首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nipah virus (NiV) is a deadly emerging paramyxovirus. The NiV attachment (NiV-G) and fusion (NiV-F) envelope glycoproteins mediate both syncytium formation and viral entry. Specific N-glycans on paramyxovirus fusion proteins are generally required for proper conformational integrity and biological function. However, removal of individual N-glycans on NiV-F had little negative effect on processing or fusogenicity and has even resulted in slightly increased fusogenicity. Here, we report that in both syncytium formation and viral entry assays, removal of multiple N-glycans on NiV-F resulted in marked increases in fusogenicity (>5-fold) but also resulted in increased sensitivity to neutralization by NiV-F-specific antisera. The mechanism underlying the hyperfusogenicity of these NiV-F N-glycan mutants is likely due to more-robust six-helix bundle formation, as these mutants showed increased fusion kinetics and were more resistant to neutralization by a fusion-inhibitory reagent based on the C-terminal heptad repeat region of NiV-F. Finally, we demonstrate that the fusogenicities of the NiV-F N-glycan mutants were inversely correlated with the relative avidities of NiV-F's interactions with NiV-G, providing support for the attachment protein "displacement" model of paramyxovirus fusion. Our results indicate that N-glycans on NiV-F protect NiV from antibody neutralization, suggest that this "shielding" role comes together with limiting cell-cell fusion and viral entry efficiencies, and point to the mechanisms underlying the hyperfusogenicity of these N-glycan mutants. These features underscore the varied roles that N-glycans on NiV-F play in the pathobiology of NiV entry but also shed light on the general mechanisms of paramyxovirus fusion with host cells.  相似文献   

3.
HIV-1 entry inhibitors: evading the issue.   总被引:12,自引:0,他引:12  
  相似文献   

4.
The ectodomain of HIV-1 gp41 mediates the fusion of viral and host cellular membranes. The peptide-based drug Enfuvirtide1 is precedent that antagonists of this fusion activity may act as anti HIV-agents. Here, NMR screening was used to discover non-peptide leads against this target and resulted in the discovery of a new benzamide 1 series. This series is non-peptide, low molecular weight, and analogs have activity in a cell fusion assay with EC50 values ranging 3–41 μM. Structural work on the gp41/benzamide 1 complex was determined by NMR spectroscopy using a designed model peptide system that mimics an open pocket of the fusogenic form of the protein.  相似文献   

5.
Vaccinia virus l1 protein is required for cell entry and membrane fusion   总被引:1,自引:1,他引:0  
Genetic and biochemical studies have provided evidence for an entry/fusion complex (EFC) comprised of at least eight viral proteins (A16, A21, A28, G3, G9, H2, J5, and L5) that together with an associated protein (F9) participates in entry of vaccinia virus (VACV) into cells. The genes encoding these proteins are conserved in all poxviruses, are expressed late in infection, and are components of the mature virion membrane but are not required for viral morphogenesis. In addition, all but one component has intramolecular disulfides that are formed by the poxvirus cytoplasmic redox system. The L1 protein has each of the characteristics enumerated above except that it has been reported to be essential for virus assembly. To further investigate the role of L1, we constructed a recombinant VACV (vL1Ri) that inducibly expresses L1. In the absence of inducer, L1 synthesis was repressed and vL1Ri was unable to form plaques or produce infectious progeny. Unexpectedly, assembly and morphogenesis appeared normal and the noninfectious virus particles were indistinguishable from wild-type VACV as determined by transmission electron microscopy and analysis of the component polypeptides. Notably, the L1-deficient virions were able to attach to cells but the cores failed to penetrate into the cytoplasm. In addition, cells infected with vL1Ri in the absence of inducer did not form syncytia following brief low-pH treatment even though extracellular virus was produced. Coimmunoprecipitation experiments demonstrated that L1 interacted with the EFC and indirectly with F9, suggesting that L1 is an additional component of the viral entry apparatus.  相似文献   

