首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
Recent developments in bone tissue engineering have paved the way for more efficient and cost-effective strategies. Additionally, utilization of autologous sources has been considered very desirable and is increasingly growing. Recently, activated platelet rich plasma (PRP) has been widely used in the field of bone tissue engineering, since it harbours a huge number of growth factors that can enhance osteogenesis and bone regeneration. In the present study, the osteogenic effects of PRP coated nanofibrous PES/PVA scaffolds on adipose-derived mesenchymal stem cells have been investigated. Common osteogenic markers were assayed by real time PCR. Alkaline phosphate activity, calcium deposition and Alizarin red staining assays were performed as well. The results revealed that the highest osteogenic differentiation occurred when cells were cultured on PRP coated PES/PVA scaffolds. Interestingly, direct application of PRP to culture media had no additive effects on osteogenesis of cells cultured on PRP coated PES/PVA scaffolds or those receiving typical osteogenic factors. The highest osteogenic effects were achieved by the simplest and most cost-effective method, i.e. merely by using PRP coated scaffolds. PRP coated PES/PVA scaffolds can maximally induce osteogenesis with no need for extrinsic factors. The major contribution of this paper to the current researches on bone regeneration is to suggest an easy, cost-effective approach to enhance osteogenesis via PRP coated scaffolds, with no additional external growth factors.  相似文献   

3.
In vitro osteogenic differentiation of human ES cells   总被引:1,自引:0,他引:1  
Since their isolation in 1998, human embryonic stem (hES) cells have been shown to be capable of adopting various cell fates in vitro. Here, we present in vitro data demonstrating the directed commitment of human embryonic stem cells to the osteogenic lineage. Human ES cells are shown to respond to factors that promote osteogenesis, leading to activation of the osteogenic markers osteocalcin, parathyroid hormone receptor, bone sialoprotein, osteopontin, cbfa1, and collagen 1. Moreover, the mineralized nodules obtained are composed of hydroxyapatite, further establishing the similarity of osteoblasts in culture to bone. These results show that osteoblasts can be derived from human ES cultures in vitro and provide the basis for comparison of adult and embryonic-derived osteogenesis, and for an investigation of potential applications for hES cells in orthopaedic tissue repair.  相似文献   

4.
Mesenchymal stem cells (MSCs) are a major component of various forms of tissue engineering. MSCs have self-renewal and multidifferential potential. Osteogenic differentiation of MSCs is an area of attention in bone regeneration. One form of MSCs are adipose-derived stem cells (ASCs), which can be simply harvested and differentiated into several cell lineages, such as chondrocytes, adipocytes, or osteoblasts. Due to special properties, ASCs are frequently used in vitro and in vivo bone regeneration. Identifying factors involved in osteogenic differentiation of ASCs is important for better understanding the mechanism of osteogenic differentiation. Different methods are used to stimulate osteogenesis of ASCs in literature, including common osteogenic media, growth factors, hormones, hypoxia, mechanical and chemical stimuli, genetic modification, and nanotechnology. This review article provides an overview describing the isolation procedure, characterization, properties, current methods for osteogenic differentiation of ASCs, and their basic biological mechanism.  相似文献   

5.
Mesenchymal stem cells (MSCs) are multipotent cells that can be differentiated into osteoblasts and provide an excellent cell source for bone regeneration and repair. Recently, the canonical Wnt/beta-catenin signaling pathway has been found to play a critical role in skeletal development and osteogenesis, implying that Wnts can be utilized to improve de novo bone formation mediated by MSCs. However, it is unknown whether noncanonical Wnt signaling regulates osteogenic differentiation. Here, we find that Wnt-4 enhanced in vitro osteogenic differentiation of MSCs isolated from human adult craniofacial tissues and promoted bone formation in vivo. Whereas Wnt-4 did not stabilize beta-catenin, it activated p38 MAPK in a novel noncanonical signaling pathway. The activation of p38 was dependent on Axin and was required for the enhancement of MSC differentiation by Wnt-4. Moreover, using two different models of craniofacial bone injury, we found that MSCs genetically engineered to express Wnt-4 enhanced osteogenesis and improved the repair of craniofacial defects in vivo. Taken together, our results reveal that noncanonical Wnt signaling could also play a role in osteogenic differentiation. Wnt-4 may have a potential use in improving bone regeneration and repair of craniofacial defects.  相似文献   

