In contrast, addition of nitrite to an anaerobic suspension of cells reducing nitrate resulted in a stimulation of nitrate reductase activity. Usually, addition of nitrite also partially overcame the inhibitory effect of nitrous oxide on nitrate reduction. The reason why added nitrous oxide, but not nitrite, inhibits nitrate reduction is suggested to be related to the higher reductase activity of the cells for nitrous oxide compared with nitrite. Explanations for the unexpected stimulation of nitrate reduction by nitrite in the presence or absence of added nitrous oxide are considered. (3) Nitrous oxide reductase was shown to be a periplasmic protein that competed with nitrite reductase for electrons from reduced cytochrome c. Added nitrous oxide strongly inhibited the reduction of added nitrite. (4) Nitrite reductase activity of cells was strongly inhibited by oxygen in the presence of physiological reductants, but nitrite reduction did occur in the presence of oxygen when isoascorbate plus N,N,N′,N′-tetramethyl-p-phenylenediamine was the reductant. It is concluded that competition for available electrons by two oxidases, cytochrome aa3 and cytochrome o, severely restricted electron flow to the nitrite reductase (cytochrome cd). For this reason it is unlikely that the oxidase activity of this cytochrome is ever functional in cells. (5) The mechanism by which electron flow to oxygen or nitrous oxide inhibits nitrate reduction in cells has been investigated. It is argued that relatively small changes in the extent of reduction of ubiquinone, or of another component of the respiratory chain with similar redox potential, critically determine the capacity for reducing nitrate. The argument is based on: (i) the response of an anthroyloxystearic acid fluorescent probe that is sensitive to changes in the oxidation state of ubiquinone; (ii) consideration of the total rates of electron flow through ubiquinone both in the presence of oxygen and in the presence of nitrate under anaerobic conditions; (iii) use of relative extents of oxidation of b-type cytochromes as an indicator of ubiquinone redox state, especially the finding that b-type cytochrome of the antimycin-sensitive part of the respiratory chain is more oxidised in the presence of added nitrous oxide, which inhibits nitrate reduction, than in the presence of added nitrite which does not inhibit. Arguments against b- or c-type cytochromes themselves controlling nitrate reduction are given. (6) In principle, control on nitrate reduction could be exerted either upon electron flow or upon the movement of nitrate to the active site of its reductase. The observations that inverted membrane vesicles and detergent-treated cells reduced nitrate and oxygen simultaneously at a range of total rates of electron flow are taken to support the latter mechanism. The failure of an additional reductant, durohydroquinone, to activate nitrate reduction under aerobic conditions in the presence of succinate is also evidence that it is not an inadequate supply of electrons that prevents the functioning of nitrate reductase under aerobic conditions. (7) In inverted membrane vesicles the division of electron flow between nitrate and oxygen is determined by a competition mechanism, in contrast to cells. This change in behaviour upon converting cells to vesicles cannot be attributed to loss of cytochrome c, and therefore of oxidase activity, from the vesicles because a similar change in behaviour was seen with vesicles prepared from cells of a cytochrome c-deficient mutant.  相似文献   

15.
Sulphur dioxide inhibits noncyclic photophosphorylation in isolated envelope-free chloroplasts. This inhibition was shown to be reversible and competitive with phosphate, with an inhibitor constant of Ki=0.8mM. The same inhibition characteristics were observed when phosphoglycerate (PGA)- or ribulose-1,5-bisphosphate (RuBP)-dependent oxygen evolution was examined in a reconstituted chloroplast system in the presence of SO 3 2- . Using an ATP-regenerating system (phosphocreatine-creatine kinase), it was demonstrated that the inhibition of PGA-dependent oxygen evolution is solely the result of inhibited photophosphorylation. It is concluded that at low SO2 and SO 3 2- concentrations the inhibition of photophosphorylation is responsible for the inhibition of photosynthetic oxygen evolution.Abbreviations Chl chlorophyll - PGA D-3-phosphoglyceric acid trisodium salt - Pi inorganic phosphate - RuBP D-ribulose-1,5-bisphosphoric acid tetrasodium salt  相似文献   

