首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 427 毫秒
1.
Saponin-permeabilised epithelial cells isolated by hyalurodinase incubation from chicken small intestine were used to study 45Ca uptake into intracellular stores. At low (6.7 X 10(-7) M) free Ca2+ concentration most of the Ca2+ appears to be taken up into non-mitochondrial stores, whilst the mitochondria seem to play a major role at high (2 X 10(-5) M) Ca2+ concentration. Addition of inositol trisphosphate (IP3) causes a rapid and reversible release of 45Ca from non-mitochondrial stores, with a half-maximal effect of approximately 1 microM.  相似文献   

2.
Classical NaCa exchange models are based on a symmetric carrier system where Na and Ca competing from the same site, can produce net movement of the other against its electrochemical gradient. We have explored this symmetric assumption by studying the Cao and Nao-dependent Na efflux in dialyzed squid axons in which proper control of both external and internal medium was achieved. The results show: (1) In axons dialyzed without Cai and ATP, Cao-dependent Na efflux cannot be detected even in the absence of Nao. Under these conditions, the level of Na efflux (1 pmol · cm−2 · s−1) is close to that predicted by an electrical ‘leak’. (2) In axons dialyzed with Cai (100 μM) and without ATP, Na efflux measured in 440 mM Nao, is about 4–5 pmol · cm−2 · s−1 and rather insensitive to Cao between 0 and 10 mM. However, in the absence of Nao, a Cao-dependent Na efflux is observed similar in magnitude to that found in the presence of external Na. (3) In the presence of both Cai and ATP, Na efflux into artificial sea-water (440 mM Na, 10 mM Ca) is 18 pmol · cm−2 · s−1. In the absence of Nao the efflux of Na is 7.5 pmol · cm−2 · s−1. In the absence of both Nao and Cao the efflux is close to ‘leak’. With full Nao but no Cao, the Na efflux average 12.6 pmol · cm−2 · s−1. These results indicate a marked asymmetry in the modus operandi of the NaCa exchange system with respect to Cai and ATP. These two substrates are required from the cis side to promote Cao-dependent Na efflux (reversal NaCa exchange).  相似文献   

3.
To identify the role of Ca2+ mobilization from intracellular pool(s) in the action of α-adrenergic agonist, the effects of dantrolene on phenylephrine-induced glycogenolysis were investigated in perfused rat liver. Dantrolene (5·10−5 M) inhibited both glycogenolysis and 45Ca efflux induced by 5·10−7 M phenylephrine. The inhibition by dantrolene was observed in the presence and absence of perfusate calcium. In contrast, dantrolene did not inhibit glycogenolysis induced by glucagon. To confirm the specificity of dantrolene action on calcium release in liver, experiments were also carried out using isolated hepatocytes. Dantrolene did not affect phenylephrine-induced production of inositol 1,4,5-trisphosphate. The compound did inhibit a rise in cytoplasmic Ca2+ concentration induced by phenylephrine both in the presence and absence of extracellular Ca2+. Thus, these results suggest that calcium release from an intracellular pool is essential for the initiation of α-adrenergic stimulation of glycogenolysis in the perfused rat liver.  相似文献   

4.
1. Gastrulating chick embryo cells (stages 3–5 by HH) possess Ca2+-mobilizing receptors for ACh and ATP; insulin and noradrenaline have a weaker effect on [Ca2+], mobilization.2. The ed50 value for ACh is 4 (±0.5)· 10−6M and for ATP 20 (±5)· 10−6M.3. Addition of ACh and ATP to dissociated chick embryo cells causes rapid accumulation of IP3.4. The stimulatory effects of ACh and ATP on [Ca2+], mobilization and IP3 rapid formation are both additive.  相似文献   

5.
Ca2+ changes induced by nitric oxide (NO·) were investigated in cultured human endothelial cells. Sodium nitroprusside (SNP) (1–100 μmol/L) and S-Nitroso-N-acetylpenicillamine (SNAP) (100 μmol/L) were used as NO· donors. The cytoplasmatic Ca2+ concentration was calculated using ratiometric FURA2 fluorescence measurements. Both NO· donors caused transient oscillatory Ca2+ changes, which were not detectable in the presence of oxyhemoglobin (50 μmol/L). Digital ratio imaging revealed initiation sites within cells where Ca2+ increases started spreading, which indicates that nonuniformly distributed targets might be involved in these reactions. Calcium was released from intracellular stores as indicated by experiments performed in Ca2+-free buffer. L-type Ca2+-channel blocker diltiazem (100 μmol/L) was not able to block these responses. NO·-induced Ca2+ release from intracellular stores caused capacitative Ca2+ entry. Both thapsigargin (1 μmol/L) and cyclopiazonic acid (10 μmol/L) inhibited the SNP response completely, whereas neither ryanodine (up to 100 μmol/L) nor dantrolene (100 μmol/L) was able to inhibit Ca2+ changes induced by SNP, indicating that primarily inositol 1,4,5-triphosphate (IP3)-dependent stores are released upon stimulation with NO·. A small inhibitory effect of ATP- and SNP-induced peak [Ca2+]i increase was measured in the presence of both caffeine (20 mmol/L) and procaine (1 mmol/L). Evidence is presented that cGMP is not involved in NO·-induced Ca2+ signals, as neither inhibitors of guanylate cyclase (methylene blue and LY (83583) nor cell permeant analogues of cGMP altered or simulated [Ca2+]i changes. An inhibitor of cGMP-dependent protein kinase was also ineffective. We therefore propose that endothelial cells have specific targets proximal or at IP3 receptors to induce Ca2+ changes in endothelial cells stimulated with NO·. J. Cell. Physiol. 172:296–305, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

