首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
(1) In isolated chloroplasts (class B) electron flow is controlled mainly by the intrathylakoid pH (pHin). A decrease in pHin due to the light-driven injection of protons inside the thylakoid leads to the retardation of electron flow between two photosystems. This effect can be abolished by uncouplers or under photophosphorylation conditions (addition of Mg2+-ADP with Pi); Mg2+-ATP does not influence the steady-state rate of electron flow, (2) The steady-state pH difference, ΔpH, across the thylakoid membrane was estimated from quantitative analysis of the rate of P-700+ reduction. In chloroplasts, without adding Mg2+-ADP, ΔpH increases from 1.6 to 3.2 as the external pH rises from 6 to 9.5. Under the photophosphorylation conditions, ΔpH decreases showing a minimum at the external pH 7.5 (ΔpH ? 0.5–1.0). (3) The value of photosynthetic control, K, measured as the ratio of the steady-state rates of P-700+ reduction in the presence of Mg2+-ADP (with Pi) and without adding Mg2+-ADP is dependent on external pH variations, showing a maximum value of K ? 3.5 at pHout 7.5. This pH dependence coincides with that of the ADP-stimulated ΔpH decrease. (4) Experiments with spin labels provide evidence that the light-induced changes in the thylakoid membrane are sensitive to the addition of uncouplers and are affected only slightly by the addition of Mg2+-ADP and Pi.  相似文献   

2.
U.I. Flügge  J. Gerber  H.W. Heldt 《BBA》1983,725(2):229-237
This report describes the influence of ΔpH on the transport of phosphate, triose phosphate and 3-phosphoglycerate catalyzed by the phosphate translocator in a reconstituted system. The H+ gradient across the liposome membrane is adjusted by the addition of external buffer solution and maintained for several minutes. The following results are obtained: (1) An inward directed H+ gradient leads to an increase of 3-phosphoglycerate transport and to a decrease of phosphate and triose phosphate transport. (2) An H+ gradient in the opposite direction results in a restriction of 3-phosphoglycerate influx whereas the influx of phosphate and triose phosphate is enhanced. (3) The magnitude of the pH effect depends on the internal substrate. Compared to the homoexchange mode, the effect of applied ΔpH is more pronounced in the heteroexchange mode. (4) Transport of phosphate and 3-phosphoglycerate is influenced by ΔpH in a different manner. In the case of phosphate and triose phosphate transport the observed effects are associated with changes in the apparent Km values whereas in the case of 3-phosphoglycerate transport the application of a pH gradient is linked to a change of Vmax. (5) In competition experiments with both substrates in the external medium, ΔpH influences the effect of phosphate as a competitive inhibitor of 3-phosphoglycerate transport whereas the effect of 3-phosphoglycerate on phosphate transport is not affected by a pH gradient. (6) The measured apparent Km and Vmax values under the influence of ΔpH can be used for the calculation of substrate fluxes across the envelope during illumination. It can be demonstrated that the increase of stromal pH in the light gives rise to a considerable change in the ratio of the substrates transported. Under conditions without pH gradient, the species transported out is mainly 3-phosphoglycerate and the species transported in is mainly triose phosphate. These fluxes are reversed when a pH gradient is applied (light conditions).  相似文献   

3.
John D. Mills  Peter Mitchell 《BBA》1984,764(1):93-104
Thiol modulation of the chloroplast protonmotive ATPase (CF0-CF1) by preillumination of broken chloroplasts in the presence of dithiothreitol (or preillumination of intact chloroplasts in the absence of added thiols) had the following effects on photophosphorylation. (1) When assayed at pH 8 and saturating light, the initial rate of photophosphorylation was increased by 10–40%. There was an accompanying increase in the rate of coupled electron transport with no significant change in the overall P2e ratio. (2) On lowering the pH of the assay medium to pH 7, the stimulatory effect of thiol modulation on photophosphorylation and coupled electron flow was enhanced. At pH 7, there was also a small increase in P2e ratio. (3) Addition of a non-saturating amount of uncoupler to the assay medium enhanced the stimulatory effect of thiol modulation on photophosphorylation. In the presence of 1 mM NH4Cl, there was only a small increase in coupled electron flow and a correspondingly larger increase in P2e ratio. (4) Lowering the light intensity, or inhibiting electron transport, diminished the stimulatory effect of thiol modulation on photophosphorylation, coupled electron transport and P2e ratio. (5) Under all the above conditions, the ΔpH maintained across the thylakoid membrane was lower after thiol modulation, even when photophosphorylation markedly increased in rate. (6) Thiol modulation of CF0-CF1 increased the observed Michaelis constant for ADP (Km(ADP)) and the apparent maximum rate (Vapp of photophosphorylation by the same factor, so that ratio VappKm was not altered. VappKm was also unaffected by changing the medium pH, but was significantly decreased upon addition of uncouplers to the medium. These results indicate that the observed rate of ATP synthesis catalysed by thiol demodulated chloroplasts is limited kinetically by the fraction (α) of enzyme molecules that are active during photophosphorylation. A model based on a dual pH optimum requirement for activation of CF0-CF1 is presented to explain the dependence of α on ΔpH. Thiol modulation of CF0-CF1 is proposed to stimulate photophosphorylation by causing the enzyme to become active over a lower range of ΔpH, thereby reducing the kinetic limitation on ATP synthesis imposed by the activation process.  相似文献   

