首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruce Diner 《BBA》1974,368(3):371-385
1. Spinach chloroplasts, but not whole Chlorella cells, show an acceleration of the Photosystem II turnover time when excited by non-saturating flashes (exciting 25 % of centers) or when excited by saturating flashes for 85–95 % inhibition by 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Following dark adaptation, the turnover is accelerated after a non-saturating flash, preceded by none or several saturating flashes, and primarily after a first saturating flash for 3-(3,4-dichlorophenyl)-1,1-dimethylurea inhibition. A rapid phase (t12 approx. 0.75 s) is observed for the deactivation of State S2 in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea.2. These accelerated relaxations suggest that centers of Photosystem II are interconnected at the level of the primary electron transfer and compete for primary oxidizing equivalents in a saturating flash. The model in best agreement with the experimental data consists of a paired interconnection of centers.3. Under the conditions mentioned above, an accelerated turnover may be observed following a flash for centers in S0, S1 or S2 prior to the flash. This acceleration is interpreted in terms of a shift of the rate-limiting steps of Photosystem II turnover from the acceptor to the donor side.  相似文献   

2.
《BBA》1986,850(2):380-389
The effects of removal and reconstitution of the three extrinsic proteins on the flash O2 yield were investigated and the following results were obtained. (1) Removal in darkness of the 24 and 16 kDa proteins affected neither the oscillation pattern nor the signal amplitude of the flash O2 yield. However, the signal amplitude was reduced with a factor of 2 in the presence of EDTA and was restored by excess Ca2+. The EDTA treatment did not change the oscillation pattern of the flash O2 yield, but considerably damped the oscillation pattern of thermoluminescence B band. These results suggest a heterogeneity among the centers in binding affinity for Ca2+, and that Ca2+ removal induces an all-or-none type inactivation of O2 evolution but not in the thermoluminescence processes, indicative of an inhibition of the S-state turnover at a specific S-state. (2) Removal in darkness of the 33, 24 and 16 kDa proteins abolished the flash O2 yield, but the inhibited yield was appreciably restored either by reconstitution with the 33 kDa protein or by inclusion of 200 mM Cl in the reaction mixture. The flash O2 yield reconstituted by the 33 kDa protein exhibited a rather normal oscillation pattern accompanied by a slightly increased damping, which could be simulated by assuming a high miss factor (30%) for S3 → S0 transition. The Cl-restored flash O2 yield exhibited a strongly damped oscillation pattern with obscured maxima at the 4th and 8th flashes, which was simulated by assuming a much higher miss factor (70%) for S3 → S0 transition. It was indicated that the Cl-restored O2 evolution considerably differs from the 33 kDa protein-reconstituted O2 evolution with respect to the mechanism of S-state turnover.  相似文献   

3.
Photosystem II (PSII) catalyzes the oxidation of water to O2 at the manganese-containing, oxygen-evolving complex (OEC). Photoexcitation of PSII results in the oxidation of the OEC; four sequential oxidation reactions are required for the generation and release of molecular oxygen. Therefore, with flash illumination, the OEC cycles among five S n states. Chloride depletion inhibits O2 evolution. However, the binding site of chloride in the OEC is not known, and the role of chloride in oxygen evolution has not as yet been elucidated. We have employed reaction-induced FT-IR spectroscopy and selective flash excitation, which cycles PSII samples through the S state transitions. On the time scale employed, these FT-IR difference spectra reflect long-lived structural changes in the OEC. Bromide substitution supports oxygen evolution and was used to identify vibrational bands arising from structural changes at the chloride-binding site. Contributions to the vibrational spectrum from bromide-sensitive bands were observed on each flash. Sulfate treatment led to an elimination of oxygen evolution activity and of the FT-IR spectra assigned to the S3 to S0 (third flash) and S0 to S1 transitions (fourth flash). However, sulfate treatment changed, but did not eliminate, the FT-IR spectra obtained with the first and second flashes. Solvent isotope exchange in chloride-exchanged samples suggests flash-dependent structural changes, which alter protein dynamics during the S state cycle. Supported by NSF MCB 03-55421.  相似文献   