6.
HIV-1 membrane fusion: targets of opportunity   总被引:1,自引:0,他引:1  
  相似文献   

7.
J Hua  B R Cullen 《Journal of virology》1997,71(9):6742-6748
Although the Nef proteins encoded by human immunodeficiency virus type 1 (HIV-1) and simian immuno-deficiency virus (SIV) are known to induce the efficient internalization and degradation of cell surface CD4, it remains unclear whether this process involves a direct interaction between Nef and CD4. Here, we report that CD4 downregulation by HIV-1 and SIV Nef requires distinct but overlapping target sites within the CD4 intracytoplasmic domain. In particular, mutation of a glutamic acid residue located at CD4 residue 405 or of arginine and methionine residues located, respectively, at residue 406 and 407 results in a mutant CD4 protein that is efficiently downregulated by HIV-1 Nef but refractory to downregulation by SIV Nef. However, both HIV-1 and SIV Nef require an isoleucine located at residue 410 and the dileucine motif found at CD4 residues 413 and 414. CD4 downregulation induced by the Nef protein encoded by HIV-2 is shown to require a CD4 target sequence that is similar to, but distinct from, that observed with SIV Nef. These data explain the previous finding that the murine CD4 protein, which has an alanine at residue 405, is refractory to downregulation by SIV, but not HIV-1, Nef (J. L. Foster, S.J. Anderson, A. L. B. Frazier, and J. V. Garcia, Virology 201:373-379, 1994). In addition, these observations provide strong genetic support for the hypothesis that the Nef-mediated downregulation of cell surface CD4 requires a direct Nef-CD4 interaction.  相似文献   

8.
The HIV-1 gp41 protein promotes viral entry by mediating the fusion of viral and cellular membranes. A prominent pocket on the surface of a central trimeric coiled coil within gp41 was previously identified as a potential target for drugs that inhibit HIV-1 entry. We designed a peptide, IQN17, which properly presents this pocket. Utilizing IQN17 and mirror-image phage display, we identified cyclic, D-peptide inhibitors of HIV-1 infection that share a sequence motif. A 1.5 A cocrystal structure of IQN17 in complex with a D-peptide, and NMR studies, show that conserved residues of these inhibitors make intimate contact with the gp41 pocket. Our studies validate the pocket per se as a target for drug development. IQN17 and these D-peptide inhibitors are likely to be useful for development and identification of a new class of orally bioavailable anti-HIV drugs.  相似文献   

9.
HIV-1 entry inhibitors in the side pocket.   总被引:8,自引:0,他引:8  
J G Sodroski 《Cell》1999,99(3):243-246
  相似文献   

10.
DC-SIGN is a C-type lectin that binds to endogenous adhesion molecules ICAM-2 and ICAM-3 as well as the viral envelope glycoprotein human immunodeficiency virus, type 1, glycoprotein (gp) 120. We wished to determine whether DC-SIGN binds differently to its endogenous ligands ICAM-2 and ICAM-3 versus HIV-1 gp120. We found that recombinant soluble DC-SIGN bound to gp120-Fc more than 100- and 50-fold better than ICAM-2-Fc and ICAM-3-Fc, respectively. This relative difference was maintained using DC-SIGN expressed on three different CD4-negative cell lines. Although the cell surface affinity for gp120 varied by up to 4-fold on the cell lines examined, the affinity for gp120 was not a correlate of the ability of the cell line to transfer virus. Monosaccharides with equatorial 4-OH groups competed as well as D-mannose for gp120 binding to DC-SIGN, regardless of how the other hydroxyl groups were positioned. Disaccharide competitors and glycan chip analysis showed that DC-SIGN has a preference for oligosaccharides linked in an alpha-anomeric configuration. Alanine-scanning mutagenesis of DC-SIGN revealed that highly conserved residues that coordinate calcium (Asp-366) and/or are involved in both calcium and specific carbohydrate interactions (Glu-347, Asn-349, Glu-354, and Asp-355) significantly compromised binding to all three ligands. Mutating non-conserved residues (Asn-311, Arg-345, Val-351, Gly-352, Glu-353, Ser-360, Gly-361, and Asn-362) minimally affected binding except for the Asp-367 mutant, which enhanced gp120 binding but diminished ICAM-2 and ICAM-3 binding. Conversely, mutating the moderately conserved residue (Gly-346) abrogated gp120 binding but enhanced ICAM-2 and ICAM-3 binding. Thus, DC-SIGN appears to bind in a distinct but overlapping manner to gp120 when compared with ICAM-2 and ICAM-3.  相似文献   