4.
1. Both valinomycin and p-trifluoromethoxy carbonyl cyanide phenylhydrazone (FCCP) are required for full release of respiration by cytochrome c oxidase-containing proteoliposomes (prepared by sonicating beef heart cytochrome aa3 in salt solution with 4 parts phosphatidylcholine, 4 parts phosphatidylethanolamine and 2 parts cardiolipin) in the presence of external ascorbate and cytochrome c. In the absence of valinomycin the response to FCCP is rather sluggish, as reported by Wrigglesworth et al. (1976) (Abstracts, 10th Int. Congr. Biochem., No. 06-6-230).2. The Km for cytochrome c in 67 mM, pH 7.4, phosphate buffer with ascorbate as substrate, was 9 μM in both absence and presence of valinomycin and FCCP. Energization thus acts non-competitively towards cytochrome c oxidation.3. The apparent Km for oxygen is greater in the energized than in the deenergized state; double reciprocal plots of respiration rate versus oxygen concentration are concave downward in the absence of uncouplers, as found with intact mitochondria. Energization thus acts “competitively” towards oxygen.4. Despite the lack of a functional ATPase system, all the kinetic features of energization found in intact mitochondria can be mimicked in the reconstituted liposomes. This supports the chemiosmotic idea that electrical and perhaps H+ gradients modify the oxidase activity in reconstituted vesicles.  相似文献   

5.
Glutamine synthetase from the plant cytosol fraction of lupin nodules was purified 89-fold to apparent homogeneity. The enzyme molecule is composed of eight subunits of Mr 44,700 ± 10%. Kinetic analysis indicates that the reaction mechanism is sequential and there is some evidence that Mg-ATP is the first substrate to bind to the enzyme. Michaelis constants for each substrate using the ammonium-dependent biosynthetic reaction are as follows: ATP, 0.24 mm; l-glutamate, 4.0–4.2 mm; ammonium, 0.16 mm. Using an hydroxamate-forming biosynthetic reaction the Km ATP is 1.1 mm but the Km for l-glutamate is not altered. The effect of pH on the Km for ammonium indicates that NH3 rather than NH4+ may be the true substrate. At 10 mm Mg2+, the pH optimum of the enzyme is between 7.5 and 8, but increasing Mg2+ concentrations produce progressively more acidic optima while lower Mg2+ concentrations raise the pH optimum. The rate-response curve for Mg2+ is sigmoidal becoming bell-shaped in alkaline conditions. The enzyme is inhibited by l-Asp (Ki, 1.4 mm) and less markedly by l-Gln and l-Asn. Inhibition by ADP and AMP is strong, both nucleotides exhibiting Ki values around 0.3 mM. Investigations of the probable physiological conditions within the nodule plant cytosol indicate that in situ glutamine synthetase has an activity greater than that required to support the efflux of amino acid nitrogen from the nodule. A possible role for glutamine synthetase in the control of nodule ammonium assimilation is suggested.  相似文献   

6.
AMP-deaminase was purified to homogeneity from white skeletal muscle of control (resting) and exercised (1 min burst swimming) rainbow trout, Oncorhynchus mykiss. The enzyme showed a subunit molecular weight of 71,600 ± 550 kD, a Km AMP of 1.6–1.8 mM at pH 7, and was affected by allosteric inhibitors (GTP, IMP) amd activators (ADP, ATP). AMP-deaminase was inhibited by MgSO4 but activated by low concentrations of NaCl and KCl (100–150 mM); higher KCl was inhibitory. Exercise resulted in a stable modification of some properties (possibly via reversible phosphorylation); I50 values for IMP decreased by 65% and activation energies (from Arrhenius plots) changed significantly. Other properties were affected by assay pH: Km AMP decreased by 50% and Ka, ADP decreased by 70% when pH was lowered from pH 7.3 (typical of resting muscle) to pH 6.6 (muscle pH after exhaustive exercise). The data suggest that a stable modification of AMP-deaminase during exercise, coupled with effects of reduced cytosolic pH, could enhance enzyme function in the rapid conversion of AMP to IMP in working fish muscle.  相似文献   