4.
The far-red limit of photosystem II (PSII) photochemistry was studied in PSII-enriched membranes and PSII core preparations from spinach (Spinacia oleracea) after application of laser flashes between 730 and 820 nm. Light up to 800 nm was found to drive PSII activity in both acceptor side reduction and oxidation of the water-oxidizing CaMn4 cluster. Far-red illumination induced enhancement of, and slowed down decay kinetics of, variable fluorescence. Both effects reflect reduction of the acceptor side of PSII. The effects on the donor side of PSII were monitored using electron paramagnetic resonance spectroscopy. Signals from the S2-, S3-, and S0-states could be detected after one, two, and three far-red flashes, respectively, indicating that PSII underwent conventional S-state transitions. Full PSII turnover was demonstrated by far-red flash-induced oxygen release, with oxygen appearing on the third flash. In addition, both the pheophytin anion and the Tyr Z radical were formed by far-red flashes. The efficiency of this far-red photochemistry in PSII decreases with increasing wavelength. The upper limit for detectable photochemistry in PSII on a single flash was determined to be 780 nm. In photoaccumulation experiments, photochemistry was detectable up to 800 nm. Implications for the energetics and energy levels of the charge separated states in PSII are discussed in light of the presented results.  相似文献   

5.
《BBA》1987,893(3):564-571
In the present paper we analyzed the properties of the S3-state in the filamentous cyanobacterium Oscillatoria chalybea by mass spectrometry. In this organism a substantial O2-signal due to a single flash is observed even after extensive dark adaptation (20 min). This signal can be measured by mass spectrometry as well as amperometrically on an oxygen electrode and is not due to an interference of respiratory and photosynthetic electron transport in the prokaryotic membrane. The mass spectrometric analysis shows that, if S3 is generated by two flashes in a medium containing only H216O, addition of H218O and subsequent firing of a third flash yields O2 evolution labelled with 18O. It appears that the isotopic composition of the O2 evolved corresponds to the isotopic composition of the water in the suspension. This experiment shows that water oxidation does not proceed via an oxygen precursor or water derivatives bound to the S3-state. This conclusion has been reached shortly before ours by Radmer and Ollinger [15] in the reverse marker experiment. From our study with O. chalybea it appears that freshly generated S3 can be distinguished from metastable S3 by the mass spectrometric method. It looks as if in contrast to freshly generated S3 metastable S3 contained bound unexchangeable water or an oxidized water derivative.  相似文献   

6.
Incubation of green alga Chlorella pyrenoidosa Chick in darkness at 37–38°C for 10–30 h resulted in inactivation of the oxygen-evolving complex (OEC): the maximum yield of oxygen evolution during a series of short light flashes shifted from the third to the fifth flash; the transition of S2- and S3-states of OEC to a stable S1-state was markedly accelerated. This inactivation of OEC was accompanied by the accumulation of inactive complexes of photosystem II (PSII), in which the reduction of primary quinone acceptor and the conversion into the closed state occurred with a low efficiency, even in the presence of 5 M DCMU. The treatment of light-grown algal cells with hydroxylamine impaired OEC functioning, in similarity to the effect of dark incubation, but caused no accumulation of inactive PSII complexes. We conclude that the inactivation of OEC is not the cause of the inactivation of PSII complex. The decline in the efficiency of electron-transport reactions, both on the donor and acceptor sides of PSII may be related to modification of major proteins in the PS II reaction center.  相似文献   

