首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vitro iodination of plant ribonucleic acids   总被引:1,自引:0,他引:1       下载免费PDF全文
The optimum conditions for in vitro iodination of RNAs have been established which yield specific radioactivities ranging from 10 × 104 to 10 × 106 cpm/μg. A nomogram has been constructed by correlating specific radioactivities of RNA with concentration of KI, RNA, and 125I. This nomogram can be used to determine the conditions for the desired specific radioactivities for any unknown RNA. The in vitro iodinated RNA has been compared with in vivo labeled RNA for hybridization characteristics. Competition hybridization between 125I-labeled chloroplast-rRNA and unlabeled pea (Pisum sativum) chloroplast-rRNA was identical to that found using [32P]chloroplast-rRNA. Thermal stability of DNA-125I-rRNA hybrids was similar to the thermal stability of DNA-[32P]rRNA hybrids. The iodinated RNA was not found to have undergone any changes in its hydrogen-bonding properties.  相似文献   

2.
A satisfactory method for the determination of the specific activity of highly labeled [γ-32P]ATP has not been reported previously. Yields of high specific activity 32P labeled material usually are too small to be detected by ultraviolet spectrophotometry or phosphate analysis. Recent reports describing the assay of ATP by enzyme catalyzed phosphate transfer to 3H labeled glucose (1) or galactose (2) are not suitable for use with highly labeled 32P material since the crossover into the 3H channel will greatly exceed the radioactivity of the 3H labeled phosphate acceptor. Recently Schendel and Wells reported the preparation of essentially carrier free [γ-32P]ATP. They indicated, however, that the specific activity of the labeled product could not be determined by conventional methods (3). We have developed and now routinely use an expedient method for the determination of the specific activity of picomole quantities of highly labeled [γ-32P]ATP. This procedure measures the phosphate transfer from [γ-32P]ATP to oligothymidylic acid [dT(pT)10] catalyzed by bacteriophage T4 induced polynucleotide kinase. The specific activity is determined by measuring the radioactivity present in d-32pT(pT)10, and can be verified by an isotope dilution method employing the same assay. Specific activities as high as 240 Ci/mmole have been determined.  相似文献   

3.
A new method for in vitro RNA radioiodination with the aid of chloramine T has been developed. The 125I-labeled RNA preparations obtained by this method were uniformly labeled, nondegraded, and of high specific activity. The method is simple and the results are reproduced easily.  相似文献   

4.
RNA and DNA oligonucleotides radiolabeled with 32P or 33P often require gel electrophoresis to remove undesired side and/or degradation products. Common ways to visualize these molecules after electrophoresis are by ultraviolet (UV) shadowing, which necessarily reduces the specific activity of the oligonucleotide, and by autoradiography using film, which is cumbersome and increases the cost of generating the radiolabeled molecule. A more cost-effective method is to physically inject the gel with a “Dip-N-Dot” solution of dye and radionuclide after electrophoresis but prior to phosphorimaging. The gel can be overlaid on its computer-generated image, allowing the labeled molecules to be visualized quickly.  相似文献   

5.
Incorporation and retention of adenine-8-C14 and of P32O4 by nucleolar, chromosomal, and cytoplasmic RNA have been studied. Radioisotope concentrations were determined from autoradiographs, by grain counting, and RNA concentrations by microphotometry after basic staining. The relation between rates of RNA accumulation and rates of adenine incorporation was used to determine if synthesis was used to replace RNA which was lost from a fraction, and to obtain estimates of turnover rate. Nucleolar incorporation patterns indicate its incorporation is independent of growth, and there is complete turnover of the fraction in an hour or less. Nucleolar turnover is attributed to degradation of RNA within the nucleolus rather than to movement of intact molecules from the nucleolus. Chromosomal RNA reaches a much lower maximum specific activity than nucleolar, and a slightly higher maximum than cytoplasmic RNA. It showed faster incorporation than cytoplasmic RNA while accumulating RNA at the same rate as the cytoplasm, suggesting chromosomal RNA turnover. No evidence of cytoplasmic RNA turnover was found: rate of incorporation and rate of growth were correlated, and retention studies detected no decrease in amount of RNA-C14, RNA-P32, or RNA. Different ultimate precursors are indicated for nucleolar and non-nucleolar RNA by the observation that the nucleolar precursor is labeled before the precursor of non-nucleolar RNA.  相似文献   

