首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
《BBA》1986,850(1):156-161
The orientation of the various absorbing and fluorescing dipoles in Photosystem II have been investigated by linearly polarized light spectroscopy at 5 K, performed on macroscopically oriented PS II complexes derived from Chlamydomonas reinhardtii. Linear dichroism and absorption spectra show that the QY transitions of the chlorophyll molecules are mostly tilted at less than 35° from the plane of largest cross-section of the particle (which in vivo coincides with the plane of the thylakoid membrane). The chlorophyll forms absorbing at 676 and 683 nm are oriented closer to the membrane than the forms absorbing at 665 and 670 nm which are tilted at approximately 35° from the plane. A dip observed around 680 nm in the LD/absorption spectra indicates a component tilted at a larger angle away from the membrane plane than the 676 nm- and 683 nm-absorbing species. A component weakly absorbing around 693 nm and exhibiting a negative LD (tilt larger than 35°) is clearly resolved. The amplitude of the LD at 693 nm relative to that observed at the maximum (676 nm) varies from sample to sample. In the blue spectral region, two populations of carotenoids are observed; one absorbs around 460 and 490 nm, while the other absorbs around 510 nm. They are oriented out of and near to the thylakoid plane, respectively. Comparison of polarized absorption and fluorescence spectra from the same oriented samples allows the assignment of the 695 nm fluorescence emission to the dipoles responsible for the LD signal at 693 nm.  相似文献   

2.
《BBA》1985,810(2):235-245
Linear dichroism (LD) and absorption (A) spectra of reaction centers from Rhodopseudomonas viridis included in the native chromatophores or reconstituted in planar aggregates have been recorded at 10 K. The samples were oriented in squeezed polyacrylamide gels and the primary donor P was in the reduced or (chemically) oxidized state. The LD spectra of reaction centers in these two states are in favor of a dimeric model of P in which excitonic coupling between the two non-parallel QY transitions leads to a main transition at 990 nm (parallel to the membrane plane) and another one of smaller oscillator strength at 850 nm (tilted at approx. 60° out of the membrane plane). These assignments are in close agreement with the ones proposed in a previous LD study at room temperature (Paillotin, G., Verméglio, A. and Breton, J. (1979) Biochim. Biophys. Acta 545, 249–264). The main QX excitonic component of P has a broad absorption peaking at 620 nm and it corresponds to dipoles exhibiting the same orientation as those responsible for the 850 nm transition. On the basis of the present LD study and of CD data of chemically oxidized-minus-reduced reaction centers, we proposed that the minor QX excitonic component of P is oriented close to the membrane plane and absorbs around 660 nm. The two monomeric bacteriochlorophylls exhibit a positive LD for both their QY transitions (unresolved at 834 nm) and their QX transitions (resolved at 600 and 607 nm), indicating that the planes of these molecules are only slightly tilted out of the membrane plane. The two bacteriopheophytins exhibit strong negative LD with identical LD/A values for their QY transitions (resolved at 790 and 805 nm) and small positive LD for their QX transitions (resolved at 534 and 544 nm), demonstrating that these two molecules are strongly tilted out of the membrane plane with each of the QY transitions tilted at approx. 50° out of that plane. A comparison of these LD data with the structural model derived from X-ray crystallography (Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) J. Mol. Biol. 180, 385–398) clearly suggests that a good agreement exists between the results of the two techniques under the following conditions: (i) the C-2 symmetry axis of the reaction center runs along the membrane normal; (ii) excitonic coupling is present only in the primary donor special pair; and (iii) the direction of the optical transitions of the monomeric bacteriochlorophylls and of the bacteriopheophytins is not significantly perturbed by the interactions among the pigments. In addition, a carotenoid is detected in the isolated reaction center with an orientation rather perpendicular to the C-2 symmetry axis. Finally, a comparison of these data with similar ones obtained on the bacteriochlorophyll a-containing reaction center of Rhodopseudomonas sphaeroides 241 points towards a geometrical arrangement of the chromophores which is indistinguishable from the one observed in the reaction center of Rps. viridis.  相似文献   

