首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peter Horton  Neil R. Baker 《BBA》1980,592(3):559-564
Fluorescence induction at ?196°C has been monitored in chloroplasts rapidly frozen after poising at different redox potentials at room temperature. It was found that, as at room temperature, the initial level of fluorescence observed upon shutter opening (Fo), relative to the final level observed after 10 seconds of illumination (Fm) increased as the redox potential of the chloroplasts was lowered. Redox titration revealed the presence of two quenching components with Em,7.8 at ?70 mV and ?275 mV accounting for approx. 75% and 25% of the variable fluorescence (Fv). Parallel observation of fluorescence yield at room temperature similarly gave two components, with Em,7.8 at ?95 mV and ?290 mV, also accounting for approx. 75% and 25%. Simultaneous measurement of fluorescence emission at ?196°C at 695 nm and 735 nm indicated that both emissions are quenched by the same redox components.  相似文献   

2.
Effect of preheating of beet spinach leaves on chlorophyll a fluorescence yield was analyzed with the help of additional high intensity illumination pulses using a pulse modulated fluorometer. Preheating at mildly elevated temperature (35–45°C) causes a shift in the redox state of secondary donor of photosystem II, possibly due to uncoupling of phosphorylation because of thermal induced membrane disorganization and associated alkalinization of intra thylakoid space. Also, at these preheating temperatures, a rise in photosystem I catalyzed electron transfer has been shown to occur. These two effects induce rapid quenching of Chi a fluorescence, which drops even in the presence of actinic light, below the level of initial fluorescence (Fo′ monitored by the weak modulated probing light. Preheating of leaf segments induces an increase in fluorescence in the presence of dluron, which blocks electron flow between two photosystems, and thus this increases in fluorescence yield (Fo′ as monitored by weak modulated light, is not solely due to disorganization of light harvesting Chi-protein complex but also due to a shift in the redox equilibrium of the donor at the oxidizing side of photosystem II resulting in rapid reduction of QA the stable primary acceptor of photosystem II. In 50°C preheated DCMU treated samples, the fluorescence yield increases in weak modulated light and it approaches that of maximal steady state (Fmax) level. At preheating temperature of 48°–50°C, the inactivation of enzymes in the reducing side of photosystem I, causes an impairment of the reoxidation of QA and under this condition, a strong illumination causes quenching of Chi a fluorescence. This quenching seems to arise because of accumulation of the P680+, the oxidized physiological donor of photosystem which is a quencher of Chi a fluorescence. This quenching depended on the pulse intensity and duration which saturates P680+ accumulation and is greatly manifested when water oxidation complex is damaged.  相似文献   

3.
4.
《BBA》1987,893(2):275-288
The membrane-bound ATP synthase from chloroplasts can occur in different redox and activation states. In the absence of reductants the enzyme usually is oxidized and inactive, Eoxi. Illumination in the presence of dithiothreitol leads to an active, reduced enzyme, Ereda. If this form is stored in the dark in the presence of dithiothreitol an inactive, reduced enzyme Eredi is formed. The rates of ATP synthesis and ATP hydrolysis catalyzed by the different enzyme species are measured as a function of ΔpH (Δψ = 0 mV). The ΔpH was generated with an acid-base transition using a rapid-mixing quenched flow apparatus. The following results were obtained. (1) The oxidized ATP synthase catalyzes high rates of ATP synthesis, voxmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 3.4. (2) The active, reduced ATP synthase catalyzes high rates of ATP synthesis, vredmax = 400 ATP per CF0F1 per s. The half-maximal rate is obtained at ΔpH = 2.7. It catalyzes also high rates of ATP hydrolysis vredmax = −90 ATP per CF0F per s at ΔpH = 0. (3) The inactive species (both oxidized and reduced) catalyze neither ATP synthesis nor ATP hydrolysis. The activation/inactivation of the reduced enzyme is completely reversible. (4) The activation of the reduced, inactive enzyme is measured as a function of ΔpH by measuring the rate of ATP hydrolysis catalyzed by the active species. Half-maximal activation is observed at ΔpH = 2.2. (5) On the basis of these results a reaction scheme is proposed relating the redox reaction, the activation and the catalytic reaction of the chloroplast ATP synthase.  相似文献   