6.
During endochondral bone development, bone‐forming osteoblasts have to colonize the regions of cartilage that will be replaced by bone. In adulthood, bone remodeling and repair require osteogenic cells to reach the sites that need to be rebuilt, as a prerequisite for skeletal health. A failure of osteoblasts to reach the sites in need of bone formation may contribute to impaired fracture repair. Conversely, stimulation of osteogenic cell recruitment may be a promising osteo‐anabolic strategy to improve bone formation in low bone mass disorders such as osteoporosis and in bone regeneration applications. Yet, still relatively little is known about the cellular and molecular mechanisms controlling osteogenic cell recruitment to sites of bone formation. In vitro, several secreted growth factors have been shown to induce osteogenic cell migration. Recent studies have started to shed light on the role of such chemotactic signals in the regulation of osteoblast recruitment during bone remodeling. Moreover, trafficking of osteogenic cells during endochondral bone development and repair was visualized in vivo by lineage tracing, revealing that the capacity of osteoblast lineage cells to move into new bone centers is largely confined to undifferentiated osteoprogenitors, and coupled to angiogenic invasion of the bone‐modeling cartilage intermediate. It is well known that the presence of blood vessels is absolutely required for bone formation, and that a close spatial and temporal relationship exists between osteogenesis and angiogenesis. Studies using genetically modified mouse models have identified some of the molecular constituents of this osteogenic–angiogenic coupling. This article reviews the current knowledge on the process of osteoblast lineage cell recruitment to sites of active bone formation in skeletal development, remodeling, and repair, considering the role of chemo‐attractants for osteogenic cells and the interplay between osteogenesis and angiogenesis in the control of bone formation. Birth Defects Research (Part C) 99:170–191, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
Craniofacial skeletal repair and regeneration offers the promise of de novo tissue formation through a cell-based approach utilizing stem cells. Adipose-derived stromal cells (ASCs) have proven to be an abundant source of multipotent stem cells capable of undergoing osteogenic, chondrogenic, adipogenic, and myogenic differentiation. Many studies have explored the osteogenic potential of these cells in vivo with the use of various scaffolding biomaterials for cellular delivery. It has been demonstrated that by utilizing an osteoconductive, hydroxyapatite-coated poly(lactic-co-glycolic acid) (HA-PLGA) scaffold seeded with ASCs, a critical-sized calvarial defect, a defect that is defined by its inability to undergo spontaneous healing over the lifetime of the animal, can be effectively show robust osseous regeneration. This in vivo model demonstrates the basis of translational approaches aimed to regenerate the bone tissue - the cellular component and biological matrix. This method serves as a model for the ultimate clinical application of a progenitor cell towards the repair of a specific tissue defect.  相似文献   

11.
Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects.  相似文献   

12.
Bone turns over continuously and is highly regenerative following injury. Osteogenic stem/progenitor cells have long been hypothesized to exist, but in vivo demonstration of such cells has only recently been attained. Here, in vivo imaging techniques to investigate the role of endogenous osteogenic stem/progenitor cells (OSPCs) and their progeny in bone repair are provided. Using osteo-lineage cell tracing models and intravital imaging of induced microfractures in calvarial bone, OSPCs can be directly observed during the first few days after injury, in which critical events in the early repair process occur. Injury sites can be sequentially imaged revealing that OSPCs relocate to the injury, increase in number and differentiate into bone forming osteoblasts. These methods offer a means of investigating the role of stem cell-intrinsic and extrinsic molecular regulators for bone regeneration and repair.  相似文献   

