首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Postactivation potentiation (PAP) is defined as a short-term increase in voluntary muscle activation following a previous conditioning activity (CA). Controversy about PAP is mostly attributed to the characteristics of the CA and the training status of the subjects. While some studies have found that PAP can be induced by series of 5-10 second maximal voluntary isometric contractions or near maximal dynamic contractions (e.g., 3-5 repetition maximum), others have failed to do so. On the other hand, some studies suggest that intermittent contractions can also induce PAP. However, even though PAP was observed, its duration was not taken into account, leaving ground for further investigations. The purpose of this study was threefold: (a) to verify if PAP can progressively enhance performance of voluntary actions throughout a set of intermittent contractions; (b) to verify PAP duration when induced by an intermittent contractions protocol; and (c) to verify if PAP effects were reproducible in different sessions when induced by intermittent contractions. Ten physically active men, not engaged in strength training, underwent 5 randomized experimental sessions, during which they performed a set of 10 unilateral knee extensions (KE) (1 every 30 seconds) at 60 degrees x s(-1) in an isokinetic dynamometer. Peak torque was evaluated over the 10 unilateral KE and at the randomized intervals of 4, 6, 8, 10, and 12 minutes post CA. Peak torque was potentiated 1.3 (+/-0.79) N x m per unilateral KE, and the potentiation effect persisted for 12 minutes after the last contraction. These findings were reproduced in all 5 experimental sessions. Thus, intermittent conditioning activities seem to be an effective way to produce PAP. However, these activities should be tested in a more real world situation to verify the applicability as a warm-up routine.  相似文献   

2.
The purpose of this investigation was to compare the effects of stretching vs. potentiation on subsequent maximal force and rate of force development capabilities of subjects in an isometric squat. Ten male collegiate athletes participated as subjects in this study. Subjects were tested during 3 separate sessions that involved joint range of motion (ROM) measurements of the lower body and isometric squat trials on a force plate to determine peak force (PF) and rate of force development (RFD) values. One testing session was preceded by 10 minutes of quiet sitting (C), 1 by a 30-minute lower-body stretching protocol (S), and 1 by 3 sets of a leg press exercise using 90% of the subjects' previously determined 1 repetition maximum (P). Three repetitions were performed for each set of the leg press, with a 3-minute rest period between each set. PF during the isometric squat was not significantly different following any of the 3 conditions (C: 100.0 +/- 0.0%, S: 101.2 +/- 6.5%, P: 98.6 +/- 6.2%). However, RFD was significantly lower in P (87.5 +/- 12.8%) compared with both C (100.0 +/- 0.0%) and S (102.6 +/- 18.5%). Significant improvement in ROM occurred only following P. It appears the potentiation protocol used in the current investigation may actually have had fatiguing effects instead of potentiating effects, but it did result in significant increases in ROM.  相似文献   

3.
The aim of this study was to evaluate the influence of the subjects' level of maximal dynamic strength and training background on postactivation potentiation (PAP). A group of 23 subjects, composed of power track-and-field athletes (PT = 8), bodybuilders (BB = 7), and physically active subjects (PA = 8), participated in the study. Maximal dynamic strength (1 repetition maximum test) was assessed in the leg press exercise for subjects' characterization. Their countermovement vertical jump (CMJ) performance was assessed before and after 2 different conditioning activity (CA) protocols (1 or 3 maximum voluntary isometric contractions [MVICs] of 5-second duration in the leg press exercise) or after control (no CA), performed on separate days. No significant differences among groups were found for CMJ height or take-off velocity after any of the CA protocols (p ≤ 0.05). However, individual analysis showed that some subjects increased performance in response to the CA, despite their previous training history. We concluded that subjects' level of maximal dynamic strength and training background have no influence on PAP manifestation. Our data suggest that coaches should individually identify the athletes that are PAP responders before introducing MVICs as part of their warm-up routines.  相似文献   