7.
Kinetic properties of homogeneous preparations of pig kidney and pig muscle pyruvate kinases (EC 2.7.1.40) were studied. Both isozymes showed a hyperbolic relationship to ADP with an apparent Km of 0.3 mm. K+ and Mg2+ were necessary for the activity of both isozymes, and their dependences on these cations were similar. The muscle isozyme expressed Michaelis-Menten type of kinetics with respect to phosphoenolpyruvate, and the apparent Km was the same (0.03 mm) from pH 5.5 to pH 8.0. In contrast, the dependence on phosphoenolpyruvate changed with pH for the kidney isozyme. It showed similar properties to the muscle isozyme at pH 5.5–7.0 (apparent Km of 0.08 mm), while two apparent Km values for this substrate were present at pH 7.5–8.0, one low (0.1 mm) and one high (0.3–0.6 mm). At pH 7.5, fructose 1,6-bisphosphate converted the kidney isozyme to a kinetical form where only the lower apparent Km for phosphoenolpyruvate was detected. On the other hand, in the presence of alanine or phenylalanine the kidney pyruvate kinase showed only the higher Km for this substrate. At low phosphoenolpyruvate levels both isozymes were inhibited by phenylalanine, and half-maximal inhibition was found at 0.3 and 2.2 mm for the kidney and muscle isozymes, respectively. At a 5 mm concentration of the substrate only the kidney isozyme was inhibited, the apparent Ki being the same. Alanine inhibited the kidney isozyme (apparent Ki at 0.3 mm, irrespective of substrate concentration). No effect was seen on the muscle isozyme. Fructose 1,6-bisphosphate was an activator of the kidney isozyme at phosphoenolpyruvate concentrations below 1.0 mm It also counteracted the inhibition by alanine or phenylalanine of this isozyme. ATP inhibited both isozymes, and this inhibition was not counteracted by fructose 1,6-bisphosphate. The kidney isozyme showed both a high and a low apparent Km for phosphoenolpyruvate in the presence of ATP. The influence of the effectors on the activity of both isozymes varied markedly with pH, except for the action of ATP. At low substrate concentrations, however, the inhibitor action of ATP on the muscle enzyme was diminished around pH 7.5, in contrast to higher or lower pH values. Alanine or phenylalanine were more effective as inhibitors at higher pH values, and fructose 1,6-bisphosphate stimulated the kidney isozyme only at pH levels above pH 6.5. The influence of activators and inhibitors on the regulation of the kidney and muscle pyruvate kinases is discussed.  相似文献   

8.
Non-photochemical fluorescence quenching (NPQ) is mainly associated with the transthylakoid proton gradient (ΔpH) and xanthophyll cycle. However, the exact mechanism of NPQ is different in different oxygenic photosynthetic organisms. In this study, several inhibitors were used to study NPQ kinetics in the sea ice alga Chlamydomonas sp. ICE-L and to determine the functions of ΔpH and the xanthophyll cycle in the NPQ process. NH4Cl and nigericin, uncouplers of ΔpH, inhibited NPQ completely and zeaxanthin (Z) was not detected in 1 mM NH4Cl-treated samples. Moreover, Z and NPQ were increased in the samples containing N,N’-dicyclohexyl-carbodiimide (DCCD) under low light conditions. We conclude that ΔpH plays a major role in NPQ, and activation of the xanthophyll cycle is related to ΔpH. In dithiothreitol (DTT)-treated samples, no Z was observed and NPQ decreased. NPQ was completely inhibited when NH4Cl was added suggesting that part of the NPQ process is related to the xanthophyll cycle and the remainder depends on ΔpH. Moreover, lutein and β-carotene were also essential for NPQ. These results indicate that NPQ in the sea ice alga Chlamydomonas sp. ICE-L is mainly dependent on ΔpH which affects the protonation of PSII proteins and de-epoxidation of the xanthophyll cycle, and the transthylakoid proton gradient alone can induce NPQ.  相似文献   