13.
14.
Hydroxyapatite (HA), a bioceramic, is a widely utilized material for bone tissue repair and regeneration because of its excellent properties such as biocompatibility, exceptional mechanical strength, and osteoconductivity. HA can be obtained by both synthetic and natural means. Animal bones are often considered a promising natural resource for the preparation of pure HA for biological and biomedical applications. Cuttlefish bone, also called as cuttlebone, mainly consists of calcium carbonate, and pure HA can be produced by adding phosphoric acid or ammonium hydrogen phosphate to it. Recently, cuttlefish bone-derived HA has shown promising results in terms of bone tissue repair and regeneration. The synthesized cuttlefish bone-derived has shown excellent biocompatibility, cell proliferation, increased alkaline phosphate activity, and efficient biomineralization ability with mesenchymal stem cells and osteoblastic cells. To further improve the biological properties of cuttlefish bone-derived HA, bioglass, polycaprolactone, and polyvinyl alcohol were added to it, which gave better results in terms of cell proliferation and osteogenic differentiation. Cuttlefish bone-derived HA with polymeric substances provides excellent bone formation under in vivo conditions. The studies indicate that cuttlefish bone-derived HA, along with polymeric and, protein materials, will be promising biomaterials in the field of bone tissue regeneration.  相似文献   

15.
《Cytotherapy》2014,16(12):1643-1655
Background aimsOsteoporosis (OP) is characterized by a reduction in bone quality, which is associated with inadequacies in bone marrow mesenchymal stromal cells (BMSCs). As an alternative cell source to BMSCs, adipose-derived stem cells (ASCs) have been investigated for bone repair because of their osteogenic potential and self-renewal capability. Nevertheless, whether autologous ASCs can be used to promote bone regeneration under osteoporotic conditions has not been elucidated.MethodsThe OP rabbit model was established by means of bilateral ovariectomy (OVX). Both BMSCs and ASCs were harvested from OVX rabbits and expanded in vitro. The effects of osteogenic-induced ASCs on the in vitro adipogenic and osteogenic capabilities of BMSCs were evaluated. Autologous ASCs were then encapsulated by calcium alginate gel and transplanted into the distal femurs of OVX rabbits (n = 12). Hydrogel without loading cells was injected into the contralateral femurs as a control. Animals were killed for investigation at 12 weeks after transplantation.ResultsOsteogenic-induced ASCs were able to promote osteogenesis and inhibit adipogenesis of osteoporotic BMSCs through activation of the bone morphogenetic protein 2/bone morphogenetic protein receptor type IB signal pathway. Local bone mineral density began to increase at 8 weeks after ASC transplantation (P < 0.05). At 12 weeks, micro–computed tomography and histological evaluation revealed more new bone formation in the cell-treated femurs than in the control group (P < 0.05).ConclusionsThis study demonstrated that ASCs could stimulate proliferation and osteogenic differentiation of BMSCs in vitro and enhance bone regeneration in vivo, which suggests that autologous osteogenic-induced ASCs might be useful to alleviate OP temporally.  相似文献   

16.
Successful use of stem cell-based therapeutic products is conditioned by transplantation of optimized cells in permissive microenvironment. Mesenchymal stem cell (MSC) fates are tightly regulated by humoral factors, cellular interactions and extracellular matrix (ECM) components, such as glycosaminoglycans (GAG), which are complex polysaccharides with structural heterogeneity. During osteogenesis, a temporally controlled expression of particular GAG species is required to interact with specific growth promoting and differentiating factors to regulate their biological activities. As a comparative tool to study natural GAG, we used structurally and functionally related synthetic GAG mimetics. One of these compounds [OTR4120] was previously shown to stimulate bone repair in rat models. Here, we demonstrate that structurally distinct GAG mimetics stimulate differentially clonogenicity, proliferation, migration and osteogenic phenotype of MSC in vitro, according to their specific chemical signature, underlying the role of sulfate and acetyl groups in specific interactions with heparin binding factors (HBF). These effects are dependent on FGF-2 interactions since they are inhibited by a FGF receptor 1 signaling pathway blocker. These data suggest that the in vivo [OTR4120] bone regenerative effect could be due to its ability to induce MSC migration and osteogenic differentiation. To conclude, we provide evidences showing that GAG mimetics may have great interest for bone regeneration therapy and represent an alternative to exogenous growth factor treatments to optimize potential therapeutic properties of MSC.  相似文献   