4.
The aim of this study was to investigate the effects of postactivation potentiation (PAP) on swim start performance (time to 15 m) in a group of international sprint swimmers. Nine international sprint swimmers (7 men and 2 women) volunteered and gave informed consent for this study, which was approved by the university ethics committee. Initially, swimmers performed a countermovement jump (CMJ) on a portable force platform (FP) at baseline and at the following time points ~15 seconds, 4, 8, 12, and 16 minutes after a PAP stimulus (1 set of 3 repetitions at 87% 1 repetition maximum [RM]) to individually determine the recovery time required to observe enhanced muscle performance. On 2 additional days, swimmers performed a swim start to 15 m under 50-m freestyle race conditions, which was preceded by either their individualized race specific warm-up or a PAP stimulus (1 set of 3 repetitions at 87% 1RM). Both trials were recorded on 2 cameras operating at 50 Hz with camera 1 located at the start and camera 2 at the 15-m mark. Peak vertical force (PVF) and peak horizontal force (PHF) were measured during all swim starts from a portable FP placed on top of the swim block. A repeated measures analysis of variance revealed a significant time effect with regard to power output (PO) (F = 20.963, p < 0.01) and jump height (JH) (F = 14.634, p < 0.01) with a paired comparison indicating a significant increase in PO and JH after 8 minutes of recovery from the PAP stimulus. There was a significant increase in both PHF and PVF after the PAP stimulus compared to the swim-specific warm-up during the swim start (PHF 770 ± 228 vs. 814 ± 263 N, p = 0.018; PVF: 1,462 ± 280 vs. 1,518 ± 311 N, p = 0.038); however, time to 15 m was the same when both starts were compared (7.1 ± 0.8 vs. 7.1 ± 0.8 seconds, p = 0.447). The results from this study indicate that muscle performance during a CMJ is enhanced after a PAP stimulus providing adequate recovery (~8 minutes) is given between the 2 activities. In addition, this study demonstrated that swimmers performed equally well in terms of time to 15 m when a PAP stimulus was compared to their individualized race specific warm-up and indicates that PAP may be a useful addition to a warm-up protocol before races. However, more research is required to fully understand the role PAP plays in swim performance.  相似文献   

5.
Postactivation potentiation (PAP) or enhanced contractile capabilities may be influenced by a number of factors. This study examined the influence of type of muscle contraction (isometric vs. dynamic), gender, and previous weightlifting experience on PAP as demonstrated by changes in jump height and power output. Thirty young men (n = 15) and women (n = 15), classified as either having previous weightlifting experience (n = 20) or not (n = 10), performed 3 different sets of countermovement jumps, with the first set used to determine baseline measures of jump height and power. The second set was performed after a maximal isometric squat protocol (maximal voluntary contraction [MVC]-PAP) to induce PAP, and the third set of jumps was performed after a maximal dynamic squat (DS) protocol (DS-PAP). A 3-way repeated measures analysis of variance determined that jump height after the MVC-PAP protocol was significantly higher than both the pretest and DS-PAP values, that men performed significantly better than women, and that the experienced lifters responded more favorably than the inexperienced lifters. Jump power was also significantly greater for the MVC-PAP condition compared with the other 2 conditions, and DS-PAP power also improved when compared with the pretest values, with men performing significantly better than women. All results remained consistent after accounting for height and weight differences (body mass index) between the groups. In conclusion, the isometric condition (MVC-PAP) evoked a greater muscle postactivation potentiation than the dynamic condition (DS-PAP), and postactivation was enhanced by previous weightlifting experience. The practical manipulation of MVC by pushing, squatting, or both against fixed objects, such as walls and low ceilings, could be a very simple and cost-effective way to arouse a state of PAP before sports performance that requires high force and power outputs.  相似文献   

6.
The effect of post-tetanic potentiation (PTP) induced in the pectoralis and triceps brachii muscles by high-frequency submaximal percutaneous electrical stimulation (PES) on average and maximal power attained in bench press throwing was measured in 12 healthy men. Three PES regimens were used: (a) a 7-second and (b) a 10-second trial at 100 Hz, and (c) an intermittent trial with 8 1-second tetanic trains at 100 Hz with rest periods of 20 seconds. Only nonsignificant (p > 0.05) increase was observed in average power at 8 minutes and in maximal power at 5, 8, and 11 minutes after tetanus after 7-second trial, and in maximal power at 5 and 8 minutes after tetanus after an intermittent trial. These data indicate that PES application was a noneffective stimulus for increased bench press performance. A great interindividual variability response was observed and, therefore, PTP induction for improving upper-body muscle performance needs further experiments.  相似文献   