9.
The dependence of the light-induced H+ gradient in chloroplasts (ΔpH) on external pH was examined using the distribution of aniline, an amine of low pKa. ΔpH was essentially independent of pH over the range of 7–8. It was previously reported that ΔpH, determined from the distribution of relatively polar amines of high pKa, decreased as the pH was lowered below 8. It is suggested that, in the case of amines of high pKa, ΔpH values determined at low external pH values are too low because the permeability of chloroplasts to the amine cation relative to that of the unprotonated form may be significant.  相似文献   

10.
A kinetic study of oxidative phosphorylation by pea submitochondrial particles gave two Km values for ADP, one low, the other high. The high value probably reflected a damaged site or a population of leaky mitochondria. Only the high affinity site with a low Km for ADP was involved in ATP synthesis. α,β-Methylene ADP was found to be a competitive inhibitor of ATP synthesis. The inorganic phosphate analog, thiophosphate, decreased the apparent Km of ADP while the rate of the reaction remained approximately the same. Adenyl imidodiphosphate, a specific inhibitor of ATP hydrolysis activity, had little effect on oxidative phosphorylation. A slight decrease in the Km of the high affinity binding site for ADP was noted. Aurovertin was found to be a potent inhibitor of oxidative phosphorylation in pea submitochondrial particles. The Km of the high affinity site was increased 10-fold. Also, the inhibition normally exerted by ADP on ATPase activity was severely reduced by aurovertin. In contrast, increasing the concentration of aurovertin only slightly affected the level of inhibition caused by adenyl imidodiphosphate on ATP hydrolysis.  相似文献   

11.
Raimund Noske  Flemming Cornelius 《BBA》2010,1797(8):1540-1545
Isothermal titration microcalorimetry (ITC) is shown here to be a sensitive and accurate method for assaying the steady-state enzyme activity of the Na+,K+-ATPase. Single ATP injection experiments yield an apparent enthalpy change for the ATP hydrolysis reaction catalyzed by the enzyme of −51 (± 1) kJ mol1. This value is independent of the amount of ADP accumulated in the sample cell, which indicates that under the experimental conditions studied here (saturating Na+ and K+ concentrations) ADP does not inhibit enzyme activity by reversal of the phosphorylation reaction and resynthesizing ATP. Multiple ATP injection titration experiments in which varying concentrations of ADP were initially included in the sample cell could be adequately explained by a Michaelis-Menten kinetic model incorporating noncompetitive inhibition. This suggests that ADP inhibits the enzyme by binding to more than one enzyme intermediate and inhibiting forward reactions of the enzyme. Values of Km and KI obtained for the fits agree with literature values obtained by other methods. Because ITC is a direct method of continually monitoring enzyme activity, it is a valuable supplement to less direct or noncontinuous methods such as colorimetric, enzyme-coupled or radioactivity-based assays.  相似文献   

12.
Sucrose synthase of soybean nodules   总被引:6,自引:6,他引:0  
Sucrose synthase (UDPglucose: d-fructose 2-α-d-glucosyl transferase, EC 2.4.1.13) has been purified from the plant cytosolic fraction of soybean (Glycine max L. Merr cv Williams) nodules. The native enzyme had a molecular weight of 400,000. The subunit molecular weight was 90,000 and a tetrameric structure is proposed for soybean nodule sucrose synthase. Optimum activity in the sucrose cleavage and synthesis directions was at pH 6 and pH 9.5 respectively, and the enzyme displayed typical Michaelis-Menten kinetics. Soybean nodule sucrose synthase had a high affinity for UDP (Km, 5 micromolar) and a relatively low affinity for ADP (apparent Km, 0.13 millimolar) and CDP (apparent Km, 1.1 millimolar). The Km for sucrose was 31 millimolar. In the synthesis direction, UDPglucose (Km, 0.012 millimolar) was a more effective glucosyl donor than ADPglucose (Km, 1.6 millimolar) and the Km for fructose was 3.7 millimolar. Divalent cations stimulated activity in both the cleavage and synthesis directions and the enzyme was very sensitive to inhibition by heavy metals.  相似文献   