5.
Peter R. Rich  Derek S. Bendall 《BBA》1980,591(1):153-161
1. In fresh chloroplasts, three b-type cytochromes exist. These are b-559HP (λmax, 559 nm; Em at pH 7, +370 mV; pH-independent Em), b-559LP (λmax, 559 nm; Em at pH 7, +20 mV; pH-independent Em) and b-563 (λmax, 563 nm; Em at pH 7, ?110 mV; pH-independent Em). b-559HP may be converted to a lower potential form (λmax, 559 nm; Em at pH 7, +110 mV; pH-independent Em).2. In catalytically active b-f particle preparations, three cytochromes exist. These are cytochrome f (λmax, 554 nm; Em at pH 7, +375 mV, pK on oxidised cytochrome at pH 9), b-563 (λmax, 563 nm; Em at pH 7, ?90 mV, small pH-dependence of Em) and a b-559 species (λmax, 559 nm, Em at pH 7, +85 mV; pH-independent Em).3. A positive method of demonstration and estimation of b-559LP in fresh chloroplasts is described which involves the use of menadiol as a selective reductant of b-559LP.  相似文献   

6.
The redox potentials of the oriented films of the wild-type, the E194Q-, E204Q- and D96N-mutated bacteriorhodopsins (bR), prepared by adsorbing purple membrane (PM) sheets or its mutant on a Pt electrode, have been examined. The redox potentials (V) of the wild-type bR were −470 mV for the 13-cis configuration of the retinal Shiff base in bR and −757 mV for the all-trans configuration in H2O, and −433 mV for the 13-cis configuration and −742 mV for the all-trans configuration in D2O. The solvent isotope effect (ΔV=V(D2O)−V(H2O)), which shifts the redox potential to a higher value, originates from the cooperative rearrangements of the extensively hydrogen-bonded water molecules around the protonated CN part in the retinal Schiff base. The redox potential of bR was much higher for the 13-cis configuration than that for the all-trans configuration. The redox potentials for the E194Q mutant in the extracellular region were −507 mV for the 13-cis configuration and −788 mV for the all-trans configuration; and for the E204Q mutant they were −491 mV for the 13-cis configuration and −769 mV for the all-trans configuration. Replacement of the Glu194 or Glu204 residues by Gln weakened the electron withdrawing interaction to the protonated CN bond in the retinal Schiff base. The E204 residue is less linked with the hydrogen-bonded network of the proton release pathway compared with E194. The redox potentials of the D96N mutant in the cytoplasmic region were −471 mV for the 13-cis configuration and −760 mV for the all-trans configuration which were virtually the same as those of the wild-type bR, indicating that the D to N point mutation of the 96 residue had no influence on the interaction between the D96 residue and the CN part in the Schiff base under the light-adapted condition. The results suggest that the redox potential of bR is closely correlated to the hydrogen-bonded network spanning from the retinal Schiff base to the extracellular surface of bR in the proton transfer pathway.  相似文献   

7.
Peter Horton 《BBA》1981,635(1):105-110
The effect of alteration of redox potential on the kinetics of fluorescence induction in pea chloroplasts has been investigated. Potentiometric titration of the initial (Fi) level of fluorescence recorded upon shutter opening gave a two component curve, with Em(7) at ?20 mV and ?275 mV, almost, identical to results obtained using continuous low intensity illumination (Horton, P. and Croze, E. (1979) Biochim. Biophys. Acta 545, 188–201). The slow or tail phase of induction observed in the presence of DCMU can be eliminated by poising the redox potential at approx. 0 to +50 mV. At this potential Fi was increased by less than 10% and the higher potential quencher described above was only marginally reduced. The disappearance of the slow phase titrated as an n = 1 component with an Em(7) of +120 mV. Therefore it seems unlikely that the slow phase of fluorescence induction is due to photoreduction of the ?20 mV quencher. These results are discussed with reference to current ideas concerning heterogeneity on the acceptor side of Photosystem II.  相似文献   