7.
Postactivation potentiation (PAP) is a strategy used to improve performance in power activities. The aim of this study was to determine if power during bench press exercise was increased when preceded by 1 repetition maximum (1RM) in the same exercise and to determine which time interval could optimize PAP response. For this, 11 healthy male subjects (age, 25 ± 4 years; height, 178 ± 6 cm; body mass, 74 ± 8 kg; bench press 1RM, 76 ± 19 kg) underwent 6 sessions. Two control sessions were conducted to determine both bench press 1RM and power (6 repetitions at 50% 1RM). The 4 experimental sessions were composed of a 1RM exercise followed by power sets with different recovery intervals (1, 3, 5, and 7 minutes), performed on different days, and determined randomly. Power values were measured via Peak Power equipment (Cefise, Nova Odessa, S?o Paulo, Brazil). The conditions were compared using an analysis of variance with repeated measures, followed by a Tukey test. The significance level was set at p < 0.05. There was a significant increase in PAP in concentric contractions after 7 minutes of recovery compared with the control and 1-minute recovery conditions (p < 0.05). Our results indicated that 7 minutes of recovery has generated an increase in PAP in bench press and that such a strategy could be applied as an interesting alternative to enhance the performance in tasks aimed at increasing upper-body power performance.  相似文献   

8.
Postactivation potentiation (PAP), a mechanism by which the torque of a muscle twitch is increased following a conditioning contraction, is well documented in muscular physiology, but little is known about its effect on the maximal rate of torque development and functional significance during voluntary movements. The objective of this study was to investigate the PAP effect on the rate of isometric torque development of electrically induced and voluntary contractions. To that purpose, the electromechanical responses of the thumb adductor muscles to a single electrical stimulus (twitch), a train of 15 pulses at 250 Hz (HFT(250)), and during ballistic (i.e., rapid torque development) voluntary contractions at torque levels ranging from 10 to 75% of maximal voluntary contraction (MVC) were recorded before and after a conditioning 6-s MVC. The results showed that the rate of torque development was significantly (P < 0.001) increased after the conditioning MVC, but the effect was greater for the twitch ( approximately 200%) compared with the HFT(250) ( approximately 17%) or ballistic contractions (range: 9-24%). Although twitch potentiation was maximal immediately after the conditioning MVC, maximal potentiation for HFT(250) and ballistic contractions was delayed to 1 min after the 6-s MVC. Furthermore, the similar degree of potentiation for the rate of isometric torque development between tetanic and voluntary ballistic contractions indicates that PAP is not related to the modality of muscle activation. These observations suggest that PAP may be considered as a mechanism that can influence our contractions during daily tasks and can be utilized to improve muscle performance in explosive sports.  相似文献   

9.
1. Changes in miniature end-plate potential (m.e.p.p.) frequency by repetitive nerve stimulation were examined in the rat soleus muscle. 2. The increase of m.e.p.p. frequency was induced by repetitive stimulation and persisted for several minutes after the tetanus. That is, post-tetanic potentiation (PTP) of neuromuscular transmission was first demonstrated here in the rat soleus muscle. 3. The time course of the decay of m.e.p.p. frequency after the tetanus showed a double exponential curve which consisted of a fast decaying component (augmentation) and a slow decaying component (potentiation). 4. The magnitude of PTP depended on the stimulation frequency and its duration. It increased with the increase of duration and was at its maximum at a frequency of 100 Hz. 5. No PTP was elicited by repetitive stimulation under conditions in which end-plate potential (e.p.p.) was completely suppressed, and, moreover, m.e.p.p. frequency tended to decrease after the tetanus.  相似文献   