7.
《BBA》1985,806(2):283-289
Treatment of Photosystem II particles with 1.2 M CaCl2 released three proteins of 33, 24 and 18 kDa of the photosynthetic oxygen evolution system, but left Mn bound to the particles as demonstrated by Ono and Inoue (Ono, T. and Inoue, Y. (1983) FEBS Lett. 164, 252–260). Oxygen-evolution activity of the CaCl2-treated particles was very low in a medium containing 10 mM NaCl as a salt, but could be restored by the 33-kDa protein. When the particles were incubated in 10 mM NaCl at 0°C, two of the four Mn atoms per oxygen-evolution system were released with concomitant loss of oxygen-evolution activity. The 33-kDa protein suppressed the release of Mn and the inactivation during the incubation. These findings from reconstitution experiments suggest that the 33-kDa protein acts to preserve Mn atoms in the oxygen-evolution system. The 33-kDa protein could be partially substituted by 100 or 150 mM Cl for the preservation of the Mn and oxygen-evolution activity. The Mn in Photosystem II particles enhanced rebinding of the 33-kDa protein to the particles.  相似文献   

8.
《BBA》1985,810(2):225-234
The functional interaction between the photosynthetic water-oxidizing enzyme system and the substrate analogues hydroxylamine and hydrazine has been analyzed in isolated class II chloroplasts by measuring the effect of these species on the characteristic oscillation pattern of oxygen yield induced by a flash train. The following was found. (1) At concentrations where both substances cause the pronounced two-flash phase shift (Bouges, B. (1971) Biochim. Biophys. Acta 234, 103–112) the dark equilibration is rather slow with half-times of approx. 1 min. (2) The numerical evaluation of the oscillation patterns reveals quantitative differences between hydroxylamine and hydrazine. The interaction with hydroxylamine is complex. It involves one- and two-electron processes as well as fast reaction steps during the flash sequence. The fast reactions take place only with redox states S2 and S3 of the water-oxidizing enzyme. Furthermore, the redox turnover in the presence of hydroxylamine leads to an S1-state that differs markedly in its susceptibility to hydroxylamine from that of S1 in control chloroplasts. (3) Below a threshold concentration which varies for different preparations the hydrazine effect can be quantitatively described by the assumption that after dark equilibration the agent becomes consumed irreversibly via a reaction with two oxidizing redox equivalents produced by PS II. This process is accomplished during the first two flashes. No further interaction occurs during the flash sequence, so that besides the two-flash phase shift the water-oxidizing enzyme system reveals the normal oxygen-evolution pattern. (4) Based on the analysis of the concentration dependence hydrazine is inferred to interact with the catalytic center of the water-oxidizing enzyme system via a cooperative mechanism including two binding sites. The data are discussed in terms of the kinetics of the dark interaction and its possible rate limitation. Mechanistic aspects (ligand-ligand exchange at the functional manganese cluster and transport step) are considered. Furthermore, possible mechanisms for the redox reaction of hydrazine at the catalytic site are briefly discussed.  相似文献   

9.
Patterns of oxygen evolution in flashing light for the blue-green alga Anacystis nidulans are compared with those for broken spinach chloroplasts and whole cells of the green alga Chlorella pyrenoidosa. The oscillations of oxygen yield with flash number that occur in both Anacystis and Chlorella, display a greater degree of damping than do those of isolated spinach chloroplasts. The increase in damping results from a two- to threefold increase in the fraction (α) of reaction centers “missed” by a flash. The increase in α cannot be explained by non-saturating flash intensities or by the dark reduction of the oxidized intermediates formed by the flash. Anaerobic conditions markedly increase α in Anacystis and Chlorella but have no effect on α in broken spinach chloroplasts. The results signify that the mechanism of charge separation and water oxidation involved in all three organisms is the same, but that the pool of secondary electron acceptors between Photosystem II and Photosystem I is more reduced in the dark, in the algal cells, than in the isolated spinach chloroplasts.Oxygen evolution in flashing light for Anacystis and Chlorella show light saturation curves for the oxygen yield of the third flash (Y3) that differ markedly from those of the steady-state flashes (Ys). In experiments in which all flashes are uniformly attenuated, Y3 requires nearly twice as much light as Ys to reach half-saturation. Under these conditions Y3 has a sigmoidal dependence on intensity, while that of Ys is hyperbolic. These differences depend on the number of flashes attenuated. When any one of the first three flashes is attenuated, the variation of Y3 with intensity resembles that of Ys. When two of the first three flashes are attenuated, Y3 is intermediate in shape between the two extremes. A quantitative interpretation of these results based on the model of Kok et al. (Kok, B., Forbush, B. and McGloin, M. (1970) Photochem. Photobiol. 11, 457–475, and Forbush, B., Kok, B. and McGloin, M. P. (1971) Photochem. Photobiol. 14, 307–321) fits the experimental data.  相似文献   