8.
The responses of minimal and maximal fluorescence yields of chlorophyll a to irradiance of actinic white light were determined by pulse modulated fluorimetry in leaf discs from tobacco, Nicotiana tabacum, at 1.6, 20.5, and 42.0% (v/v) O2. Steady-state maximal fluorescence yield (Fm′, measured during a saturating light pulse) declined with increasing irradiance at all O2 levels. In contrast, the steady-state minimal fluorescence yield (Fo′, measured during a brief dark interval) increased with irradiance relative to that recorded for the fully dark-adapted leaf (Fo) or that observed after 5 minutes of darkness (Fo*). The relative magnitude of this increase was somewhat greater and extended to higher irradiances at the elevated O2 levels compared with 1.6% O2. Suppression of Fo′ was only observed consistently at saturating irradiance. The results are interpreted in terms of the occurrence of photosystem II units possessing exceedingly slow turnover times (i.e. “inactive” units). Inactive units play an important role, along with thermal deactivation of excited chlorophyll, in determining the response of in vivo fluorescence yield to changes in irradiance. Also, a significant interactive effect of O2 concentration and the presence or absence of far red light on oxidation of photosystem II acceptors in the dark was noted.  相似文献   

9.
The dynamics of light-induced closure of the PS II reaction centers was studied in intact, dark-adapted leaves by measuring the light-irradiance (I) dependence of the relative variable chlorophyll fluorescence V which is the ratio between the amplitude of the variable fluorescence induced by a pulse of actinic light and the maximal variable fluorescence amplitude obtained with an intense, supersaturating light pulse. It is shown that the light-saturation curve of V is a hyperbola of order n. The experimental values of n ranged from around 0.75 to around 2, depending on the plant material and the environmental conditions. A simple theoretical analysis confirmed this hyperbolic relationship between V and I and suggested that n could represent the apparent number of photons necessary to close one reaction center. Thus, experimental conditions leading to n values higher than 1 could indicate that, from a macroscopic viewpoint, more than one photon is necessary to close one PS II center, possibly due to changes in the relative concentrations of the different redox states of the PS II reaction center complexes at the quasi-steady state induced by the actinic light. On the other hand, the existence of environmental conditions resulting in n noticeably lower than 1 suggests the possibility of an electron flow between PS II reaction center complexes.Abbreviations F0 and Fm minimal and maximal levels of chlorophyll fluorescence emission, respectively - Fp peak fluorescence induced by a pulse of actinic light - I incident light irradiance (in W m-2) - PS II Photosystem II - P680 PS II reaction center - QA and QB primary and secondary (stable) electron acceptors of PS II - V relative variable chlorophyll fluorescence % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGak0Jf9crFfpeea0xh9v8qiW7rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaiikaiaadA% facqGH9aqpcaGGOaGaaeOramaaBaaaleaacaqGWbaabeaakiabgkHi% TiaabAeadaWgaaWcbaGaaeimaaqabaGccaGGPaGaai4laiaacIcaca% qGgbWaaSbaaSqaaiaab2gaaeqaaOGaeyOeI0IaaeOramaaBaaaleaa% caqGWaaabeaakiaacMcacaGGPaaaaa!47BD!\[(V = ({\text{F}}_{\text{p}} - {\text{F}}_{\text{0}} )/({\text{F}}_{\text{m}} - {\text{F}}_{\text{0}} ))\]  相似文献   

