首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ADPglucose pyrophosphorylase from potato (Solanum tuberosum L.) tubers has been purified by hydrophobic chromatography on 3 aminopropyl-sepharose (Seph-C3-NH2). The purified preparation showed two closely associated protein-staining bands that coincided with enzyme activity stains. Only one major protein staining band was observed in sodium dodecyl sulfate polyacrylamide gel electrophoresis. The subunit molecular weight was determined to be 50,000. The molecular weight of the native enzyme was determined to be 200,000. The enzyme appeared to be a tetramer consisting of subunits of the same molecular weight. The subunit molecular weight of the enzyme is compared with previously reported subunit molecular weights of ADPglucose pyrophosphorylases from spinach leaf, maize endosperm, and various bacteria. ADPglucose synthesis from ATP and glucose 1-P is almost completely dependent on the presence of 3-P-glycerate and is inhibited by inorganic phosphate. The kinetic constants for the substrates and Mg2+ are reported. The enzyme Vmax is stimulated about 1.5- to 3-fold by 3 millimolar DTT. The significance of the activation by 3-P-glycerate and inhibition by inorganic phosphate ADPglucose synthesis catalyzed by the potato tuber enzyme is discussed.  相似文献   

2.
Purification and some properties of ornithine decarboxylase from rat liver   总被引:1,自引:0,他引:1  
Ornithine decarboxylase (EC 4.1.1.17) was purified to near homogeniety from livers of thioacetamide- and dl-α-hydrazino-δ-aminovaleric acid-treated rats by using three types of affinity chromatography with pyridoxamine phosphate-Sepharose, pyridoxamine phosphate-dipropylenetriamine-Sepharose and heparin-Sepharose. This procedure gave a purification of about 3.5·105-fold with an 8% yield; the specific activity of the final enzyme preparation was 1,1·106 nmol CO2/h per mg protein. The purified enzyme gave a single band of protein which coincided with activity peak on polyacrylamide gel electrophoresis and also gave a single major band on SDS-polyacrylamide gel electrophoresis. A single precipitin line was formed between the purified enzyme and an antiserum raised against a partially purified enzyme, on Ouchterlony immunodiffusion. The molecular weight of the enzyme was estimated to be 105 000 by polyacrylamide gel electrophoresis at several different gel concentrations; the dissociated subunits had molecular weights of 50 000 on SDS-polyacrylmide gels. The isoelectric point of the enzyme was pH 4.1.  相似文献   

3.
Cyclic AMP phosphodiesterase from Saccharomyces cerevisiae was purified about 20,000-fold to homogeneity. The purified enzyme had a molecular weight of about 60,000 as estimated by gel filtration.The enzyme activity was optimal at pH 8.5–9.0 and was not stimulated by imidazole. Among cyclic 3′,5′-nucleotides, cyclic AMP was the most active substrate for the purified enzyme (Km = 0.25 mM), but it was inhibitory at concentrations above 4 mm. N6,O2′-dibutyryl cyclic AMP was not hydrolyzed at all.Unlike other cyclic AMP phosphodiesterases from various sources, the purified yeast enzyme did not require divalent metal ions for maximal activity and was rather inhibited in various degrees by added metal ions. The enzyme was not very sensitive to thiol inhibitors.The purified yeast enzyme was strongly inhibited by theophylline and slightly by caffeine. In contrast to the enzyme from S. carlsbergensis, the enzyme from S. cerevisiae was not inhibited at all by ATP or PPi.The enzyme activity was not released into the growth medium, and the intracellular distribution studies indicated that the enzyme was located mainly in the cytosol fraction.  相似文献   

4.
Wissing J  Heim S  Wagner KG 《Plant physiology》1989,90(4):1546-1551
Diacylglycerol kinase (ATP:1,2-diacylglycerol 3-phosphotransferase, EC 2.7.1.107) from suspension-cultured Catharanthus roseus cells was extracted from a membrane fraction with 0.6% Triton X-100 and 150 millimolar NaCl and was purified about 900-fold by DEAE-cellulose, blue Sepharose, gel permeation, and phenyl-Sepharose chromatography. The enzyme is obviously membrane bound as activity in the cytosol could not be detected. In the presence of detergents such as Triton X-100 (3-[3-cholamidopropyl]dimethylamino)-1-propanesulfonate (Chaps), or deoxycholate, a molecular weight of about 250,000 was determined by gel filtration. In glycerol density gradients, the enzyme sedimented slightly more slowly than bovine serum albumin, indicating a molecular weight of less than 68,000. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis enzyme activity could be assigned to a protein of 51,000 daltons. As found previously for bacterial and animal diacylglycerol kinases, the purified enzyme was completely devoid of activity without the addition of phospholipids or deoxycholate. Cardiolipin was found to be most effective, whereas higher amounts of detergent were inhibitory. The enzyme needs divalent cations for activity, with Mg2+ ions being the most effective. Apparent Km values for ATP and diacylglycerol were determined as 100 and 250 micromolar, respectively.  相似文献   