10.
The effect of stimulation frequency on twitch force potentiation was examined in the adductor pollicis muscle of ten normal subjects. The ulnar nerve was supramaximally stimulated at the wrist and isometric twitch force was measured from a 3-Hz train lasting 1 s. Test stimulation frequencies of 5, 10, 20, 25, 30, 40, 50 and 100 Hz were applied for 5 s each in random order (5 min apart) and the twitches (3 Hz) were applied immediately before and after (1 s) the test frequency and at intervals up to 5 min afterwards (10 s, and 1, 2 and 5 min). Poststimulation twitches were expressed as a percentage of the prestimulation twitch. Low frequency fatigue was not induced by the protocol since the 20:50 Hz ratio did not alter within each session. The degree of twitch potentiation was frequency dependent, with potentiation increasing up to 50 Hz [mean 173 (SD 16)%] but the effect was markedly less at 100 Hz [mean 133 (SD 25)%, P less than 0.01] for all subjects. The reduced potentiation at 100 Hz may have occurred due to high frequency fatigue produced by the 100-Hz test stimulation train. The optimal frequency of those examined in the experimental group was 50 Hz but this only produced maximal potentiation in six of the ten subjects and 100 Hz always produced less potentiation. These findings have implications for electrical stimulation of muscle in the clinical setting.  相似文献   

11.
In small mammals, muscles with shorter twitch contraction times and a predominance of fast-twitch, type II fibers exhibit greater posttetanic twitch force potentiation than muscles with longer twitch contraction times and a predominance of slow-twitch, type I fibers. In humans, the correlation between potentiation and fiber-type distribution has not been found consistently. In the present study, postactivation potentiation (PAP) was induced in the knee extensors of 20 young men by a 10-s maximum voluntary isometric contraction (MVC). Maximal twitch contractions of the knee extensors were evoked before and after the MVC. A negative correlation (r = -0. 73, P < 0.001) was found between PAP and pre-MVC twitch time to peak torque (TPT). The four men with the highest (HPAP, 104 +/- 11%) and lowest (LPAP, 43 +/- 7%) PAP values (P < 0.0001) underwent needle biopsies of vastus lateralis. HPAP had a greater percentage of type II fibers (72 +/- 9 vs. 39 +/- 7%, P < 0.001) and shorter pre-MVC twitch TPT (61 +/- 12 vs. 86 +/- 7 ms, P < 0.05) than LPAP. These data indicate that, similar to the muscles of small mammals, human muscles with shorter twitch contraction times and a higher percentage of type II fibers exhibit greater PAP.  相似文献   

12.
The current literature recommends dynamic rather than static stretching for the athletic warm-up. Dynamic stretching and various conditioning stimuli are used to induce potentiation in subsequent athletic performance. However, it is unknown as to which type of activity in conjunction with dynamic stretching within a warm-up provides the optimal potentiation of vertical jump performance. It was the objective of the study to examine the possible potentiating effect of various types of conditioning stimuli with dynamic stretching. Twenty athletes participated in 6 protocols. All the experimental protocols included 10 minutes of dynamic stretching. After the dynamic stretching, the subjects performed a (a) concentric (DS/CON): 3 sets of 3 repetition maximum deadlift exercise; (b) isometric (DS/ISOM): 3 sets of 3-second maximum voluntary contraction back squats; (c) plyometric (DS/PLYO): 3 sets of 3 tuck jumps; (d) eccentric (DS/ECC): 3 modified drop jumps; (e) dynamic stretching only (DS), and (f) control protocol (CON). Before the intervention and at recovery periods of 15 seconds, 4, 8, 12, 16, and 20 minutes, the participants performed 1-2 maximal countermovement jumps. The DS and DS/CON protocols generally had a 95-99% likelihood of exceeding the smallest worthwhile change for vertical jump height, peak power, velocity and force. However, the addition of the deadlift to the DS did not augment the potentiating effect. Time-to-peak potentiation was variable between individuals but was most consistent between 3 and 5 minutes. Thus, the volume and the intensity associated with 10 minutes of dynamic stretching were sufficient to provide the potentiation of vertical jump characteristics. Additional conditioning activities may promote fatigue processes, which do not permit further potentiation.  相似文献   