10.
A newly-developed field-portable multi-flash kinetic fluorimeter for measuring the kinetics of the microsecond to millisecond reactions of the oxidizing and reducing sides of photosystem 2 in leaves of intact plants is described and demonstrated. The instrumental technique is a refinement of that employed in the double-flash kinetic fluorimeter (Joliot 1974 Biochim Biophys Acta 357: 439–448) where a low-intensity short-duration light pulse is used to measure the fluorescence yield changes following saturating single-turnover light pulses. The present instrument uses a rapid series of short-duration (2 s) pulses to resolve a complete microsecond to millisecond time-scale kinetic trace of fluorescence yield changes after each actinic flash. Differential optics, using a matrix of optical fibers, allow very high sensitivity (noise levels about 0.05% Fmax) thus eliminating the need for signal averaging, and greatly reducing the intensity of light required to make a measurement. Consequently, the measuring pulses have much less actinic effect and an entire multi-point trace (seven points) excites less than 1% of the reaction centers in a leaf. In addition, bu combining the actinic and measuring pulse light in the optical fiber network, the tail of the actinic flash can be compensated for, allowing measurements of events as rapidly as 20 s after the actinic flash. This resolution makes practical the routine measurement of the microsecond turnover kinetics of the oxygen evolving complex in leaves of intact plants in the field. The instrument is demonstrated by observing flash number dependency and inhibitor sensitivity of the induction and decay kinetics of flash-induced fluorescence transients in leaves of intact plants. From these traces the period-two oscillations associated with the turnover of the two-electron gate and the period-four oscillations associated with the turnover of the oxygen evolving complex can be observed. Applications of the instrument to extending our knowledge of chloroplast function to the whole plant, the effects on plants of environmental stress, herbicides, etc, and possible applications to screening of mutants are discussed.Abbreviations DCMU 3-(3,4-Dichlorophenol)-1,1-dimethylurea - PS 2 photosystem 2 - PS 1 photosystem 1 - P680 primary electron donor of the PS 2 reaction center - QA primary acceptor quinone of PS 2 - QB secondary acceptor quinone of PS 2 - CCCP carbonyl cyanide-m-chlorophenylhydrazone - Yz donor to P680 + - F0 level of fluorescence with all PS 2 centers open - Fmax maximum level of fluorescence with all PS 2 centers closed - P680QA Open reaction centers with P680 reduced and QA oxidized (low fluorescence) - P680QA - Closed reaction centers, in which P680 is reduced (high fluorescence) - P680 +QA - Closed reaction centers, in which P680 is oxidized (low fluorescence)  相似文献   

11.
12.
《Journal of bryology》2013,35(1):17-18
Abstract

A comparison was made between the rapid fluorescence induction characteristics of bryophytes (mosses, liverworts and hornworts), vascular plants and a microalga under actinic irradiation. The bryophytes studied showed similar induction characteristics to microalgae, with a fast decline from an initial peak (P) to a quasi-stationary fluorescence yield (S). Dark relaxation characteristics of the bryophytes were also comparable with those of algae, showing a rapid decline in fluorescence to the Fo value when actinic light was switched off. The degree and duration of the P/S decline was related to the intensity of actinic irradiation, although with increasing irradiance the ratio of P/S remained constant for most species. When actinic light was supplied with no prior dark relaxation, the initial peak (P) was suppressed after registration of the first I–P–S cycle, indicating a dependence of the induction characteristics on the oxygen status of the organism. The implication of these observations of oxygen-dependent electron flow in furthering our understanding of bryophyte photosynthetic physiology is discussed.  相似文献   

13.
Susceptibility of a moss,Ceratodon purpureus (Hedw.) Brid., to photoinhibition and subsequent recovery of the photochemical efficiency of PSII was studied in the presence and absence of the chloroplast-encoded protein-synthesis inhibitor lincomycin.Ceratodon had a good capacity for repairing the damage to PSII centers induced by strong light. Tolerance against photoinhibition was associated with rapid turnover of the D1 protein, since blocking of D1 protein synthesis more than doubled the photoinhibition rate measured as the decline in the ratio of variable fluorescence to maximal fluorescence (Fv/Fmax). Under exposure to strong light in the absence of lincomycin a net loss of D1 protein occurred, indicating that the degradation of damaged D1 protein inCeratodon was rapid and independent of the resynthesis of the polypeptide. The result suggests that synthesis is the limiting factor in the turnover of D1 protein during photoinhibition of the mossCeratodon. The level of initial fluorescence (Fo) correlated with the production of inactive PSII centers depleted of D1 protein. The higher the Fo level, the more severe was the loss of D1 protein seen in the samples during photoinhibition. Restoration of Fv/Fmax at recovery light consisted of a fast and slow phase. The recovery of fluorescence yield in the presence of lincomycin, which was added at different times in the recovery, indicated that the chloroplast-encoded protein-synthesis-dependent repair of damaged PSII centers took place during the fast phase of recovery. Pulse-labelling experiments with [35S]methionine supported the conclusion drawn from fluorescence measurements, since the rate of D1 protein synthesis after photoinhibition exceeded that of the control plants during the first hours under recovery conditions.  相似文献   