5.
Methylmalonyl coenzyme A (CoA) mutase has been purified to apparent homogeneity from human liver by a procedure involving column chromatography on DEAE-cellulose, Matrex-Gel Blue A, hydroxylapatite, and Sephadex G-150. The overall purification achieved is 500- to 600-fold, yield 3–5%. Electrophoresis of the native purified protein on nondenaturing polyacrylamide gels shows a single diffuse band coincident with the enzyme activity; dodecyl sulfate/polyacrylamide gels show a single protein band with an apparent molecular weight of 77,500. The native protein has a molecular weight of approximately 150,000 by Sephadex G-150 chromatography, suggesting that it is composed of two identical subunits. The activity of the purified enzyme is stimulated only slightly (10–20%) by the addition of its cofactor, adenosylcobalamin, indicating that the purified enzyme is largely saturated with coenzyme. The spectrum of the enzyme is consistent with the presence of about 1 mole of adenosylcobalamin per mole of subunit. The enzyme displays complex kinetics with respect to dl-methylmalonyl CoA; substrate inhibition by l-methylmalonyl CoA appears to occur. The enzyme activity is stimulated by polyvalent anions (PO43? > SO42? > Cl?); monovalent cations are without effect, but high concentrations of divalent cations are inhibitory. The enzyme activity is insensitive to N-ethylmaleimide, is rapidly destroyed at temperatures > 50 °C, and shows a broad pH optimum around pH 7.5.  相似文献   

6.
Precursor and mature forms of δ-aminolevulinate (ALA) synthase were purified to near homogeneity from chicken liver mitochondria and cytosol, respectively, and their properties were compared. The enzyme purified from mitochondria had apparently the same subunit molecular weight (65,000) as that of the native mitochondrial enzyme. The enzyme purified from the cytosol fraction, however, showed a subunit molecular weight of about 71,000, which was somewhat smaller than that estimated for the native cytosolic enzyme (73,000). The enzyme purified from liver cytosol seems to have been partially degraded by some endogenous protease during the purification, but may have the major part of the signal sequence. On sucrose density gradient centrifugation, the purified mitochondrial and cytosolic ALA synthases showed an apparent molecular weight of about 140,000, indicating that both enzymes exist in a dimeric form. The ALA synthase synthesized in vitro was also shown to exist as a dimer. Apparently the extra-sequence does not interfere with the formation of dimeric form of the enzyme. The purified cytosolic ALA synthase had a specific activity comparable to that of the purified mitochondrial enzyme. Kinetic properties of the two enzymes, such as the pH optimum and the apparent Km values for glycine and succinyl-CoA, were quite similar. The extra-sequence does not appear to affect the catalytic properties of ALA synthase. The isoelectric point of the cytosolic ALA synthase was 7.5, whereas that of the mitochondrial enzyme was 7.1. This suggests that the extra-sequence in the cytosolic enzyme may be relatively rich in basic amino acids.  相似文献   

7.
The glyoxylate cycle enzyme, isocitrate lyase (EC 4.1.3.1) was purified from cotyledons of Citrullus vulgaris (watermelon). The final preparation, which had been 97-fold purified with a specific activity of 16.1 units/mg protein in a yield of 36%, was homogeneous by gel- and immunoelectrophoretic criteria. The tetrameric enzyme had: a molecular weight of 277 000, a sedimentation coefficient of 12.4 s, and a Km for Ds-isocitrate equal to 0.25 mM. Isocitrate lyase from this source is not a glycoprotein as shown by total carbohydrate content after precipitation by trichloroacetic acid of the purified enzyme. Reduction of the enzyme with thiols increased activity and maximal activity was obtained with at least 5 mM dithiothreitol. EDTA partially substituted for thiol in freshly isolated enzyme. Watermelon isocitrate lyase was also protected against thermal denaturation at 60° for at least 1 hr by 5 mM Mg2+ plus 5 mM oxalate. Oxalate was a competitive inhibitor with respect to isocitrate (Ki: 1.5 μM, pH 7.5, 30°).  相似文献   