6.
A short procedure is described to study the exchange of phospholipids between rat liver organelles in vitro. 32P-Labeled microsomes are bound to Ca2+, sedimented at 30g, and incubated with unlabeled post-700g-supernatant of liver homogenate. After recovering the originally labeled microsomes at 700g, mitochondria and microsomes of the unlabeled fraction are isolated and specific activity of 32P measured. Net transfer of phospholipids is comparable to that found after incubation of separate fractions.  相似文献   

7.
We describe a method for studying the phosphorylation of the S6 ribosomal protein in intact cells. The procedure has the advantage of using few cells, little 32Pi, and by using an air-driven centrifuge, many samples can be processed in a short time. Metabolically labeling the ribosomes with [3H]uridine before the experiment provides a measure of ribosome yield. The amount of 32Pi incorporated into proteins other than S6, which cosediment with the ribosomes, increases by the same amount as the specific activity of [32P]ATP increases, when the cells are stimulated by prostaglandin F, insulin, epidermal, or fibroblast growth factor, or serum; whereas the 32Pi incorporated into S6 increases by a factor greater than the increase in the specific activity of [32P]ATP. We show that the phosphate on S6 turns over at least as rapidly as does the phosphate on ATP. This last observation allows us to use a procedure, which we have outlined for determining the absolute amount of phosphate added to S6 due to a stimulus.  相似文献   

8.
A strain of Escherichia coli lacking RNAase III and containing thermolabile RNAase E and RNAase P was labeled with 32Pi at a non-permissive temperature. RNA molecules were separated by two-dimensional polyacrylamide gel electrophoresis. Most of the small RNA species were isolated and analyzed for the presence of 5′ nucleoside triphosphates. In 16 of the 22 species analyzed a significant number of the individual molecules contained 5′ di or triphosphates. We conclude, therefore, that very little endonucleolytic RNA processing occurs in the absence of the three RNA processing enzymes RNAase III, RNAase E and RNAase P.  相似文献   

9.
The specific binding in vitro of the Qβ RNA polymerase to Qβ RNA has been detected by the formation of an enzyme-Qβ RNA complex that did not exchange bound RNA molecules and was not dissociated by 0.8 m NaCl. Formation of this nondissociating complex required GTP and two host protein factors, but not ATP, CTP, UTP, or Mg2+ ions. GDP, GMP, dGTP, ITP, and β,γ-methylene GTP did not replace GTP in the reaction. Complex formation at 0 °C was not observed, and the rates of the reaction at 30 °C and 25 °C were 41% and 23%, respectively, of the rate at 37 °C. The reaction occurred with intact Qβ RNA and with polycytidylic acid template but not with bacterial or other bacteriophage RNA. With limiting amounts of enzyme, the amount of Qβ RNA bound in the nondissociating complex was the same as the amount of [γ-32P]GTP incorporated into nascent RNA chains, indicating a close relationship between complex formation and the initiation of RNA synthesis. The two reactions appear to be separate, however, because in the absence of Mg2+ ions, when complex formation occurred readily, no RNA synthesis could be detected either by incorporation of labeled substrate into acid-insoluble material or by formation of short RNA chains still attached to the enzyme. In the presence of factor protein and GTP, a maximum of one active enzyme molecule was bound per molecule of Qβ RNA template, as determined by a liquid polymer phase-separation procedure. These results suggest that formation of the nondissociating complex measures recognition by the Qβ RNA polymerase of a single Qβ RNA site utilized for the initiation of synthesis.  相似文献   

10.
Pyridoxal [32P] phosphate was prepared using [γ-32P]ATP, pyridoxal, and pyridoxine kinase purified from Escherichia coli B. The pyridoxal [32P] phosphate obtained had a specific activity of at least 1 Ci/mmol. This reagent was used to label intact influenza virus, red blood cells, and both normal and transformed chick embryo fibroblasts. The cell or virus to be labeled was incubated with pyridoxal [32P] phosphate. The Schiff base formed between pyridoxal [32P] phosphate and protein amino groups was reduced with NaBH4. The distribution of pyridoxal [32P] phosphate in cell membrane or virus envelope proteins was visualized by autoradiography of the proteins separated by sodium dodecyl sulfate polyacrylamide gel electrophoresis.The labeling of the proteins of both influenza and chick cells appeared to be limited exclusively to those on the external surface of the virus or plasma membrane. With intact red blood cells the major portion of the probe was bound by external proteins, but a small amount of label was found associated with the internal proteins spectrin and hemoglobin.  相似文献   