17.
18.
Host blood circulating stem cells are an important cell source that participates in the repair of damaged tissues. The clinical challenge is how to improve the recruitment of circulating stem cells into the local wound area and enhance tissue regeneration. Stromal-derived factor-1 (SDF-1) has been shown to be a potent chemoattractant of blood circulating stem cells into the local wound microenvironment. In order to investigate effects of SDF-1 on bone development and the repair of a large bone defect beyond host self-repair capacity, the BMP-induced subcutaneous ectopic bone formation and calvarial critical-sized defect murine models were used in this preclinical study. A dose escalation of SDF-1 were loaded into collagen scaffolds containing BMP, VEGF, or PDGF, and implanted into subcutaneous sites at mouse dorsa or calvarial critical-sized bone defects for 2 and 4 weeks. The harvested biopsies were examined by microCT and histology. The results demonstrated that while SDF-1 had no effect in the ectopic bone model in promoting de novo osteogenesis, however, in the orthotopic bone model of the critical-sized defects, SDF-1 enhanced calvarial critical-sized bone defect healing similar to VEGF, and PDGF. These results suggest that SDF-1 plays a role in the repair of large critical-sized defect where more cells are needed while not impacting de novo bone formation, which may be associated with the functions of SDF-1 on circulating stem cell recruitment and angiogenesis.  相似文献   

19.
Tissue engineering with a combination of stem cells and nanofibrous scaffolds has attracted interest with regard to bone regeneration applications. In the present study, human induced pluripotent stem cells (iPSCs) were cultured on polymeric nanofibrous polyethersulfone (PES) with and without plasma treatment. The capacity of PES and plasma-treated PES (Plasma-PES) scaffolds to support the proliferation and osteogenic differentiation of iPSCs was investigated by MTT assay and for common osteogenic markers such as alkaline phosphatase activity, calcium mineral deposition and bone-related genes. Plasma-PES scaffolds with or without iPSCs were subsequently used to evaluate bone regeneration of critical-size defects in the rat by digital mammography, multislice spiral-computed tomography imaging and histological analysis. The results of in vitro analysis showed that plasma treatment significantly enhanced iPSC proliferation and osteogenesis. After 8 weeks of iPSC-loaded Plasma-PES implantation, no mortality or complication was observed in animals or at the site of surgery. Imaging analysis revealed more extensive bone reconstruction in rats receiving nanofibers compared with untreated control groups. Moreover, Plasma-PES seeded with iPSCs induced the highest regeneration of bone defects among all groups. These findings were confirmed by histological staining. Affective osseointegration was observed in implanted scaffolds. Thus, plasma-treated nanofibrous scaffolds are suitable tissue-engineered matrices for supporting the proliferation and osteogenic differentiation of iPSCs and might also be appropriate for the reconstruction of bone defects.  相似文献   

20.
Previous studies have shown that craniofacial bone marrow stromal cells (MSCs) have greater osteogenic potential than appendicular bone MSCs. However, detailed phenotypic characterization of MSCs from bone marrow in the different sites remains unclear. To investigate bone repair and regeneration of craniofacial MSCs and the regulatory mechanisms underlying their unique properties, we compared osteogenesis, cell recruitment, autophagy, and apoptosis resistance of MSCs from the mandible (M-MSCs) to those from tibia (T-MSCs) in vitro and in vivo. Compared with T-MSCs, M-MSCs formed more colonies, possessed stronger proliferation activity, exhibited higher expression of pluripotency genes such as Oct4 and Nanog, and held stronger osteogenic differentiation in osteogenic medium. Moreover, M-MSCs had greater autophagy and anti-apoptotic capacities than T-MSCs under hypoxia and serum deprivation conditions. M-MSCs were found to be more capable of recruiting more MSCs than T-MSCs. When these MSCs were transplanted into mandible critical-sized defects, more bone formed in the M-MSC-treated animals than in their T-MSC counterparts. Collectively, these findings reveal that MSCs have unique characteristics and bone-repairing properties from the mandible as compared with those from tibia, presumably by enhanced osteogenic potential, cell recruitment, autophagy and apoptosis resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号