13.
Muscle contractions preceding an activity can result in increased force generation (postactivation potentiation [PAP]). Although the type of muscular contractions could affect subsequent strength and power performance, little information exists on their effects. The purpose of this study was to examine PAP effects produced by isometric (ISO), concentric (CON), eccentric (ECC), or concentric-eccentric (DYN) conditioning contractions on upper body force and power performance. Ten male, competitive rugby players (mean ± SD: age 20.4 ± 0.8 years, height 177.0 ± 8.1 cm, body mass 90.2 ± 13.8 kg) performed a ballistic bench press throw (BBPT) followed by a 10-minute rest and one of the conditioning contractions. After a 12-minute rest, the subjects performed another BBPT (post-BBPT). The conditioning contractions, applied on separate days and in counterbalanced randomized order, were a 7-second isometric barbell bench press for ISO and 1 set of 3 bench press repetitions at 3 repetition maximum for CON, ECC, and DYN (each repetition lasting 2 seconds for CON and ECC, overall execution time <7 seconds for DYN). Peak power (Ppeak), peak force (Fpeak), maximum distance (Dmax) and rate of force development (RFD) were measured using a linear position transducer. Electromyography (EMG) of the pectoralis major and triceps brachii was also recorded. The ISO produced significantly higher Ppeak (587 ± 116 and 605 ± 126 W for pre- and post-BBPT, respectively; p < 0.05). No significant differences in Ppeak were revealed for CON, ECC, and DYN (p > 0.05), and no significant differences existed in Fpeak, Dmax, and RFD for ISO, CON, ECC, and DYN (p > 0.05). Finally, EMG was not significantly different between pre- and post-BBPT for any of the conditioning contractions (p > 0.05). Isometric contractions appear to be the only conditioning contractions increasing upper body power output after long resting periods.  相似文献   

14.
Recently it was demonstrated that postactivation potentiation (PAP), which refers to the enhancement of the muscle twitch torque as a result of a prior conditioning contraction, increased the maximal rate of torque development of tetanic and voluntary isometric contractions (3). In this study, we investigated the effects of PAP and its decay over time on the load-velocity relation. To that purpose, angular velocity of thumb adduction in response to a single electrical stimulus (twitch), a high-frequency train of 15 pulses at 250 Hz (HFT(250)), and during ballistic voluntary shortening contractions, performed against loads ranging from 10 to 50% of the maximum torque, were recorded before and after a conditioning 6-s maximal voluntary contraction (MVC). The results showed an increase of the peak angular velocity for the different loads tested after the conditioning MVC (P < 0.001), but the effect was greatest for the twitch ( approximately 182%) compared with the HFT(250) or voluntary contractions ( approximately 14% for both contraction types). The maximal potentiation occurred immediately following the conditioning MVC for the twitch, whereas it was reached 1 min later for the tetanic and ballistic voluntary contractions. At that time, the load-velocity relation was significantly shifted upward, and the maximal power of the muscle was increased ( approximately 13%; P < 0.001). Furthermore, the results also indicated that the effect of PAP on shortening contractions was not related to the modality of muscle activation. In conclusion, the findings suggest a functional significance of PAP in human movements by improving muscle performance of voluntary dynamic contractions.  相似文献   

15.
Understanding the torque output behavior of paralyzed muscle has important implications for the use of functional neuromuscular electrical stimulation systems. Postfatigue potentiation is an augmentation of peak muscle torque during repetitive activation after a fatigue protocol. The purposes of this study were 1) to quantify postfatigue potentiation in the acutely and chronically paralyzed soleus and 2) to determine the effect of long-term soleus electrical stimulation training on the potentiation characteristics of recently paralyzed soleus muscle. Five subjects with chronic paralysis (>2 yr) demonstrated significant postfatigue potentiation during a repetitive soleus activation protocol that induced low-frequency fatigue. Ten subjects with acute paralysis (<6 mo) demonstrated no torque potentiation in response to repetitive stimulation. Seven of these acute subjects completed 2 yr of home-based isometric soleus electrical stimulation training of one limb (compliance = 83%; 8,300 contractions/wk). With the early implementation of electrically stimulated training, potentiation characteristics of trained soleus muscles were preserved as in the acute postinjury state. In contrast, untrained limbs showed marked postfatigue potentiation at 2 yr after spinal cord injury (SCI). A single acute SCI subject who was followed longitudinally developed potentiation characteristics very similar to the untrained limbs of the training subjects. The results of the present investigation support that postfatigue potentiation is a characteristic of fast-fatigable muscle and can be prevented by timely neuromuscular electrical stimulation training. Potentiation is an important consideration in the design of functional electrical stimulation control systems for people with SCI.  相似文献   