3.
The reaction center of photosystem 2 has been highly purified from digitonin-solubilized thylakoid membranes of the thermophilic cyanobacterium Synechococcus sp. by means of sucrose density gradient centrifugation and electrophoresis on polyacrylamide gels containing digitonin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of isolated reaction center complex yielded four chlorophyll a proteins named CP2-a, CP2-b, CP2-c, and CP2-d. When reelectrophoresed, CP2-a was transformed to CP2-d, and CP2-b was converted to CP2-a and CP2-d. The reaction center complex consisted of two major polypeptides of 47,000 and 40,000 Da and several minor polypeptides. CP2-b contained a 47,000-Da polypeptide together with 66,000- and 31,000-Da polypeptides, while CP2-a and CP2-d had only a 47,000-Da polypeptide. The apoprotein of CP2-c was a 40,000-Da polypeptide. Absorption spectra of CP2-a, -b, and -d were similar to each other but distinctly different from those of CP2-c at liquid nitrogen temperature. The reaction center complex showed two fluorescence emission bands at 686 and 694 nm at 77 degrees K. CP2-a, -b, and -d emitted the band at 694 nm, whereas the fluorescence peak at 686 nm was associated with CP2-c. It is concluded that the photosystem 2 reaction center complex contains two chlorophyll-binding subunits, CP2-d (or CP2-a) which may be the site of the primary photochemistry of photosystem 2 and CP2-c which may function as the antenna of the reaction center of photosystem 2.  相似文献   

4.
The absorption and linear dichroism (LD) spectra (380–780 nm) of isolated light-harvesting complex (LHC), Photosystem I (PS I), Photosystem II (PS II), as well as intact thylakoids have been determined at 300 and 100 K. The samples were oriented in squeezed polyacrylamide gel. The low-temperature spectra of LHC and PS I present LD signals which are characteristic enough to be recognized in the LD spectrum of thylakoids. Tentative assignments of the various features of the LD spectra to the major photosynthetic pigments are discussed. A shoulder in the low-temperature absorption spectra is observed at about 673 nm in all the systems under investigation. The absence of an associated LD signal suggests that this ubiquitous chlorophyll (Chl) a form is non-dichroic. Furthermore, in the three isolated chlorophyll-protein complexes described in this study the sign of the LD signal indicates that both the Qy transition of the Chl a and the carotenoid molecules are preferentially oriented parallel to the largest dimension(s) of the particles.  相似文献   

5.
The orientation of pigments and pigment-protein complexes of the green photosynthetic bacterium Prosthecochloris aestuarii was studied by measurement of linear dichroism spectra at 295 and 100 K. Orientation of intact cells and membrane vesicles (Complex I) was obtained by drying on a glass plate. The photochemically active pigment-protein complexes (photosystem-protein complex and reaction center pigment-protein complex) and the antenna bacteriochlorophyll a protein were oriented by pressing a polyacrylamide gel. The data indicate that the near-infrared transitions (Qy) of bacteriochlorophyll c and most bacteriochlorophyll a molecules have a relatively parallel orientation to the membrane, whereas the Qy transitions of the bacteriochlorophyll a in the antenna protein are oriented predominantly perpendicularly to the membrane. Carotenoids and the Qx transitions (590–620 nm) of bacteriochlorophyll a, not belonging to the bacteriochlorophyll a protein, have a relatively perpendicular orientation to the membrane. The absorption and linear dichroism spectra indicate the existence of different pools of bacteriochlorophyll c in the chlorosomes and of carotenoid and bacteriopheophytin c in the cell membrane. The results suggest that the photosystem-protein and reaction center pigment-protein complexes are oriented with their short axes approximately perpendicular to the plane of the membrane. The symmetry axis of the bacteriochlorophyll a protein has an approximately perpendicular orientation.  相似文献   

6.
Linear and circular dichroism spectra of isolated bacteriochlorophyll a proteins (FMO proteins) and membrane vesicles containing FMO protein from the green sulfur bacterium Chlorobium tepidum were measured at room temperature and 77 K. The orientation of membranes and isolated FMO protein was obtained by gel squeezing. Linear dichroism (LD) data indicate that isolated FMO protein and membrane vesicles associated with the FMO protein are oriented in a similar way in a squeezed polyacrylamide gel. Both samples show a characteristic negative LD band around 814 nm with flanking positive bands at 802 and 824 nm ascribed to the Qy excitonic transitions of BChl a of the FMO protein. This confirms that the C3 symmetry axis of the trimer is perpendicular to the membrane plane, which is supported by the model of the disc-like structure of FMO protein trimers of Cb. tepidum [Li Yi-Fen, Zhou W, Blankenship RE, and Allen JP (1997) J Mol Biol 272: 456–471]. The LD data are consistent with either BChl 3 or 6, but not 7 as the principal contributor to the low temperature band at 825 nm. The low temperature linear and circular dichroism spectra of FMO protein trimers from Chlorobium tepidum show significant differences from the low temperature LD and CD spectra of FMO protein trimers from Prosthecochloris aestuarii. The data are interpreted in terms of somewhat different pigment-protein and pigment-pigment interactions in the two complexes.  相似文献   