11.
The initial step of human immunodeficiency virus type 1 (HIV-1) infection has been studied by Env-mediated fusion or entry assays with appropriate cells expressing CD4 or CXCR4/CCR5 receptors in cultures, where many factors underlying cellular activities likely regulate the fusion/entry efficiency. Here we attempted to develop a more simplified in vitro cell-free fusion/entry reaction that mimics HIV-1 infection in cultures. Membrane fragments of target cells and intact infectious HIV-1 particles were purified, mixed and incubated. The core p24 protein was released from the purified virions and detected by ELISA without detergents in the supernatant of the reaction mixtures. This release reaction proceeded temperature-dependently and in a dose-dependent manner between the virion and membrane fractions, and was specific for HIV-1 Env and CD4. Env-deleted or VSV-G-pseudotyped HIV-1 released little p24, if any. Pretreatment of the membrane fragments with anti-CD4 antibodies inhibited the p24 induction from both X4-tropic and R5-tropic HIV-1. Furthermore, X4 but not R5 HIV-1 reacted with the membrane prepared from intrinsically CXCR4-positive HeLa-CD4 cells, whereas both viruses reacted with that prepared from CCR5-transduced HeLa-CD4 cells, indicating that this cell-free reaction mimics coreceptor usage of HIV-1 infection. Therefore, a potent entry inhibitor of X4 HIV-1, SDF-1alpha, blocked the release from X4 but not R5 HIV-1. Inversely, a weak entry inhibitor of R5 HIV-1, MIP-1beta, partially affected only the release from R5 HIV-1. These results suggest that this cell-free reaction system provides a useful tool to study biochemical fusion/entry mechanisms of HIV-1 and its inhibitors.  相似文献   

12.
Peptides derived from the N- (N-HR) and C- (C-HR) terminal heptad repeat regions adjacent to the fusion peptide and transmembrane domains, respectively, of human immunodeficiency virus (HIV)-1 gp41 inhibit HIV-1 viral envelope glycoproteins (Env)-mediated cell fusion specifically. The mechanism of HIV-1 Env-mediated cell fusion and its inhibition by agents that target the N- and C-HR regions was investigated. Priming experiments with Env-expressing cells indicate that the N-HR region but not the C-HR region is exposed by treatment with sCD4 at 31 degrees C, whereas both the N- and C-HR regions are exposed at 37 degrees C.  相似文献   

13.
Betulinic acid derivatives modified at the C28 position are HIV-1entry inhibitors such as compound A43D; however, modified at the C3 position instead of C28 give HIV-1 maturation inhibitor such as bevirimat. Bevirimat exhibited promising pharmacokinetic profiles in clinical trials, but its effectiveness was compromised by the high baseline drug resistance of HIV-1 variants with polymorphism in the putative drug binding site. In an effort to determine whether the viruses with bevirimat resistant polymorphism also altered their sensitivities to the betulinic acid derivatives that inhibit HIV-1 entry, a series of new betulinic acid entry inhibitors were synthesized and tested for their activities against HIV-1 NL4-3 and NL4-3 variants resistant to bevirimat. The results show that the bevirimat resistant viruses were approximately 5- to10-fold more sensitive to three new glutamine ester derivatives (13, 15 and 38) and A43D in an HIV-1 multi-cycle replication assay. In contrast, the wild type NL4-3 and the bevirimat resistant variants were equally sensitive to the HIV-1 RT inhibitor AZT. In addition, these three new compounds markedly improved microsomal stability compared to A43D.  相似文献   

14.
Activity regulated neurotransmission shapes the computational properties of a neuron and involves the concerted action of many proteins. Classical, intuitive working models often assign specific proteins to specific steps in such complex cellular processes, whereas modern systems theories emphasize more integrated functions of proteins. To test how often synaptic proteins participate in multiple steps in neurotransmission we present a novel probabilistic method to analyze complex functional data from genetic perturbation studies on neuronal secretion. Our method uses a mixture of probabilistic principal component analyzers to cluster genetic perturbations on two distinct steps in synaptic secretion, vesicle priming and fusion, and accounts for the poor standardization between different studies. Clustering data from 121 perturbations revealed that different perturbations of a given protein are often assigned to different steps in the release process. Furthermore, vesicle priming and fusion are inversely correlated for most of those perturbations where a specific protein domain was mutated to create a gain-of-function variant. Finally, two different modes of vesicle release, spontaneous and action potential evoked release, were affected similarly by most perturbations. This data suggests that the presynaptic protein network has evolved as a highly integrated supramolecular machine, which is responsible for both spontaneous and activity induced release, with a group of core proteins using different domains to act on multiple steps in the release process.  相似文献   