16.
Post-tetanic potentiation (PTP) in single motor units was simulated using a simple visco-elastic model. Single isometric twitches and unfused tetani were obtained using a wide range of physiological input rates. Values of model parameters were chosen to simulate contraction times close to those of fast and slow muscle fibers. PTP has been attributed either to i) an augmented plateau level of active state or ii) an increase in time constant of active state decay. Our results show that a prolonged decay time of active state can account for most of the experimental data obtained in amphibian and mammalian preparations. In particular, potentiation is more marked in unfused tetani than in single twitches. Moreover the model accounts for PTP even in the case of a reduction of active state plateau due to fatigue.  相似文献   

17.
Acute and long-term hormonal and neuromuscular adaptations to hypertrophic strength training were studied in 13 recreationally strength-trained men. The experimental design comprised a 6-month hypertrophic strength-training period including 2 separate 3-month training periods with the crossover design, a training protocol of short rest (SR, 2 minutes) as compared with long rest (LR, 5 minutes) between the sets. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT), and cortisol (C), maximal isometric strength of the leg extensors, right leg 1 repetition maximum (1RM), dietary analysis, and muscle cross-sectional area (CSA) of the quadriceps femoris by magnetic resonance imaging (MRI) were measured at months 0, 3, and 6. The 2 hypertrophic training protocols used in training for the leg extensors (leg presses and squats with 10RM sets) were also examined in the laboratory conditions at months 0, 3, and 6. The exercise protocols were similar with regard to the total volume of work (loads x sets x reps), but differed with regard to the intensity and the length of rest between the sets (higher intensity and longer rest of 5 minutes vs. somewhat lower intensity but shorter rest of 2 minutes). Before and immediately after the protocols, maximal isometric force and electromyographic (EMG) activity of the leg extensors were measured and blood samples were drawn for determination of serum T, FT, C, and growth hormone (GH) concentrations and blood lactate. Both protocols before the experimental training period (month 0) led to large acute increases (p < 0.05-0.001) in serum T, FT, C , and GH concentrations, as well as to large acute decreases (p < 0.05-0.001) in maximal isometric force and EMG activity. However, no significant differences were observed between the protocols. Significant increases of 7% in maximal isometric force, 16% in the right leg 1RM, and 4% in the muscle CSA of the quadriceps femoris were observed during the 6-month strength-training period. However, both 3-month training periods performed with either the longer or the shorter rest periods between the sets resulted in similar gains in muscle mass and strength. No statistically significant changes were observed in basal hormone concentrations or in the profiles of acute hormonal responses during the entire 6-month experimental training period. The present study indicated that, within typical hypertrophic strength-training protocols used in the present study, the length of the recovery times between the sets (2 vs. 5 minutes) did not have an influence on the magnitude of acute hormonal and neuromuscular responses or long-term training adaptations in muscle strength and mass in previously strength-trained men.  相似文献   