7.
John Biggins  Jan Svejkovsky 《BBA》1980,592(3):565-576
A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields.Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b (648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl ab ratio of approx. 6 and the LD spectrum was positive with a maximum at 690–694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack Chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid.  相似文献   

8.
Core antenna and reaction centre of photosytem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(−), 683-685(−), 696-697(−), and 711(−) nm are a common feature of used PSI complexes. The 77 K CD spectra of the trimeric PS I complexes exhibit also low amplitude components around 736 nm for A. platensis and 720 nm for T. elongatus attributed to red-most chlorophylls. The LD measurements indicate that the transition dipole moments of the red-most states are oriented parallel to the membrane plane. The formation of P700+A1 or 3P700 was monitored by time-resolved difference absorbance and LD spectroscopy to elucidate the spectral properties of the PS I reaction centre. The difference spectra give strong evidence for the delocalization of the excited singlet states in the reaction centre. Therefore, P700 cannot be considered as a dimer but should be regarded as a multimer of the six nearly equally coupled reaction centre chlorophylls in accordance with structure-based calculations. On the basis of the results presented in this work and earlier work in the literature it is concluded that the triplet state is localized most likely on PA, whereas the cation is localized most likely on PB.  相似文献   

9.
Low temperature (77 K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. PCC 6301 and those accompanying chromatic acclimation in Porphyridium cruentum in samples stabilized by glutaraldehyde fixation. In light state 2 compared to light state 1 intact cells of Synechococcus showed an increased alignment of allophycocyanin parallel to the cells' long axis whereas the phycobilisomethylakoid membrane fragments exhibited an increased allophycocyanin alignment parallel to the membrane plane. The phycobilisome-thylakoid membrane fragments showed less alignment of a short wave-length chlorophyll a (Chl a) Qy transition dipole parallel to the membrane plane in state 2 relative to state 1.To aid identification of the observed Chl a orientation changes in Synechococcus, linear dichroism spectra were obtained from phycobilisome-thylakoid membrane fragments isolated from red light-grown (increased number of PS II centres) and green light-grown (increased number of PS I centres) cells of the red alga Porphyridium cruentum. An increased contribution of short wavelength Chl a Qy transition dipoles parallel to the long axis of the membrane plane was directly correlated with increased levels of PS II centres in red light-grown P. cruentum.Our results indicate that the transition to state 2 in cyanobacteria is accompanied by an increase in the orientation of allophycocyanin and a decrease in the orientation of Chl a associated with PS II with respect to the thylakoid membrane plane.Abbreviations APC - allophycocyanin - Chl a - chlorophyll a - DCMU - 3-(3,4-dichlorophenyl)-1,1-dimethylurea - LD - linear dichroism - LD/A - linear dichroism divided by absorbance - LHC - light-harvesting complex - PBS - phycobilisome - PC - phycocyanin - PS - Photosystem  相似文献   

10.
A variety of unicellular algae, thylakoids from higher plants in different stages of maturity and isolated pigment-protein complexes were oriented in stretched polyvinyl alcohol films. Low temperature linear dichroism (LD) spectra of Chlorella pyrenoidosa and higher plant thylakoids in the films were very similar to those obtained after orientation of similar samples using magnetic or electric fields. Positive LD bands corresponding to Chl a (670) and (682) and negative bands due to Chl a (658) and Chl b(648) were resolved in spectra of the light harvesting Chl a/b protein. Chl b (648) and Chl a (658) and (670) were not seen in the LD spectrum of thylakoids from plants grown in intermittent light, the Chl b-less mutant of barley, Euglena gracilis or the cyanobacteria, Phormidium luridum and Anacystis nidulans, but did appear upon chloroplast maturation in Romaine lettuce and during the greening of etiolated and intermittent light plants. The highly oriented long wavelength Chl a (682) in the light-harvesting complex may represent residual PS II whose peak dichroism is centered at 681 nm. The PS I preparation had a Chl a/b ratio of approx. 6 and the LD spectrum was positive with a maximum at 690-694 nm and a band of lower amplitude at 652 nm. The minor LD band was not observed in PS I preparations from organisms that lack chl b such as the cyanobacteria, intermittent light plants and the Chl b-less mutant of barley. We suggest that the 652 nm band is due to Chl b molecules associated with the antenna of PS I and are distinct from those on the light harvesting complex whose orientation is different. We also conclude that all the Chl a forms are oriented and that the long geometric axes of the pigment-protein complexes, as deduced from the configuration they assume in the stretched films, are axes that normally lie parallel to the plane of the native thylakoid.  相似文献   