11.
12.
13.
Improvements of existing in vitro procedures for labeling RNA radioactively, and modifications of the two-dimensional polyacrylamide gel electrophoresis system for making RNA fingerprints are described. These improvements are (a) inactivation of phosphatase with nitric acid at pH 2.0 eliminated the phenol-chloroform extraction step during 5′-end labeling with polynucleotide kinase and [γ-32P]ATP; (b) ZnSO4 inactivation of RNase T1 results in a highly efficient procedure for 3′-end labeling with T4 ligase and [5′-32P]pCp; and (c) a rapid 4-min procedure for variable quantity range of 125I and RNA results in a qualitative and quantitative sample for high-molecular weight RNA fingerprinting. Thus, these in vitro procedures become rapid and reproducible when combined with two-dimensional gel electrophoresis which eliminates simultaneously labeled impurities. Each labeling procedure is compared, using tobacco mosaic virus, Brome mosaic virus, and polio RNA. A series of Ap-rich oligonucleotides was discovered in the inner genome of Brome mosaic Virus RNA-3.  相似文献   

14.
The kinetics of host ribonucleic acid (RNA) degradation and its resynthesis into Bdellovibrio-specific polyribonucleotides has been studied. The kinetics of RNA turnover was followed during a one-step synchronous growth cycle of Bdellovibrio growing within 32PO4-labeled Escherichia coli host cells. The species of labeled RNA present at any given time was ascertained through the specificity of the deoxyribonucleic acid (DNA)/RNA hybridization technique. At nearsaturating levels of RNA and at zero time, 7% of the host DNA sequences and only 0.04% of the Bdellovibrio DNA became hybridized with 32P-labeled host cell RNA (greater than 99% host specific). At the end of the burst, 98% of the labeled RNA sequences were specific for Bdellovibrio DNA. About 74% of the initial labeled host cell RNA became turned over into Bdellovibrio-specific sequences. We provide data indicating that host cell ribosomal RNA is assimilated by Bdellovibrio. Degradation of host cell RNA occurs in a gradual fashion over most of the Bdellovibrio developmental growth cycle. This application of the DNA/RNA hybridization technique and its general concept should be of value in elucidating the kinetics of nucleic acid turnover in other types of host-parasite systems.  相似文献   

15.
Short fragments of DNA (5 S) isolated by denaturation from polyoma replicative intermediates pulse-labeled in vitro were shown to have RNA covalently attached by three criteria: (1) such fragments were slightly denser than bulk viral DNA. (2) They could be labeled directly with α-32P-labeled ribotriphosphates. (3) Alkaline hydrolysis of fragments labeled with α-32P-labeled deoxynucleoside triphosphates showed 32P transfer to 3′ ribonucleoside monophosphates. Except for a preference of transfer from dC, the link showed little sequence specificity. The data are compatible with the notion that all short fragments in replicating viral DNA are initiated by an RNA primer. This RNA is maximally 30 bases long and is rather short-lived.  相似文献   

16.
17.
Although about 70% of rat thoracic duct small lymphocytes labeled readily in vitro with 3H-uridine, only 3–38% of peritoneal exudate lymphocytes labeled. Since exudate cells are mostly B lymphocytes, 3H-uridine in concentrations used were presumed to label the T lymphocyte. Percentages of small lymphocytes that labeled in cell suspensions from various tissues were consistent with other estimates of T cells in those sources: 74.7% in thoracic duct, 70.2% in blood and 65.6% in spleen. When lymphopenia was induced by polyethylene 32P strips applied to the spleen, a procedure that depletes mostly small recirculating lymphocytes, both labeled (T) and nonlabeled (B) cells were depleted in similar time sequence. Both cell types recovered at a similar rate after the spleen strips were removed. Induction of peritoneal inflammation by PPD in tubercle-bacilli immune rats caused an enhanced lymphocytic exudation but no increase in percentage of labeled (T) lymphocytes.The defect in 3H-uridine incorporation that characterizes the rat B lymphocyte seemed to be relatively specific for that RNA precurser; 3H-cytidine labeled the majority of lymphocytes in peritoneal exudate.  相似文献   