13.
Degenerative diseases are in part based on elevated production of ROS (reactive oxygen species) in mitochondria, mainly during stress and excessive work under stress (strenuous exercise). The production of ROS increases with increasing mitochondrial membrane potential (ΔΨm). A mechanism is described which is suggested to keep ΔΨm at low values under normal conditions thus preventing ROS formation, but is switched off under stress and excessive work to maximize the rate of ATP synthesis, accompanied by decreased efficiency. Low ΔΨm and low ROS production are suggested to occur by inhibition of respiration at high [ATP]/[ADP] ratios. The nucleotides interact with phosphorylated cytochrome c oxidase (COX), representing the step with the highest flux-control coefficient of mitochondrial respiration. At stress and excessive work neural signals are suggested to dephosphorylate the enzyme and abolish the control of COX activity (respiration) by the [ATP]/[ADP] ratio with consequent increase of ΔΨm and ROS production. The control of COX by the [ATP]/[ADP] ratio, in addition, is proposed to increase the efficiency of ATP production via a third proton pumping pathway, identified in eukaryotic but not in prokaryotic COX. We conclude that ‘oxidative stress’ occurs when the control of COX activity by the [ATP]/[ADP] ratio is switched off via neural signals.  相似文献   

14.
The initial rates of ATP synthesis catalyzed by tightly coupled Paracoccus denitrificans plasma membrane were measured. The reaction rate was hyperbolically dependent on the substrates, ADP and inorganic phosphate (Pi). Apparent K m values for ADP and Pi were 7–11 and 60–120 μM, respectively, at saturating concentration of the second substrate (pH 8.0, saturating Mg2+). These values were dependent on coupling efficiency. The substrate binding in the ATP synthesis reaction proceeds randomly: K m value for a given substrate was independent of the concentration of the other one. A decrease of electrochemical proton gradient by the addition of malonate (when succinate served as the respiratory substrate) or by a decrease of steady-state level of NADH (when NADH served as the respiratory substrate) resulted in a proportional decrease of the maximal rates and apparent K m values for ADP and Pi (double substitution, ping-pong mechanism). The kinetic scheme for ATP synthesis was compared with that described previously for the proton-translocating ATP hydrolysis catalyzed by the same enzyme preparation (T. V. Zharova and A. D. Vinogradov (2006) Biochemistry, 45, 14552–14558).  相似文献   

15.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

16.
Succinate-driven reverse electron transport (RET) is one of the main sources of mitochondrial reactive oxygen species (mtROS) in ischemia-reperfusion injury. RET is dependent on mitochondrial membrane potential (Δψm) and transmembrane pH difference (ΔpH), components of the proton motive force (pmf); a decrease in Δψm and/or ΔpH inhibits RET. In this study we aimed to determine which component of the pmf displays the more dominant effect on RET-provoked ROS generation in isolated guinea pig brain and heart mitochondria respiring on succinate or α-glycerophosphate (α-GP). Δψm was detected via safranin fluorescence and a TPP+ electrode, the rate of H2O2 formation was measured by Amplex UltraRed, the intramitochondrial pH (pHin) was assessed via BCECF fluorescence. Ionophores were used to dissect the effects of the two components of pmf. The K+/H+ exchanger, nigericin lowered pHin and ΔpH, followed by a compensatory increase in Δψm that led to an augmented H2O2 production. Valinomycin, a K+ ionophore, at low [K+] increased ΔpH and pHin, decreased Δψm, which resulted in a decline in H2O2 formation. It was concluded that Δψm is dominant over ?pH in modulating the succinate- and α-GP-evoked RET. The elevation of extramitochondrial pH was accompanied by an enhanced H2O2 release and a decreased ?pH. This phenomenon reveals that from the pH component not ?pH, but rather absolute value of pH has higher impact on the rate of mtROS formation. Minor decrease of Δψm might be applied as a therapeutic strategy to attenuate RET-driven ROS generation in ischemia-reperfusion injury.  相似文献   

17.
Luit Slooten  Adriaan Nuyten 《BBA》1984,766(1):88-97
(1) Rates of ATP synthesis and ADP-arsenate synthesis catalyzed by Rhodospirillum rubrum chromatophores were determined with the firefly luciferase method and by a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase. (2) Vm for ADP-arsenate synthesis was about 2-times lower than Vm for ATP-synthesis. With saturating [ADP], K(Asi) was about 20% higher than K(Pi). With saturating [anion], K(ADP) was during arsenylation about 20% lower than during phosphorylation. (3) Plots of 1v vs. 1[substrate] were non-linear at low concentrations of the fixed substrate. The non-linearity was such as to suggest a positive cooperativity between sites binding the variable substrate, resulting in an increased VmKm ratio. High concentrations of the fixed substrate cause a similar increase in VmKm, but abolish the cooperativity of the sites binding the variable substrate. (4) Low concentrations of inorganic arsenate (Asi) stimulate ATP synthesis supported by low concentrations of Pi and ADP about 2-fold. (5) At high ADP concentrations, the apparent Ki of Asi for inhibition of ATP-synthesis was 2–3-times higher than the apparent Km of Asi for arsenylation; the apparent Ki of Pi for inhibition of ADP-arsenate synthesis was about 40% lower than the apparent Km of Pi for ATP synthesis. (6) The results are discussed in terms of a model in which Pi and Asi compete for binding to a catalytic as well as an allosteric site. The interaction between these sites is modulated by the ADP concentration. At high ADP concentrations, interaction between these sites occurs only when they are occupied with different species of anion.  相似文献   