11.
Jacques Breton  Guy Paillotin 《BBA》1977,459(1):58-65
The light-induced transient absorbance changes which are affected by valinomycin have been studied using magnetically oriented spinach chloroplasts and a polarized measuring beam. The ΔA spectra for the two polarizations parallel and perpendicular to the plane of the photosynthetic membranes have been recorded in the spectral range 630–750 nm. Large polarization effects are found in all the bands of the ΔA spectrum, shifts in the position of the extrema are observed and the two spectra cross each other at various wavelengths. A comparison of these spectral features with available data on the dichroism of the Stark effect on monomolecular films of chlorophyll a and b indicates similarities favoring the already well documented hypothesis of the electrochromic nature of these absorbance changes in vivo.The data on this electrochromic effect can be correlated with the linear dichroism of oriented chloroplasts and the ΔA?ΔA spectrum in the 645–655 nm region gives further evidence of the orientation out of the membrane plane of the red transition moment of chlorophyll b.  相似文献   

12.
In order to obtain information on the organization of the pigment molecules in chlorophyll (Chl) a/b/c-containing organisms, we have carried out circular dichroism (CD), linear dichroism (LD) and absorption spectroscopic measurements on intact cells, isolated thylakoids and purified light-harvesting complexes (LHCs) of the prasinophycean alga Mantoniella squamata. The CD spectra of the intact cells and isolated thylakoids were predominated by the excitonic bands of the Chl a/b/c LHC. However, some anomalous bands indicated the existence of chiral macrodomains, which could be correlated with the multilayered membrane system in the intact cells. In the red, the thylakoid membranes and the LHC exhibited a well-discernible CD band originating from Chl c, but otherwise the CD spectra were similar to that of non-aggregated LHC II, the main Chl a/b LHC in higher plants. In the Soret region, however, an unusually intense (+) 441 nm band was observed, which was accompanied by negative bands between 465 and 510 nm. It is proposed that these bands originate from intense excitonic interactions between Chl a and carotenoid molecules. LD measurements revealed that the Q(Y) dipoles of Chl a in Mantoniella thylakoids are preferentially oriented in the plane of the membrane, with orientation angles tilting out more at shorter than at longer wavelengths (9 degrees at 677 nm, 20 degrees at 670 nm and 26 degrees at 662 nm); the Q(Y) dipole of Chl c was found to be oriented at 29 degrees with respect to the membrane plane. These data and the LD spectrum of the LHC, apart from the presence of Chl c, suggest an orientation pattern of dipoles similar to those of higher plant thylakoids and LHC II. However, the tendency of the Q(Y) dipoles of Chl b to lie preferentially in the plane of the membrane (23 degrees at 653 nm and 30 degrees at 646 nm) is markedly different from the orientation pattern in higher plant membranes and LHC II. Hence, our CD and LD data show that the molecular organization of the Chl a/b/c LHC, despite evident similarities, differs significantly from that of LHC II.  相似文献   

13.
Phycobilisomes from the nonchromatic adapting cyanobacterium Spirulina platensis are composed of a central core containing allophycocyanin and rods with phycocyanin and linker polypeptides in a regular array. Room temperature absorption spectra of phycobilisomes from this organism indicated the presence of phycocyanin and allophycocyanin. However, low temperature absorption spectra showed the association of a phycobiliviolin type of chromophore within phycobilisomes. This chromophore had an absorption maximum at 590 nanometers when phycobilisomes were suspended in 0.75 molar K-phosphate buffer (pH 7.0). Purified phycocyanin from this cyanobacterium was found to consist of three subparticles and the phycobiliviolin type of chromophore was associated with the lowest density subparticle. Circular dichroism spectra of phycocyanin subparticles also indicated the association of this chromophore with the lowest density subparticle. Absorption spectral analysis of α and β subunits of phycocyanin showed that phycobiliviolin type of chromophore was attached to the α subunit, but not the β subunit. Effect of light quality showed that green light enhanced the synthesis of this chromophore as analyzed from the room temperature absorption spectra of phycocyanin subparticles and subunits, while red or white light did not have any effect. Low temperature absorption spectra of phycobilisomes isolated from green, red, and white light conditions also indicated the enhancement of phycobiliviolin type of chromophore under green light.  相似文献   