10.
Inhibition of Photosystem II (PS II) activity by single turnover visible light flashes was studied in thylakoid membranes isolated form spinach. Flash illumination results in decreased oxygen evolving activity of PS II, which effect is most pronounced when the water-oxidizing complex is in the S2 and S3 states, and increases with increasing time delay between the subsequent flashes. By applying the fluorescent spin-trap DanePy, we detected the production of singlet oxygen, whose amount was increasing with increasing flash spacing. These findings were explained in the framework of a model, which assumes that recombination of the S2QB and S3QB states generate the triplet state of the reaction center chlorophyll and lead to the production of singlet oxygen.  相似文献   

11.
Sándor Demeter  Imre Vass 《BBA》1984,764(1):24-32
In the glow curves of chloroplasts excited by a series of flashes at +1°C the intensity of the main thermoluminescence band appearing at +30°C (B band; B, secondary acceptor of Photosystem II) exhibits a period-4 oscillation with maxima on the 2nd and 6th flashes indicating the participation of the S3 state of the water-splitting system in the radiative charge recombination reaction. After long-term dark adaptation of chloroplasts (6 h), when the major part of the secondary acceptor pool (B pool) is oxidized, a period-2 contribution with maxima occurring at uneven flash numbers appears in the oscillation pattern. The B band can even be excited at ?160°C as well as by a single flash in which case the water-splitting system undergoes only one transition (S1 → S2). The experimental observations and computer simulation of the oscillatory patterns suggest that the B band originates from charge recombination of the S2B? and S3B? redox states. The half-time of charge recombination responsible for the B band is 48 s. When a major part of the plastoquinone pool is reduced due to prolonged excitation of the chloroplasts by continuous light, a second band (Q band; Q, primary acceptor of Photosystem II) appears in the glow curve at +10°C which overlaps with the B band. In chloroplasts excited by flashes prior to DCMU addition only the Q band can be observed showing maxima in the oscillation pattern at flash numbers 2, 6 and 10. The Q band can also be induced by flashes after DCMU addition which allows only one transition of the water-splitting system (S1 → S2). In the presence of DCMU, electrons accumulate on the primary acceptor Q, thus the Q band can be ascribed to the charge recombination of either the S2Q? or S3Q? states depending on whether the water-splitting system is in the S2 or the S3 state. The half-time of the back reaction of Q? with the donor side of PS II (S2 or S3 states) is 3 s. It was also observed that in a sequence of flashes the peak positions of the Q and B bands do not depend on the advancement of the water-splitting system from the S2 state to the S3 state. This result implies that the midpoint potential of the water-splitting system remains unmodified during the S2 → S3 transition.  相似文献   