18.
S1 nuclease (EC 3.1.30.1) of Aspergillus oryzae was found to catalyze the hydrolysis of 2′- or 3′-phosphomonoester groups from several mono- and oligonucleotides. The specificity of the enzyme for mononucleotide substrates was determined by steady-state kinetic measurements at pH 4.5. The values of V were similar for all ribonucleoside 3′-phosphates tested, and they were 50–400 times greater than those for the corresponding deoxyribonucleotides or ribonucleoside 2′-phosphates. Purine nucleotides had lower apparent Km values than pyrimidine nucleotides. Apparent Km values of mononucleotides were also strongly dependent on the type of sugar and the positions of phosphoryl groups. Substrate specificity, as expressed by VKm, occurred in the following order: ribonucleoside 3′,5′-bisphosphate > ribonucleoside 3′-phosphate > deoxyribonucleoside 3′,5'-bisphosphate > deoxyribonucleoside 3′-phosphate ≈ ribonucleoside 2′-phosphate. S1 nuclease also catalyzed the dephosphorylation of the dinucleotide ApAp at a high rate and the release of PPi from adenosine 3′-diphosphate 5′-phosphate at a low rate. The phosphomonoesterase activity of the enzyme was competitively inhibited by single-stranded DNA and 5′-nucleotides. Apparent Ki values for adenosine compounds occurred in the order ATP < ADP < AMP ? adenosine. Tests of S1 nuclease for phosphotransferase activity at pH 4.5 and 7.0 were negative.  相似文献   

19.
Extracellular nucleotides affect female reproductive functions, fertilization, and pregnancy. The aim of this study was to investigate biochemical characteristics of ATP and ADP hydrolysis and identify E-NTPDases in myometrial cell membranes from Wistar albino rats. The apparent K m values were 506.4?±?62.1 and 638.8?±?31.3?μM, with a calculated V max (app) of 3,973.0?±?279.5 and 2,853.9?±?79.8?nmol/min/mg for ATP and ADP, respectively. The enzyme activity described here has common properties characteristic for NTPDases: divalent cation dependence; alkaline pH optimum for both substrates, insensitivity to some of classical ATPase inhibitors (ouabain, oligomycine, theophylline, levamisole) and significant inhibition by suramine and high concentration of sodium azides (5?mM). According to similar apparent Km values for both substrates, the ATP/ADP hydrolysis ratio, and Chevillard competition plot, NTPDase1 is dominant ATP/ADP hydrolyzing enzyme in myometrial cell membranes. RT-PCR analysis revealed expression of three members of ectonucleoside triphosphate diphosphohydrolase family (NTPDase 1, 2, and 8) in rat uterus. These findings may further elucidate the role of NTPDases and ATP in reproductive physiology.  相似文献   

20.
α-Glucan phosphorylase from Chlorella vulgaris has been partially purified. In the direction of glucan phosphorolysis the apparent Km for Pi was ca 2.4 mM at pH 7.1. In the direction of glucan synthesis the Km for G1P was ca 0.12 mM at pH 6.2. The enzymic activity was inhibited by physiological concentrations of ADP, ATP, ADPG and UDPG. In the direction of starch degradation in the presence of 2.4 mM Pi the I0.5 values for ADP and ATP were ca 1.6 and 2.9 mM, respectively, while in the direction of synthesis in the presence of 0.12 mM G1P the values were ca 0.23 and 1.4 mM, respectively. The Hill plots for starch degradation showed n values of 2.2 for ADP and 2.2 for ATP and values of 1.5 and 1.2, respectively, for starch synthesis. Both ADPG and UDPG were linear competitive inhibitors either with respect to Pi or with respect to GIP. The Ki values for ADPG and UDPG in the direction of phosphorolysis were shown to be ca 0.11 and 0.51 mM, respectively, and those in the direction of synthesis 0.033 and 0.15 mM, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号