14.
The linear dichroism (LD) spectra of the C-phycocyanin (C-PC) trimer disks oriented in poly(vinyl alcohol) films (PVA) at room temperature and at 95 K were determined. Utilizing the known atomic coordinates of the chromophores (Schirmer, T., Bode, W. and Huber, R. (1987) J. Mol. Biol. 196, 677-695) and theoretical estimates of the orientations of the transition dipole moments relative to the molecular framework, the LD spectra were simulated using the pairwise exciton interaction model of Sauer and Scheer (Biochim. Biophys. Acta 936 (1988) 157-170); in this model, the alpha 84 and beta 84 transition moments are coupled by an exciton mechanism, while the beta 155 chromophore remains uncoupled. Linear dichroism spectra calculated using this exciton model, as well as an uncoupled chromophore (molecular) model, were compared with experimental LD spectra. Satisfactory qualitative agreement can be obtained in both the exciton and molecular models using somewhat different relative values of the theoretically estimated magnitudes of the beta 155 oscillator strength. Because the relative contributions of each of the chromophores (and thus exciton components) to the overall absorption of the C-PC trimer are not known exactly, it is difficult to differentiate successfully between the molecular and exciton models at this time. The linear dichroism spectra of PC dodecamers derived from phycobilisomes of Nostoc sp. oriented in stretched PVA films closely resemble those of the C-PC trimers from Mastigocladus laminosus, suggesting that the phycocyanin chromophores are oriented in a similar manner in both cases, and that neither linker polypeptides nor the state of aggregation have a significant influence on these orientations and linear dichroism spectra. The LD spectra of oriented phycocyanins in stretched PVA films at low temperatures (95 K) appear to be of similar quality and magnitude as the LD spectra of single C-PC crystals (Schirmer, T. and Vincent, M.G. (1987) Biochim. Biophys. Acta 893, 379-385).  相似文献   

15.
Core antenna and reaction centre of photosystem I (PS I) complexes from the cyanobacteria Arthrospira platensis and Thermosynechococcus elongatus have been characterized by steady-state polarized absorption spectroscopy, including linear dichroism (LD) and circular dichroism (CD). CD spectra and the second derivatives of measured 77 K CD spectra reveal the spectral components found in the polarized absorption spectra indicating the excitonic origin of the spectral forms of chlorophyll in the PS I complexes. The CD bands at 669-670(+), 673(+), 680(-), 683-685(-), 696-697(-), and 711(-) nm are a common feature of used PSI complexes. The 77 K CD spectra of the trimeric PS I complexes exhibit also low amplitude components around 736 nm for A. platensis and 720 nm for T. elongatus attributed to red-most chlorophylls. The LD measurements indicate that the transition dipole moments of the red-most states are oriented parallel to the membrane plane. The formation of P700(+)A(1)(-) or (3)P700 was monitored by time-resolved difference absorbance and LD spectroscopy to elucidate the spectral properties of the PS I reaction centre. The difference spectra give strong evidence for the delocalization of the excited singlet states in the reaction centre. Therefore, P700 cannot be considered as a dimer but should be regarded as a multimer of the six nearly equally coupled reaction centre chlorophylls in accordance with structure-based calculations. On the basis of the results presented in this work and earlier work in the literature it is concluded that the triplet state is localized most likely on P(A), whereas the cation is localized most likely on P(B).  相似文献   

16.
CD spectra in the soret region of sickle-cell deoxyhemoglobin (deoxy-HbS) fiber gels are radically different from the CD of deoxy-HbS in solution. An explanation is found using the Stokes–Mueller representation of the interaction of a polarized beam with the instrument optical train and sample to derive expressions for the apparent CD of gels and suspensions of optically active molecules that consist of randomly oriented domains or particles that are linearly dichroic and linearly birefringent. These theoretical considerations show that the apparent CD spectra from such systems have contributions from the LD and birefringence of each domain even if no net linear birefringence and dichroism is apparent in the sample. Thus, the interpretation of the CD from gels and suspensions is problematic, unless it can be demonstrated that each domain or particle has extremely small absorbance or that the LD and birefringence of each is a very small fraction of the total absorbance. As a result, we conclude that the spectra of HbS gels are not due to the CD of the heme per se; rather, they also reflect the randomly oriented domain structure of the gels and the LD and linear birefringence associated with each domain.  相似文献   