8.
An enkaphalin-degrading aminopeptidase using Leu-enkephalin as a substrate was purified about 4100-fold from guinea pig serum. The purified preparation was apparently homogenous, showing on polyacrylamide gel electrophoresis. The molecular weight of the enzyme was approx. 92 000. The amino-peptidase had a pH optimum of 7.0 with Km values of 0.12 mM and 0.18 mM for Leu- and Met-enkephalin, respectively. The enzyme hydrolyzed neutral, basic and aromatic amino acid β-naphthylamides, but did not the acidic one. The enzyme was inhibited strongly by metal-chelating agents, bestatin and amastatin and weakly by puromycin. Among several biologically active peptides, angiotensin III and substance P strongly inhibited the enzyme.  相似文献   

9.
An NADP-dependent 7β-hydroxysteroid dehydrogenase was purified 11.5-fold over the activity in crude cell extracts prepared from Peptostreptococcus productus strain b-52, by using Sephadex G-200 and DEAE-cellulose column chromatography. 7β-Dehydrogenation was the sole transformation of bile acids catalyzed by the partially purified enzyme. The enzyme preparation (spec. act. 2.781 IU per mg protein) had an optimum pH of 9.8. Lineweaver-Burk plots showed a Michaelis constant (Km) value of 0.05 mM for 3α,7β-dihydroxy-5β-cholanic acid whereas higher values were obtained with 3α,7β-dihydroxy-5β-cholanoyl glycine (0.20 mM), and 3α,7β-dihydroxy-5β-cholanoyl taurine (0.26 mM). NADP but not NAD could function as an electron acceptor, and has a Km value of 0.30 mM. A molecular weight of 64 000 was determined by SDS-polyacrylamide gel electrophoresis. The addition of 0.4 mM of either bile acid to the growth medium suppressed not only cell growth, but also the enzyme yield.  相似文献   

10.
Guanidoacetate methyltransferase (EC 2.1.1.2) has been purified about 800-fold from rat liver. The purified preparation shows a single protein band on polyacrylamide gel electrophoresis in the presence and absence of sodium dodecyl sulfate. The molecular weight of the enzyme is estimated to be 25,000 and 26,000 by Sephadex gel molecular-exclusion chromatography and by electrophoresis in polyacrylamide gradient gel, respectively. The sodium dodecyl sulfate-denatured enzyme also has a molecular weight of 26,000; thus, the enzyme is a monomeric protein. Guanidoacetate methyltransferase as isolated is catalytically inactive, but is readily reactivated by incubation with a thiol. The reactivated enzyme, which contains 3 mol of sulfhydryl groups/mol of enzyme, is again inactivated by oxidized glutathione. This inactivation is accompanied by the disappearance of two sulfhydryl residues. The relationship between the loss of enzyme activity and the number of residues disappeared indicates that the integrity of these sulfhydryl residues is critical for activity. The oxidized enzyme fails to bind the substrate S-adenosylmethionine as evidenced by the equilibrium dialysis study. Alkylation of the nonoxidizable sulfhydryl by N-ethylmaleimide shows that this residue is also essential for activity. UV absorption, fluorescence, and CD spectra show no difference between the reduced and oxidized enzymes, but the former is more susceptible to proteolytic attack by trypsin. The enzyme has an isoelectric pH of 5.3, and is most active at pH 9.0. From the CD spectrum, an α helix content of 15% is calculated. The Km values for guanidoacetate and S-adenosylmethionine are 97.5 and 6.73 μm, respectively, at pH 8.0 and 37 °C.  相似文献   

11.
S-adenosylmethionine decarboxylase of corn seedlings   总被引:2,自引:2,他引:0       下载免费PDF全文
Suzuki Y  Hirasawa E 《Plant physiology》1980,66(6):1091-1094
S-Adenosylmethionine decarboxylase (EC 4.1.1.50) has been purified 500-fold in 30% yield from the extract of etiolated corn seedlings (cv. Golden Crossbantam Bell). This preparation had a molecular weight of approximately 25,000. The Km value was 5 micromolar for S-adenosylmethionine. Methylglyoxal bis(guanylhydrazone), hydroxylamine, and sulfhydryl reagents (such as p-hydroxymercuriphenylsulfonate and N-ethylmaleimide) were effective inhibitors of this enzyme. Germination of corn seed was accompanied by a rapid increase in enzyme activity and maximum activity occurred in 5-day-old seedlings.  相似文献   