12.
13.
14.
Isolated pea chloroplasts were washed once in 10 mm NaCl and were then suspended in “low-salt” medium. Approximately one-half of the photosystem II reaction centers of these salt-depleted membranes were found to be photochemically inactive. These units became active in the presence of low concentrations of divalent cations (5–10 mm Mg2+) or high concentrations of monovalent cations (150–200 mm Na+), as evidenced by a twofold increase in the steady-state flash yield of oxygen evolution under short (~10-μs) saturating repetitive flashes (two per second). The half-maximal increase in flash yield occurred at ~2 mM Mg2+ or ~75 mm Na+. The flash yield of hydroxylamine oxidation in these low-salt chloroplasts increased twofold after Mg2+ addition, indicating that the cation action was close to the reaction-center chlorophyll complex. The relation between flash yield and dark time between flashes was not changed significantly by Mg2+, indicating that the rate-limiting step of the overall electron transport (H20 —→ ferricyanide) was not affected significantly. When the rate-limiting step was bypassed using silicomolybdate as the photosystem II electron acceptor (in the presence of diuron), the reduction rate doubled in the presence of Mg2+, even under continuous, saturating light. In glutaraldehyde-fixed chloroplasts, Mg2+ did not increase the flash yield of O2 evolution; this suggests that protein conformational changes in the chloroplast membranes were involved in Mg2+ activation of photosystem II centers.  相似文献   

15.
Proton release inside thylakoids, which is linked to the action of the water-oxidizing enzyme system, was investigated spectrophotometrically with the dye neutral red under conditions when the external phase was buffered. Under excitation of dark-adapted chloroplasts with four short laser flashes in series, the pattern of proton release as a function of the flash number was recorded and interpreted in the light of the generally accepted scheme for consecutive transitions of the water-oxidizing enzyme system: S0 → S1, S1 → S2, S2 → S3, S3 → S4, S0. It was found that the proton yield after the first flash varied in a reproducible manner, being dependent upon the dark pretreatment given. In terms of the proton-electron reaction during these transitions, the pattern was as follows. In strictly dark-adapted chloroplasts (frozen chloroplasts thawed in darkness and kept for at least 7 min in the dark after dilution), it was fitted well by a stoichiometry of 1:0:1:2. In a less stringently dark-adapted preparation (as above but thawed under light), it was fitted by 0:1:1:2. Mechanistically this is not yet understood. However, it is a first step towards resolving controversy over this pattern among different laboratories. Under conditions where the 1:0:1:2 stoichiometry was observed, proton release was time resolved. Components with half-rise times of 500 and 1000 μs could be correlated with the S2 → S3 and S3 → S4 transitions, respectively. Proton release during the S0 → S1 transition is more rapid, but is less well attributable to the transitions due to error proliferation. A distinct component with a half-rise time of only 100 μs was observed after the second flash. Since it did not fit into the expected kinetics (based on literature data) for the Si → Si+1 transitions, we propose that it reflects proton release from a site which is closer to the reaction center of Photosystem (PS) II than the water-splitting enzyme system. This is supported by the observation of rapid proton release under conditions where water oxidation is blocked. Related experiments on the pattern of proton uptake at the reducing side of PS II indicated that protons act as specific counterions for semiquinone anions without binding to them.  相似文献   

16.
The functional properties of a purified homogeneous spinach PS II-core complex with high oxygen evolution capacity (Haag et al. 1990a) were investigated in detail by measuring thermoluminescence and oscillation patterns of flash induced oxygen evolution and fluorescence quantum yield changes. The following results were obtained:
  1. Depending on the illumination conditions the PS II-core complexes exhibit several thermoluminescence bands corresponding to the A band, Q band and Zv band in PS II membrane fragments. The lifetime of the Q band (Tmax=10°C) was determined to be 8s at T=10°C. No B band corresponding to S2QB ? or S3QB ? recombination could be detected.
  2. The flash induced transient fluorescence quantum yield changes exhibit a multiphasi relaxation kinetics shich reflect the reoxidation of Q A ? . In control samples without exogenous acceptors this process is markedly slower than in PS II membrane fragments. The reaction becomes significantly retarded by addition of 10 μM DCMU. After dark incubation in the presence of K3[Fe(CN)6
  3. Excitation of dark-adapted samples with a train of short saturating flashes gives rise to a typical pattern dominated by a high O2 yield due to the third flash and a highly damped period four oscillation. The decay of redox states S2 and S3 are dominated by short life times of 4.3 s and 1.5 s, respectively, at 20°C.
The results of the present study reveal that in purified homogeneous PS II-core complexes with high oxygen evolution isolated from higher plants by β-dodecylmaltoside solubilization the thermodynamic properties and the kinetic parameters of the redox groups leading to electron transfer from water to QA are well preserved. The most obvious phenomenon is a severe modification of the QB binding site. The implications of this finding are discussed.  相似文献   