15.
艾滋病已在世界范围内给人类健康和社会发展带来了严重影响.抑制HIV-1与细胞膜融合的多肽抑制剂由于其分子量小、结构简单、生物毒性低和作用效果明显等优点而受到研究者的重视.针对HIV-1与细胞的融合过程中涉及gp160的分裂、gp120与CD4受体及辅助受体的结合、gp41自身的折叠及与细胞膜的并列与融合等步骤,可以设计一些新的多肽药物靶点,以达到阻止HIV-1侵入的目的.目前针对上述三步骤已分别设计出了相应的多肽抑制剂,如M3、HRPs、CD4M、S肽、DAPTA及C22等,这些多肽抑制剂在体外实验、动物实验或临床实验中均表现出较好的抑制HIV-1与细胞融合的能力,具有十分巨大的潜在应用前景.  相似文献   

16.
CXCR4 and CCR5 are the principal coreceptors for human immunodeficiency virus type-1 (HIV-1) infection. Previously, mutagenesis of CXCR4 identified single amino acid changes that either impaired CXCR4's coreceptor activity for CXCR4-dependent (X4) isolate envelope glycoproteins (Env) or expanded its activity, allowing it to serve as a functional coreceptor for CCR5-dependent (R5) isolates. The most potent of these point mutations was an alanine substitution for the aspartic acid residue at position 187 in extracellular loop 2 (ecl-2), and here we show that this mutation also permits a variety of primary R5 isolate Envs, including those of other subtypes (clades), to employ it as a coreceptor. We also examined the corresponding region of CCR5 and demonstrate that the substitution of the serine residue in the homologous ecl-2 position with aspartic acid impairs CCR5 coreceptor activity for isolates across several clades. These results highlight a homologous and critical element in ecl-2, of both the CXCR4 and CCR5 molecules, for their respective coreceptor activities. Charge elimination expands CXCR4 coreceptor activity, while a similar charge introduction can destroy the coreceptor function of CCR5. These findings provide further evidence that there are conserved elements in both CXCR4 and CCR5 involved in coreceptor function.  相似文献   

17.
HIV-1 envelope glycoproteins (Envs) mediate virus entry by fusing the viral and target cell membranes, a multi-step process that represents an attractive target for inhibition. Entry inhibitors with broad-range activity against diverse isolates of HIV-1 may be extremely useful as lead compounds for the development of therapies or prophylactic microbicides. To facilitate the identification of such inhibitors, we have constructed a cell-cell fusion system capable of simultaneously monitoring inhibition efficiency and specificity. In this system, effector cells stably express a tetracycline-controlled transactivator (tTA) that enables tightly inducible expression of both HIV-1 Env and the Renilla luciferase (R-Luc) reporter protein. Target cells express the HIV-1 receptors, CD4 and CCR5, and carry the firefly luciferase (F-Luc) reporter gene under the control of a tTA-responsive promoter. Thus, Env-mediated fusion of these two cell types allows the tTA to diffuse to the target cell and activate the expression of the F-Luc protein. The efficiency with which an inhibitor blocks cell-cell fusion is measured by a decrease in the F-Luc activity, while the specificity of the inhibitor is evaluated by its effect on the R-Luc activity. The system exhibited a high dynamic range and high Z'-factor values. The assay was validated with a reference panel of inhibitors that target different steps in HIV-1 entry, yielding inhibitory concentrations comparable to published virus inhibition data. Our system is suitable for large-scale screening of chemical libraries and can also be used for detailed characterization of inhibitory and cytotoxic properties of known entry inhibitors.  相似文献   