17.
The transmembrane orientation of the human erythrocyte glucose transporter was assessed based on polarized Fourier transform infrared and ultraviolet circular dichroism spectroscopic data obtained from oriented multilamellar films of the reconstituted transporter vesicles. Infrared spectra revealed that there are distinct vibrations for alpha-helical structure while the vibrational frequencies specific to beta-structure are characteristically absent. Analysis of linear dichroism of the infrared spectra further indicated that these alpha-helices in the transporter are preferentially oriented perpendicular to the lipid bilayer plane forming an effective tilt of less than 38 degrees from the membrane normal. Such a preferential orientation was further supported by ultraviolet circular dichroism spectra which reveal that the 208 nm Moffit band found in the detergent-solubilized preparation is absent in the film preparation. Linear dichroism data further indicated that D-glucose, a typical substrate, further reduces this effective tilt angle slightly.  相似文献   

18.
Linear dichroism (LD) spectroscopy is an important technique in the study of the orientation and organization of pigments in the photosynthetic membrane complexes in vivo and in vitro. In this work, the orientation of the pigments in the isolated photosystem Ⅱ (PSⅡ) sub-core reaction center complexes was analyzed and characterized by means of low temperature absorption and LD spectroscopy. The preparations containing different amounts of CP47 isolated from spinach (Spinacia oleracea L.) chloroplast were used in order to investigate the orientation of pigments in the PSⅡ sub-core CP47/D1/D2/Cyt b-559 (CP47/D1/D2) complexes. Chlorophyll a (Chl a) absorbing at 680 nm in CP47/D1/D2/Cyt b-559 complex showed an orientation of the Q y transition parallel to the membrane plane. It is proposed that there are two forms of β-carotene (β-Car) in CP47/D1/D2/Cyt b-559 complex, denoted as β-Car (Ⅰ)and β-Car (Ⅱ), with different orientations, β-Car (Ⅰ) at 470 and 505 nm is roughly parallel to the membrane plane, and β-Car (Ⅱ) at 460 and 490 nm seems to be perpendicular orientation. Upon the photoinhibitory experiment β-Car (Ⅱ) was found to be photosensitive and easily photodamaged. It also showed that the positive LD signal observed at 680 nm was quite complicated. This signal is tentatively attributed to P680 and some Chl a of antenna in CP47 protein based upon our measurements.  相似文献   

19.
Herman J.M. Kramer  Jan Amesz 《BBA》1982,682(2):201-207
Spectra of fluorescence polarization were measured between 4 and 120 K of spinach chloroplasts, oriented in a magnetic field. At least seven emission bands were observed. The well known bands near 685 nm (‘F-685’) and 735–740 nm (‘F-735’) and the band near 680 nm (‘F-680’) were strongly polarized parallel to the plane of the thylakoid membrane, whereas emission bands near 695 nm (‘F-695’), 710, 730–735 and 760 nm showed perpendicular polarization. Assuming perfect orientation of the thylakoid membranes, we calculated orientation angles of 64, 47 and 66.5° for the emission dipoles of F-685, F-695 and F-735, respectively, with respect to the normal of the membrane. Excitation spectra of F-695 and F-735 in polarized light at 4 K provided information about the orientation of the absorption dipoles of chlorophylls a and b. The spectra thus obtained were in very good agreement with the linear dichroism spectrum. Moreover, they allowed us to distinguish between the pigments associated with Photosystems I and Ii, which is not possible from measurement of linear dichroism alone. The results indicate that a high degree of orientation is not confined to the long-wave absorbing bands, but also bands at shorter wavelength show a clear anisotropy. The calculated orientations were in quantitative agreement with the hypothesis that F-685 and F-735 are associated with chlorophylls absorbing at 676 and 710–715 nm, respectively.  相似文献   

20.
Bacteriochlorophyll a-protein from Prosthecochloris aestuarii strain 2K was oriented in a pulsed electric field. The room temperature linear dichroism spectrum of the oriented protein in the Qy region of the bacteriochlorophyll a absorption exhibits a single asymmetrical peak at 813 nm with a shoulder extending to the blue. The ≈12 nm fullwidth of the linear dichroism peak is only about half that of the 300 K absorption spectrum. The linear dichroism at 813 nm was not saturated at field strengths of up to 15 kV/cm. The time dependence of the linear dichroism suggests that the orienting particles are aggregates of at least some tens of bacteriochlorophyll a-protein trimers. The linear dichroism peak coincides in wavelength with the 813-nm peak of the 300 K, 4th derivative absorption spectrum of the protein and is therefore attributed to the bacteriochlorophyll a Qy exciton transition observed in absorption at the same wavelength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号