14.
《BBA》2019,1860(12):148082
Redox titration using fluorescence measurements of photosystem II (PSII) has long shown that impairment of the water-oxidizing Mn4CaO5 cluster upshifts the redox potential (Em) of the primary quinone electron acceptor QA by more than 100 mV, which has been proposed as a photoprotection mechanism of PSII. However, the molecular mechanism of this long-distance interaction between the Mn4CaO5 cluster and QA in PSII remains unresolved. In this study, we reinvestigated the effect of depletion of the Mn4CaO5 cluster on Em(QA/QA) using Fourier transform infrared (FTIR) spectroelectrochemistry, which can directly monitor the redox state of QA at an intended potential. Light-induced FTIR difference measurements at a series of electrode potentials for intact and Mn-depleted PSII preparations from spinach and Thermosynechococcus elongatus showed that depletion of the Mn4CaO5 cluster hardly affected the Em(QA/QA) values. In contrast, fluorescence spectroelectrochemical measurement using the same PSII sample, electrochemical cell, and redox mediators reproduced a large upshift of apparent Em upon Mn depletion, whereas a smaller shift was observed when weaker visible light was used for fluorescence excitation. Thus, the possibility was suggested that the measuring light for fluorescence disturbed the titration curve in Mn-depleted PSII, in contrast to no interference of infrared light with the PSII reactions in FTIR measurements. From these results, it was concluded that the Mn4CaO5 cluster does not directly regulate Em(QA/QA) to control the redox reactions on the electron acceptor side of PSII.  相似文献   

15.
Light modulation of the ability of three artificial quinones, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB), 2,6-dichloro-p-benzoquinone (DCBQ), and tetramethyl-p-benzoquinone (duroquinone), to quench chlorophyll (Chl) fluorescence photochemically or non-photochemically was studied to simulate the functions of endogenous plastoquinones during the thermal phase of fast Chl fluorescence induction kinetics. DBMIB was found to suppress by severalfold the basal level of Chl fluorescence (Fo) and to markedly retard the light-induced rise of variable fluorescence (Fv). After irradiation with actinic light, Chl fluorescence rapidly dropped down to the level corresponding to Fo level in untreated thylakoids and then slowly declined to the initial level. DBMIB was found to be an efficient photochemical quencher of energy in Photosystem II (PSII) in the dark, but not after prolonged irradiation. Those events were owing to DBMIB reduction under light and its oxidation in the dark. At high concentrations, DCBQ exhibited quenching behaviours similar to those of DBMIB. In contrast, duroquinone demonstrated the ability to quench Fv at low concentration, while Fo was declined only at high concentrations of this artificial quinone. Unlike for DBMIB and DCBQ, quenched Fo level was attained rapidly after actinic light had been turned off in the presence of high duroquinone concentrations. That finding evidenced that the capacity of duroquinone to non-photochemically quench excitation energy in PSII was maintained during irradiation, which is likely owing to the rapid electron transfer from duroquinol to Photosystem I (PSI). It was suggested that DBMIB and DCBQ at high concentration, on the one hand, and duroquinone, on the other hand, mimic the properties of plastoquinones as photochemical and non-photochemical quenchers of energy in PSII under different conditions. The first model corresponds to the conditions under which the plastoquinone pool can be largely reduced (weak electron release from PSII to PSI compared to PSII-driven electron flow from water under strong light and weak PSI photochemical capacity because of inactive electron transport on its reducing side), while the second one mimics the behaviour of the plastoquinone pool when it cannot be filled up with electrons (weak or moderate light and high photochemical competence of PSI).  相似文献   

16.
A newly developed modulation fluorometer is described which operates with 1 sec light pulses from a light-emitting diode (LED) at 100 KHz. Special amplification circuits assure a highly selective recording of pulse fluorescence signals against a vast background of non-modulated light. The system tolerates ratios of up to 1:107 between measuring light and actinic light. Thus it is possible to measure the dark fluorescence yield and record the kinetics of light-induced changes. A high time resolution allows the recording of the rapid relaxation kinetic following a saturating single turnover flash. Examples of system performance are given. It is shown that following a flash the reoxidation kinetics of photosystem II acceptors are slowed down not only by the inhibitor DCMU, but by a number of other treatments as well. From a light intensity dependency of the induction kinetics the existence of two saturated intermediate levels (I1 and I2) is apparent, which indicates the removal of three distinct types of fluorescence quenching in the overall fluorescence rise from F0 to Fmax.Abbreviations QA and QB consecutive electron acceptors of photosystem II - PS II photosystem II - P 680 reaction center chlorophyll of photosystem II - F0 minimum fluorescence yield following dark adaptation - Fmax maximum fluorescence yield - DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea - DCCD N,N-dicyclohexylcarbodiimide - PQ plastoquinone - DAD diaminodurene Dedicated to Prof. L.N.M. Duysens on the occasion of his retirement.  相似文献   