18.
We have purified a set of small DNA molecules from various strains of exponentially growing Escherichia coli, including E. coli polAex2. This material included very short molecules (2 S), the nascent DNA (“Okazaki fragments”) and some longer molecules. Most of the [3H]thymidine incorporated during a brief period of labeling was found in the 5 S to 15 S Okazaki fragments. There was a large number of the 2 S molecules in the cell. The properties of the 5′ ends of these molecules were investigated using three procedures. (1) The DNA preparation, pulse-labeled with [3H]thymidine, was reacted with polynucleotide kinase and ATP to insure that all 5′ ends were phosphorylated. After subjection of the DNA to alkaline hydrolysis, the proportion of incorporated 3H pulse-label that became susceptible to digestion by spleen exonuclease was determined. In different experiments there was an increment of up to 20% in the amount of pulse-labeled E. coli polAex2 DNA that could be hydrolyzed by the exonuclease after treatment with alkali. (2) As in the preceding protocol, phosphorylation of the 5′ ends was assured by reaction with kinase and ATP; the preparation was then treated with alkali and the number of 5′-OH ends generated that could be labeled with 32P using [γ-32P]ATP and kinase in a second reaction was determined. The data indicated that 3 to 30% of the molecules could be labeled after alkali digestion, but not before. (3) The DNA molecules were reacted with kinase and [γ-32P]ATP after having been exposed previously to alkaline phosphatase. The end-labeled molecules were then subjected to an alkaline hydrolysis and the resulting hydrolysate chromatographed on a polyethyleneimine-cellulose thinlayer plate. Alkali treatment was found to release 2′(3′),5′-ribonucleoside diphosphates from 1 to 30% of the molecules; pAp and pGp predominated. Control experiments showed that these ribonucleotides were covalently linked to the 5′ ends of polydeoxyribonucleotides. Curiously, the smaller the DNA molecule the less likely it was to possess a 5′-terminal ribonucleotide. Very few apparent RNA/DNA molecules were observed in the non-polAex2 strains tested. These observations are in part in agreement with previous reports, and we infer that at least some of the nascent E. coli polAex2 DNA molecules are initiated in vivo with a ribonucleotide primer. The relatively smaller proportion of molecules with apparent 5′-terminal ribonucleotides among the smaller DNA molecules and in strains other than E. coli polAex2 suggests to us that there may exist a mechanism for initiating DNA molecules that does not require an RNA primer.  相似文献   

19.
Phosphorylation of the 64 kilodalton stromal phosphoprotein by incubation of pea (Pisum sativum) chloroplast extracts with [γ-32P]ATP decreased in the presence of Glc-6-P and Glc-1,6-P2, but was stimulated by glucose. Two-dimensional gel electrophoresis following incubation of intact chloroplasts and stromal extracts with [γ-32P]ATP, or incubation of stromal extracts and partially purified phosphoglucomutase (EC 2.7.5.1) with [32P]Glc-1-P showed that the identical 64 kilodalton polypeptide was labeled. A 62 kilodalton polypeptide was phosphorylated by incubation of tobacco (Nicotiana sylvestris) stromal extracts with either [γ-32P]ATP or [32P]Glc-1-P. In contrast, an analogous polypeptide was not phosphorylated in extracts from a tobacco mutant deficient in plastid phosphoglucomutase activity. The results indicate that the 64 (or 62) kilodalton chloroplast stromal phosphoprotein is phosphoglucomutase.  相似文献   

20.
Characterization of the structure and dynamics of nucleic acids by NMR benefits significantly from position specifically labeled nucleotides. Here an E. coli strain deficient in the transketolase gene (tktA) and grown on glucose that is labeled at different carbon sites is shown to facilitate cost-effective and large scale production of useful nucleotides. These nucleotides are site specifically labeled in C1′ and C5′ with minimal scrambling within the ribose ring. To demonstrate the utility of this labeling approach, the new site-specific labeled and the uniformly labeled nucleotides were used to synthesize a 36-nt RNA containing the catalytically essential domain 5 (D5) of the brown algae group II intron self-splicing ribozyme. The D5 RNA was used in binding and relaxation studies probed by NMR spectroscopy. Key nucleotides in the D5 RNA that are implicated in binding Mg2+ ions are well resolved. As a result, spectra obtained using selectively labeled nucleotides have higher signal-to-noise ratio compared to those obtained using uniformly labeled nucleotides. Thus, compared to the uniformly 13C/15N-labeled nucleotides, these specifically labeled nucleotides eliminate the extensive 13C–13C coupling within the nitrogenous base and ribose ring, give rise to less crowded and more resolved NMR spectra, and accurate relaxation rates without the need for constant-time or band-selective decoupled NMR experiments. These position selective labeled nucleotides should, therefore, find wide use in NMR analysis of biologically interesting RNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号