16.
1. The metabolism of glutamate was followed by measurements of phosphoenolpyruvate production, aspartate synthesis and ammonia release, whereas the transport of glutamate across the inner membrane of kidney cortex mitochondria was studied using an oxygen electrode and the swelling technique.2. When added separately, avenaciolide and aminooxyacetate only partially inhibited both State 3 and uncoupled respiration of the mitochondria, as studied in the presence of glutamate as substrate. In contrast, the addition of both inhibitors to the reaction medium resulted in an almost complete inhibition of glutamate oxidation.3. Swelling of kidney mitochondria in an isosmotic solution of ammonium glutamate was accelerated by uncoupler and inhibited by avenaciolide, while the swelling of mitochondria in potassium glutamate was stimulated by valinomycin and inhibited by uncoupler.4. When glutamate was used as the sole substrate, inhibition of aspartate formation by aminooxyacetate resulted in a stimulation of both ammonia release and phosphoenolpyruvate production. In contrast, with glutamate plus malate as substrate an elevation of the rate of glutamate deamination on the addition of aminooxyacetate was accompanied by an inhibition of phosphoenolpyruvate synthesis in both State 3 and uncoupled conditions.5. In the presence of valinomycin to induce K+-permeability a marked enhancement of glutamate deamination was accompanied by a significant inhibition of glutamate transamination.6. Based on the presented results it was concluded that in rabbit renal mitochondria utilizing glutamate as substrate the rates of ammonia production, phosphoenolpyruvate formation and aspartate synthesis vary in response to different metabolic conditions, in which both the glutamate—H+ symport and the glutamate—aspartate exchange systems are functioning to different extents.  相似文献   

17.
Conditions for activity of glutaminase in kidney mitochondria   总被引:7,自引:6,他引:1       下载免费PDF全文
1. Rat kidney mitochondria oxidize glutamate very slowly. Addition of glutamine stimulates this respiration two- to three-fold. Addition of glutamate also stimulates respiration in the presence of glutamine. 2. By measuring mitochondrial swelling in iso-osmotic solutions of glutamine or of ammonium glutamate it was shown that glutamine penetrates the mitochondrial membrane rapidly whereas ammonium glutamate penetrates very slowly. 3. Experiments in which reduction of NAD(P)+ was measured in preparations of intact and broken mitochondria indicated that glutamate dehydrogenase shows the phenomenon of `latency'. On the addition of glutamine rapid reduction of nicotinamide nucleotides in intact mitochondria was obtained. 4. During the action of glutaminase there is an accumulation of glutamate inside the mitochondria. 5. When the mitochondria were suspended in a medium containing glutamine, Pi and rotenone the rate of production of ammonia was stimulated by the addition of a substrate, e.g. succinate. Addition of an uncoupler or antimycin A abolished this stimulation. 6. The effects of succinate and uncoupler were especially pronounced in the presence of glutamate, which is an inhibitor of glutaminase activity by competition with Pi. 7. Determination of the enzyme activity in media at different pH values showed that the optimum pH for glutaminase activity in the preparation of broken mitochondria was 8, whereas for intact mitochondria it was dependent on the energy state. In the presence of succinate as an energy source it was pH 8.5, but in the presence of uncoupler or antimycin A it was 9. This displacement of the pH optimum to a higher value was especially pronounced in the presence of both glutamate and uncoupler. 8. If nigericin was present in potassium chloride medium the pH optimum for enzyme activity in intact non-respiring mitochondria was nearly the same as in the preparation of broken mitochondria; however, its presence in K+-free medium displaced the pH optimum for glutaminase activity to a very high value. 9. It is postulated that because of low permeability of the kidney mitochondrial membrane to glutamate the latter accumulates inside the mitochondria, and that this leads to the inhibition of the enzyme by competition with Pi and also by lowering the pH of the intramitochondrial space. With succinate as substrate for respiration there is an outward translocation of H+ ions, which together with accumulation of Pi increases glutaminase activity. Translocation of K+ ions inward increases the enzyme activity, perhaps by increasing the pH of the internal spaces and causing an accumulation of Pi. 10. The importance of the location of the enzyme in the mitochondria in relation to its biological function and conditions for activity is discussed.  相似文献   