17.
18.
(1) Two populations of reaction centers in the chromatophore membrane can be distinguished under some conditions of initial redox poise (300 mV < Eh < 400 mV): those which transfer a reducing equivalent after the first flash from the secondary quinone (QII) of the reaction center to cytochrome b of the ubiquinone-cytochrome c2 oxidoreductase; and those which retain the reducing equivalent on Q?II until a second flash is given. These two populations do not exchange on a time scale of tens of seconds. (2) At redox potentials higher than 400 mV, Q?II generated after the first flash is no longer able to reduce cytochrome b-560 even in those reaction centers associated with an oxidoreductase. Under these conditions, doubly reduced QII generated by a second flash is required for cytochrome b reduction, so that the QII effectively functions as a two-electron gate into the oxidoreductase at these high potentials. (3) At redox potentials below 300 mV, although the two populations of QII are no longer distinguishable, cytochrome b reduction is still dependent on only part of the reaction center population. (4) Proton binding does not oscillate under any condition tested.  相似文献   

19.
To investigate the effects of a membrane potential on excitation trapping and charge separation in Photosystem II we have studied the chlorophyll fluorescence yield in osmotically swollen chloroplasts subjected to electrical field pulses. Significant effects were observed only in those membrane regions where a large membrane potential opposing the photochemical charge separation was built up. When the fluorescence yield was low, close to F0, a much higher yield, up to Fmax, was observed during the presence of the membrane potential. This is explained by an inhibition by the electrical field of electron transfer to the quinone acceptor Q, resulting in a decreased trapping of excitations. A field pulse applied when the fluorescence yield was high, Q and the donor side being in the reduced state, had the opposite effect: the fluorescence was quenched nearly to F0. This field-induced fluorescence quenching is ascribed to reversed electron transfer from Q? to the intermediate acceptor, pheophytin. Its field strength dependence suggests that the midpoint potential difference between pheophytin and Q is at most about 300 mV. Even then it must be assumed that electron transfer between pheophytin and Q spans 90% of the potential difference across the membrane.  相似文献   

20.
Diurnal changes in effective yield (ΔF:Fm′), rapid light curves (RLCs), and induction/dark recovery time series were measured on individual cells of the giant diatom Ethmodiscus Castracane using active fluorescence (pulse amplitude modulation fluorometry). Unlike the co‐occurring diatom Hemiaulus and bulk phytoplankton, there was no observable diurnal down‐regulation of yield or relative electron transport rates in Ethmodiscus. Yields were constant at or near maximum values (0.7–0.8). Increases in ΔF:Fm′ during the initial actinic levels are consistent with dark nonphotochemical quenching mechanisms. Sustained actinic illumination (660 μmol photon·m?2·s?1) resulted in a ΔF:Fm′ of 0.2–0.3, but rapid recovery to near‐maximum values occurred in subsequent dark periods. Such recovery occurred even after exposure to full sunlight for 28 min, but not at 60 min. Thus, the lack of diurnal down‐regulation in Ethmodiscus is apparent, not real, and is an artifact of the time scale of sample extraction from net tows. These positively buoyant cells showed no evidence of routine photodamage, probably due to mixing and reduction in the average light exposure. The general patterns seen in RLCs from light‐and dark‐adapted higher plants are significantly different from those observed in Ethmodiscus. These results suggest that active fluorescence characteristics require careful examination to differentiate habitat‐ and taxon‐specific characteristics from light‐history effects. It is unclear whether the rapid recovery seen in Ethmodiscus is unique. The differences seen between Hemiaulus and Ethmodiscus from the same samples suggest that changes in community yield values measured in countertop systems could be the result of species replacement in addition to experimental or environmental perturbations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号