12.
An NAD(P)H dehydrogenase stimulated by quinone (P Pupillo, V Valenti, L de Luca, R Hertel 1986 Plant Physiol 80: 384-389) was solubilized from washed microsomes of zucchini squash hypocotyls (Cucurbita pepo L.) by use of 1% Triton X-100. The solubilized enzyme remained in solution in aqueous buffer and could be purified by a combination of Sepharose 6B chromatography and Blue Ultrogel chromatography. Of the three peaks of activity eluted from the latter column with a salt gradient, peak 3 had 50% or more of the activity and was almost pure enzyme. The preparation examined in SDS-gel electrophoresis consisted of two types of subunits, a (molecular weight 39,500) and b (37,000) in equal amounts. Peak 2 was less pure but had a similar polypeptide pattern. The active protein is proposed to be a heterotetramer (a2b2) having a molecular weight of about 150,000, as found by gel exclusion chromatography. The purified enzyme can reduce several quinones, DCPIP, cytochrome c, and with best efficiency ferricyanide, and is therefore a diaphorase. The kinetics for the substrates are negatively cooperative with Hill coefficients nH = 0.55 ± 0.05 for NADPH and 0.22 ± 0.04 for duroquinone. A weak inhibition by p-hydroxymercuric benzoate and mersalyl (stronger with microsomal preparations) suggests the presence of essential sulfhydryl group(s). The possibility is discussed that the dehydrogenase is an NAD(P)H-P450 reductase or similar flavoprotein, and that it is responsible for the NADPH-cytochrome c reductase activity of plant microsomes.  相似文献   

13.
Summary A polygalacturonase from culture filtrates of a strain ofRhizopus stolonifer was purified about 80 fold by ethanol precipitation, followed by ion exchange chromatography (CM-Sepharose 6B) and gel filtration (Sephadex G-100). The purified preparation was homogeneous when examined by PAGE. The enzyme is an endopolygalacturonase with an optimum catalytic activity at pH 5.0 and 45°C, and a molecular weight of 57,000±500 daltons. The activity was stimulated by Fe+++, Mg++, Co++, and inhibited by Mn++ and Zn++. The enzyme was stable in the pH range of 3.0 to 5.0. The purified enzyme was specific for nonmethoxylate polygalacturonic acid, with Km and Vmax values respectively of 0.19 mg/ml and 1.3 mol/g/min. In addition, this enzymatic preparation degraded pectic substances in organge peel.  相似文献   

14.
(i) Three forms of cyclic AMP phosphodiesterases (3′,5′-cyclic AMP 5′-nucleotidohydrolase, EC 3.1.4.17), F1, F2-I and F2-II, were partially purified from the soluble fraction of rat pancreas in the presence of excess protease inhibitors by DEAE-cellulose column chromatography and gel filtration and were characterized. (ii) F2-II, which was purified 31-fold, exhibited a single peak of activity on both polyacrylamide-gel electrophoresis and isoelectric focusing. The enzyme had a molecular weight of about 70,000, an isoelectric point of 3.9, and an optimal pH around 8.5 and required Mg2+ or Mn2+ but not Ca2+ for activity. The Km values of this enzyme for cyclic AMP and cyclic GMP were 1 and 50 μm, respectively, while V values of this enzyme for cyclic AMP and cyclic GMP were 36.1 and 12.6 nmol min?1 (mg of protein)?1, respectively. Cyclic GMP competitively inhibited hydrolysis of cyclic AMP by this enzyme. Ro20-1724 [4-(3-butoxy-4-methoxybenzyl)-2-imidazolidinone] also inhibited hydrolysis of cyclic AMP competitively, with a Ki value of 1 μm. (iii) Fraction F1, which was purified 10-fold, had a molecular weight of more than 500,000 and required Mg2+ for activity. Its Km values for cyclic AMP were 1 and 5 μm. Its Km value for cyclic GMP was 45 μm. Fraction F2-I, which was purified 26-fold, had a molecular weight of about 70,000. The ratio of the initial velocity of hydrolysis of cyclic GMP to that of cyclic AMP was 0.5 at a substrate concentration of 1 μm.  相似文献   

15.
Two major endoproteinases were purified from senescing primary barley leaves. The major enzyme (EP1) appeared to be a thiol proteinase and accounted for about 85% of the total proteolytic activity measured in vitro. This proteinase was purified 5,800-fold and had a molecular weight of 28,300. It was highly unstable in the absence of dithiothreitol or at a pH greater than 7.5. Leupeptin, at a concentration of 10 micromolar, inhibited this enzyme 100%. A second proteinase (EP2) was purified approximately 50-fold and had a molecular weight of 67,000. It was inhibited 20% by 1 millimolar dithiothreitol and 50% by 1 millimolar phenylmethyl sulfonylfluoride. EP2 contributed about 15% of the total proteolytic activity measured in vitro. Both proteinases hydrolyzed a variety of artificial and protein substrates, and both had pH optima of 5.5 to 5.7 when either azocasein or [14C]ribulose-1,5-bisphosphate carboxylase ([14C]RuBPCase) was the substrate. The thiol endoproteinase hydrolyzed azocasein linearly but hydrolyzed [14C]RuBPCase biphasically. A third endoproteinase (EP3), not detected by standard proteolytic assays, was observed when [14C]RuBPCase was the substrate.  相似文献   