18.
Washed cells of Desulfovibrio vulgaris strain Marburg oxidized H2, formate, lactate or pyruvate with sulfate, sulfite, trithionate, thiosulfate or oxygen as electron acceptor. CuCl2 as an inhibitor of periplasmic hydrogenase inhibited H2 and formate oxidation with sulfur compounds, and lactate oxidation in H2-grown, but not in lactate-grown cells. H2 oxidation was sensitive to O2 concentrations above 2% saturation. Carbon monoxide inhibited the oxidation of all substrates tested. Additions of micromolar H2 pulses to cells incubated in KCl in the presence of various sulfur compounds (reductant pulse method) resulted in a reversible acidification. This proton release was stimulated by thiocyanate, methyl triphenylphosphonium (MTPP+) or valinomycin plus EDTA, and completely inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP), CuCl2 or carbon monoxide. The extrapolated H+/H2 ratios obtained with sulfate, sulfite, trithionate or thiosulfate varied from 1.0 to 1.7. Micromolar additions of O2 to cells incubated in the presence of excess of electron donor (oxidant pulse method) caused proton translocation with extrapolated H+/H2 ratios of 3.9 with H2, 1.6 with lactate and 2.4 with pyruvate. Since a periplasmic hydrogenase can release at maximum 2 H+/H2, it is concluded that D. vulgaris is able to generate a proton gradient by vectorial proton translocation across the cytoplasmic membrane and by extracellular proton release by a periplasmic hydrogenase.  相似文献   

19.
Effects of oxygen on denitrification in marine sediments   总被引:1,自引:1,他引:0  
  相似文献   

20.
Luit Slooten  Adriaan Nuyten 《BBA》1981,638(2):313-326
(1) Light-activated ‘dark’ ATPase in Rhodospirillum rubrum chromatophores is inhibited by preincubation with ADP or ATP (in the absence of Mg2+). I50 values were 0.5 and 6 μM, respectively, after 20 s of preincubation. (2) In the absence of MgATP, the rate constant for dissociation of ADP or ATP from the inhibitory site was less than 0.2 min?1 in deenergized membranes. Illumination in the absence of MgATP caused an increase of over 60-fold in both rate constants. (3) In some experiments hydrolysis was performed in the presence of 10 μM Mg2+ and 0.2 mM MgATP. Under these conditions, the ADP or ATP inhibition was reversed within about 20 or about 80 s, respectively, after the onset of hydrolysis. This suggests that recovery from ADP or ATP inhibition (i.e., release of tightly bound ADP or ATP) in the dark is induced by MgATP binding to a second nucleotide-binding site on the enzyme. (4) Results obtained with variable concentrations of uncoupler suggest that in the absence of bound Mg2+ (see below), MgATP-induced release of tightly bound ADP or ATP does not require a transmembrane Δ\?gmH+. This, together with the inhibitor/substrate ratios prevalent during hydrolysis, suggests that these reactivation reactions involve MgATP binding to a high-affinity binding site (Kd < 2 μM). (5) At high concentrations of uncoupler, a time-dependent inhibition of hydrolysis occurred in the control chromatophores as well as in the nucleotide-pretreated chromatophores. This deactivation was dependent on Mg2+. In addition, MgATP-dependent reversal of ADP inhibition in the dark was inhibited by Mg2+ at concentrations above 20–30 μM. By contrast, MgATP-dependent reversal of ADP inhibition occurs within 3–4 s, despite the presence of high concentrations of Mg2+ if the chromatophores are illuminated during contact with the nucleotides. Uncoupler abolishes the effect of illumination. A reaction scheme incorporating these findings is proposed. (6) The implications of these findings for the mechanism of lightactivation of ATP hydrolysis (Slooten, L. and Nuyten, A., (1981) Biochim. Biophys. Acta 638, 305–312) are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号