18.
Formation of coated vesicles requires two striking manipulations of the lipid bilayer. First, membrane curvature is induced to drive bud formation. Second, a scission reaction at the bud neck releases the vesicle. Using a reconstituted system for COPI vesicle formation from purified components, we find that a dimerization-deficient Arf1 mutant, which does not display the ability to modulate membrane curvature in vitro or to drive formation of coated vesicles, is able to recruit coatomer to allow formation of COPI-coated buds but does not support scission. Chemical cross-linking of this Arf1 mutant restores vesicle release. These experiments show that initial curvature of the bud is defined primarily by coatomer, whereas the membrane curvature modulating activity of dimeric Arf1 is required for membrane scission.  相似文献   

19.
Choi KS  Aizaki H  Lai MM 《Journal of virology》2005,79(15):9862-9871
Thorp and Gallagher first reported that depletion of cholesterol inhibited virus entry and cell-cell fusion of mouse hepatitis virus (MHV), suggesting the importance of lipid rafts in MHV replication (E. B. Thorp and T. M. Gallagher, J. Virol. 78:2682-2692, 2004). However, the MHV receptor is not present in lipid rafts, and anchoring of the MHV receptor to lipid rafts did not enhance MHV infection; thus, the mechanism of lipid rafts involvement is not clear. In this study, we defined the mechanism and extent of lipid raft involvement in MHV replication. We showed that cholesterol depletion by methyl beta-cyclodextrin or filipin did not affect virus binding but reduced virus entry. Furthermore, MHV spike protein bound to nonraftraft membrane at 4 degrees C but shifted to lipid rafts at 37 degrees C, indicating a redistribution of membrane following virus binding. Thus, the lipid raft involvement in MHV entry occurs at a step following virus binding. We also found that the viral spike protein in the plasma membrane of the infected cells was associated with lipid rafts, whereas that in the Golgi membrane, where MHV matures, was not. Moreover, the buoyant density of the virion was not changed when MHV was produced from the cholesterol-depleted cells, suggesting that MHV does not incorporate lipid rafts into the virion. These results indicate that MHV release does not involve lipid rafts. However, MHV spike protein has an inherent ability to associate with lipid rafts. Correspondingly, cell-cell fusion induced by MHV was retarded by cholesterol depletion, consistent with the association of the spike protein with lipid rafts in the plasma membrane. These findings suggest that MHV entry requires specific interactions between the spike protein and lipid rafts, probably during the virus internalization step.  相似文献   

20.
Binding of the human immunodeficiency virus (HIV-1) envelope glycoprotein gp120 to the CCR5 co-receptor reduces constraints on the metastable transmembrane subunit gp41, thereby enabling gp41 refolding, fusion of viral and cellular membranes, and infection. We previously isolated adapted HIV-1JRCSF variants that more efficiently use mutant CCR5s, including CCR5(Δ18) lacking the important tyrosine sulfate-containing amino terminus. Effects of mutant CCR5 concentrations on HIV-1 infectivities were highly cooperative, implying that several may be required. However, because wild-type CCR5 efficiently mediates infections at trace concentrations that were difficult to measure accurately, analyses of its cooperativity were not feasible. New HIV-1JRCSF variants efficiently use CCR5(HHMH), a chimera containing murine extracellular loop 2. The adapted virus induces large syncytia in cells containing either wild-type or mutant CCR5s and has multiple gp120 mutations that occurred independently in CCR5(Δ18)-adapted virus. Accordingly, these variants interchangeably use CCR5(HHMH) or CCR5(Δ18). Additional analyses strongly support a novel energetic model for allosteric proteins, implying that the adaptive mutations reduce quaternary constraints holding gp41, thus lowering the activation energy barrier for membrane fusion without affecting bonds to specific CCR5 sites. In accordance with this mechanism, highly adapted HIV-1s require only one associated CCR5(HHMH), whereas poorly adapted viruses require several. However, because they are allosteric ensembles, complexes with additional co-receptors fuse more rapidly and efficiently than minimal ones. Similarly, wild-type HIV-1JRCSF is highly adapted to wild-type CCR5 and minimally requires one. The adaptive mutations cause resistances to diverse entry inhibitors and cluster appropriately in the gp120 trimer interface overlying gp41. We conclude that membrane fusion complexes are allosteric machines with an ensemble of compositions, and that HIV-1 adapts to entry limitations by gp120 mutations that reduce its allosteric hold on gp41. These results provide an important foundation for understanding the mechanisms that control membrane fusion and HIV-1's facile adaptability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号