17.
The oxygen production of dark-adapted Photosystem II upon illumination by a series of single-turnover flashes shows a damped period four oscillation with flash number. The damping is attributed to `misses' resulting from a statistical probability that a reaction center fails to produce a stable charge separation after a saturating flash. The origin of misses is of interest because its probable dependence on flash number, in principle, affects the quantitative interpretation of all measurements on phenomena associated with the period four oscillation. We show that the kinetics of chlorophyll fluorescence yield transients induced by a flash series can be used to estimate the relative amplitudes of the miss probability on each flash. It is concluded that a major part of the misses must be caused by failure of the reduction of the oxidized primary electron donor chlorophyll P680+ by the secondary donor tyrosine YZ before the charge separation is lost by recombination. The probability of this failure is found to increase with the oxidation state of the oxygen-evolving complex: more than half of it occurs upon charge separation in the S3 state, which is attributed to the presence of YZ ox S2 in Boltzmann equilibrium with YZS3. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
《BBA》1985,806(3):331-340
The S-state transition in manganese-containing spinach PS II particles depleted of three peripheral proteins (33, 24 and 16 kDa) by CaCl2 washing was investigated by means of thermoluminescence measurements and the following results were obtained: (1) When excited by continuous light, these particles showed the same glow curves as those of control PS II particles having a marked peak around +35°C (B band) which arises from recombination between S2 (or S3), the oxidized species of the so-called S states of the water-oxidation enzyme, and QB, the semiquinone form of the secondary plastoquinone acceptor of PS II. (2) When excited, however, by a series of flashes, oscillation of the B band in the depleted particles proceeded normally up to the 2nd flash but was interrupted thereafter; in contrast, the control particles underwent quadruple oscillation showing maxima at the 1st and 5th flashes. (3) The oscillation pattern of the depleted particles agreed well with a computer simulation pattern obtained by assuming inhibition of the S3 → S4 transition. (4) The B-band height created by one or two flashes in the depleted particles showed decay kinetics almost the same as those in control particles. (5) During incubation in a low-salt medium, the B-band height of the depleted particles gradually decreased concomitant with release of manganese from the particles, and reached a zero level when about half of the manganese atoms were lost. (6) Removal of the 24 and 16 kDa proteins by NaCl washing appreciably lowered the B-band height, but did not affect at all the oscillation pattern of the B-band. These results indicate that the manganese catalyst in CaCl2-washed PS II particles is unable to undergo the S3 → S4 transition because of depletion of the 33 kDa protein, while the catalyst is still capable of undergoing S0 → S1, S1 → S2 and S2 → S3 transitions.  相似文献   

19.
20.
András Szilárd 《BBA》2007,1767(6):876-882
The water-oxidizing complex of Photosystem II is an important target of ultraviolet-B (280-320 nm) radiation, but the mechanistic background of the UV-B induced damage is not well understood. Here we studied the UV-B sensitivity of Photosystem II in different oxidation states, called S-states of the water-oxidizing complex. Photosystem II centers of isolated spinach thylakoids were synchronized to different distributions of the S0, S1, S2 and S3 states by using packages of visible light flashes and were exposed to UV-B flashes from an excimer laser (λ = 308 nm). The loss of oxygen evolving activity showed that the extent of UV-B damage is S-state-dependent. Analysis of the data obtained from different synchronizing flash protocols indicated that the UV-sensitivity of Photosystem II is significantly higher in the S3 and S2 states than in the S1 and S0 states. The data are discussed in terms of a model where UV-B-induced inhibition of water oxidation is caused either by direct absorption within the catalytic manganese cluster or by damaging intermediates of the water oxidation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号