16.
Creatine amidinohydrolase (EC 3.5.3.3, creatinase) of Pseudomonas putida var. naraensis C-83 was purified by column chromatography on sarcosine-hexamethylenediamine-Sepharose and Sephadex G-200 and then crystallized in the presence of ammonium sulfate. The purified preparation appeared homogeneous on disc gel electrophoresis and ultracentrifugal analysis. It was most active at pH 8 and showed a Km value of 1.33 mm for creatine. Estimation of the molecular weight by the meniscus depletion method yielded a value of 94,000. A value of 47,000 was obtained, however, by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, suggesting that the enzyme is composed of two subunits. Inhibition experiments suggested that a sulfhydryl group is closely related to the creatinase activity.  相似文献   

17.
Dipeptidyl peptidase IV (EC 3.4.14.—) from Streptococcus mitis ATCC 9811 was purified to a specific activity of 56.2 units/mg protein by a series of column chromatographic techniques. The purified enzyme was apparently homogeneous as judged by disc gel electrophoresis. Gel filtration on a calibrated column indicated an apparent molecular weight of 120,000 for the native enzyme. Gel electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate in a constant acrylamide concentration resulted in the appearance of a single component for which a molecular weight of 53,000 was calculated. The purified enzyme has an optimum pH between 6.0 and 8.7 and an isoelectric point of 4.0. The Km value toward glycylprolyl-p-nitroanilide is about 6.0 × 10?5m. Substrate specificity studies indicated that the purified enzyme hydrolyzes specifically N-terminal X-proline from X-Pro-p-nitroanilides. Inhibition of this enzyme was achieved with Hg2+, Pb2+, Zn2+, EDTA, and diisopropyl phosphorofluoridate, but not with N-ethyl-maleimide and sulfhydryl inhibitors.  相似文献   

18.
An investigation of the subunit structure of glutamyl-tRNA synthetase (EC 6.1.1.17) from Escherichia coli indicates that this enzyme is a monomer. The enzyme purified to apparent homogeneity is a single polypeptide chain with a molecular weight of 62,000 ± 3,000 and KGlum ? 50 μM in the aminoacylation reaction. Analytical gel electrophoretic procedures were used to determine the molecular weight of species exhibiting glutamyl-tRNA synthetase activity in freshly prepared extracts of several strains of E. coli, which had been grown under various nutritional conditions and harvested at different stages of growth. In all cases, glutamyl-tRNA synthetase activity was associated with a protein having about the same molecular weight and KGlum as the purified enzyme. Thus, no evidence of an oligomeric form of glutamyl-tRNA synthetase with a greater affinity for l-glutamate was obtained, in contrast to a previous report of J. Lapointe and D. Söll (J. Biol. Chem.247, 4966–4974, 1972).  相似文献   

19.
Glyoxalase I was purified from Hansenula mrakii IFO 0895 which was resistant to 25 mM methylglyoxal. The molecular weight of the purified enzyme was calculated to be 38,000 by both gel-filtration of Sephadex G-150 and SDS-PAGE. The enzyme was almost specific to methylglyoxal (Km = 0.91 mM). The activity of the enzyme was not inhibited by metal ion chelators such as EDTA, which is a potent inhibitor for glyoxalase Is from other sources.  相似文献   

20.
l-Tyrosine decarboxylase (EC 4.1.1.25) activity was induced in cell suspension cultures of Thalictrum rugosum Ait. and Eschscholtzia californica Cham. with a yeast polysaccharide preparation (elicitor). The highest l-tyrosine decarboxylase activity in extracts from 7-day-old cell cultures of E. californica was observed 5 hours after addition of 30 to 40 micrograms elicitor per gram cell fresh weight. The enzyme extracted from cells of E. californica was purified 1540-fold to a specific activity of 2.6 micromoles CO2 produced per minute per milligram protein at pH 8.4 and 30°C. Purified enzyme from T. rugosum showed a specific activity of 0.18 micromoles per minute per milligram protein. The purification procedure involved ammonium sulfate fractionation, anion-exchange fast protein liquid chromatography, ultrafiltration, and hydrophobic interaction chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the enzyme from the two plant cell cultures had subunits of identical molecular weight (56,300 ± 300 daltons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号