18.
When muscle is elongated, there is a length dependence of twitch potentiation and an increased Ca(2+) sensitivity of the myofilaments. Changes in the charge potential of myofilaments, induced by a decrease in pH, are known to abolish the length dependence of Ca(2+) sensitivity. This study was aimed at testing the hypothesis that a decrease in pH, and the concomitant loss of length dependence of Ca(2+) sensitivity, depresses the length dependence of staircase potentiation. In vitro, isometric twitch contractions of fiber bundles dissected from the mouse extensor digitorum longus, performed before and after 10 s of 10-Hz stimulation (i.e., the staircase potentiation protocol) were analyzed at five different lengths, ranging from optimal length for maximal force production (L(o); = 12 +/- 0.7 mm) to L(o) + 1.2 mm (L(o) + 10%). These measurements were made at an extracellular pH of 6.6, 7.4, and 7.8 (pH changes induced by altering the CO(2) concentration of the bath solution). At pH 7.4 and 7.8, the degree of potentiation after 10-Hz stimulation showed a linear decrease with increased fiber bundle length (r(2) = 0.95 and r(2) = 0.99, respectively). At pH 6.6, the length dependence of potentiation was abolished, and the slope of the length-potentiation relationship was not different from zero (r(2) = 0.05). The results of this study indicate that length dependence of potentiation in intact skeletal muscle is abolished by lowering the pH. Because decreasing the pH decreases Ca(2+) sensitivity and changes the charge potential of the filaments, the mechanism of length-dependent potentiation may be closely related to the length dependence of Ca(2+) sensitivity, and changes in the charge potential of the myofilaments may be important in regulating this relationship.  相似文献   

19.
The role of muscle potentiation in overcoming low-frequency fatigue (LFF) as it developed during submaximal voluntary exercise was investigated in eight males (age 26.4 +/- 0.7 years, mean +/- SE) performing isometric leg extension at approximately 30% of maximal voluntary contraction for 60 min using a 0.5-duty cycle (1 s contraction, 1 s rest). At 5, 20, 40, and 60 min, exercise was interrupted for 3 min, and the maximum positive rate of force development (+dF/dtmax) and maximal twitch force (Pt) were measured in maximal twitch contractions at 0, 1, 2, and 3 min of rest (R0, R1, R2, R3); they were also measured at 15 min of recovery following the entire 60-min exercise period. These measures were compared with pre-exercise (PRE) as an indicator of potentiation. Force at low frequency (10 Hz) was also measured at R0, R1, R2, and R3, and at 15 min of recovery, while force at high frequency (100 Hz) was measured only at R0 and R3 and in recovery. Voluntary exercise increased twitch +dF/dtmax at R0 following 5, 20, 40, and 60 min of exercise, from 2553 +/- 150 N/s at PRE to 39%, 41%, 42%, and 36% above PRE, respectively (P<0.005). Twitch +dF/dtmax decayed at brief rest (R3) following 20, 40, and 60 min of exercise (P<0.05). Pt at R0 following 5 and 20 min of exercise was above that at PRE (P<0.05), indicating that during the early phase of moderate-intensity repetitive exercise, potentiation occurs in the relative absence of LFF. At 40 and 60 min of exercise, Pt at R0 was unchanged from PRE. The LFF (10 Hz) induced by the protocol was evident at 40 and 60 min (R0-R3; P<0.05) and at 15 min following exercise (P<0.05). High-frequency force was not significantly compromised by the protocol. Since twitch force was maintained, these results suggest that as exercise progresses, LFF develops, which can be compensated for by potentiation.  相似文献   

20.
The objective of this study was to investigate whether a warm-up consisting of a series of maximal contractions would augment the force and activation of subsequent leg extensor contractions. Both voluntary and evoked isometric contractions were tested to determine the mechanisms underlying the response. Nine subjects were tested for twitch, tetanic, submaximal (30%), and maximal voluntary contractile (MVC) properties before and after (1, 5, 10, and 15 minutes) one to three 10-second MVCs. MVC force either did not change following 1-2 MVCs or was depressed at 10 and 15 minutes after 3 MVCs. MVC activation was decreased (4.4-6.9%) throughout recovery, whereas submaximal contractions were minimally affected. Although overall, twitches were potentiated (15.5-19.8%) posttest, 3 MVCs had significantly greater twitch potentiation than 1 or 2 MVCs at 5 and 10 minutes. Results suggest that voluntary and evoked contractions respond differently to prior 10-second MVCs. In the present study, a warm-up routine of 1-3 MVCs of a 10-second duration did not enhance subsequent voluntary performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号