6.
Membrane vesicles from pigeon erythrocytes show a rapid, ATP-dependent accumulation of 45Ca2+. Ca2+ accumulation ratios greater than or approximately equal to 104 are readily attained. For ATP-dependent Ca2+ uptake, V is 1.5 mmol · 1?1 · min?1 at 27°C (approx. 0.9 nmol · mg?1 protein · min?1), [Ca2+]12 is 0.18 μM, [ATP]12 is 30–60 μM, the Ca2+ uptake rate depends on [Ca2+]2 and the dependence of uptake rate on ATP concentration implies strong ATP-ATP cooperativity. The Arrhenius activation energy is 19.1 ± 1.4 kcal/mol and the pH optimum is approx. 6.9.  相似文献   

7.
The role of intracellular Ca2+ in the regulation of Ca2+-induced terminal differentiation of mouse keratinocytes was investigated using the intracellular Ca2+ chelator 1,2-bis(o-aminophenoxy)-ethane-N, N, N′, N′-tetraacetic acid (BAPTA). A cell permeable acetoxymethyl (AM) ester derivative BAPTA (BAPTA/AM) was loaded into primary mouse keratinocytes in 0.05 mM Ca2+ medium, and then the cells were induced to differentiate by medium containing 0.12 or 0.5 mM Ca2+. Intracellular BAPTA loaded by BAPTA/AM (15–30 μM) inhibited the expression of epidermal differentiation-specific proteins keratin 1 (K1), keratin 10 (K10), filaggrin and loricrin as detected by immunoblotting. The differentiation-associated redistribution of E-cadherin on the cell membrane was delayed but not inhibited as determined by immunofluorescence. BAPTA also inhibited the expression of K1, K10 and Ioricrin mRNA. Furthermore, BAPTA prevented the decrease in DNA synthesis induced by 0.12 and 0.5 mM Ca2+, indicating the drug was inhibiting differentiation but was not toxic to keratinocytes. To evaluate the influence of BAPTA on intracellular Ca2+, the concentration of intracellular free Ca2+ (Cai) in BAPTA-loaded keratinocytes was examined by digital image analysis using the Ca2+-sensitive fluorescent probe fura-2, and Ca2+ influx was measured by 45Ca2+ uptake studies. Increase in extracellular Ca2+ (Cao) in the culture medium of keratinocytes caused a sustained increase in both Cai and Ca2+ localized to ionomycin-sensitive intracellular stores in keratinocytes. BAPTA lowered basal Cai concentration and prevented the Cai increase. After 12 hours of BAPTA treatment, the basal level of Cai returned to the control value, but the Ca2+ localized in intracellular stores was substantially decreased. 45Ca2+ uptake was initially (within 30 min) increased in BAPTA-loaded cells. However, the total 45Ca2+ accumulation over 24 hours in BAPTA-loaded cells remained unchanged from control values. These results indicate that keratinocytes can maintain Cai and total cellular Ca2+ content in the presence of increased amount of intracellular Ca2+ buffer (e.g., BAPTA) by depleting intracellular Ca2+ stores over a long period. The inhibition by BAPTA of keratinocyte differentiation marker expression may result from depletion of the Ca2+-stores since this is the major change in intracellular Ca2+ detected at the time keratinocytes express the differentiation markers. In contrast, the redistribution of E-cadherin on the cell membrane may be more directly associated with Cai change. © 1995 Wiley-Liss, Inc.  相似文献   

8.
Intracellular calcium, [Ca2+]i, can regulate meiotic progression of mammalian oocytes. However, the role of [Ca2+]i in the regulation of the spermatogenic process and its cellular homeostatic mechanisms in spermatogenic cells has not been elucidated. Using intracellular fluorescent probes for Ca2+ and immunodetection of plasma membrane (PM) Ca2+-ATPases, we report that: a) rat round spermatids maintain [Ca2+]i levels of 60 ± 5 nM (SEM), as estimated with fluo-3 in single cells or fura-2 in cells in suspension; b) these cells regulate [Ca2+]i by actively extruding it using a PM Ca2+-ATPase; c) rat spermatids also actively transport Ca2+ by sarco-endoplasmic reticulum type ATPases (SERCA); d) rat spermatids possess non-mitochondrial intracellular Ca2+i stores insensitive to thapsigargin but releasable by ionomycin; and e) rat spermatids do not activate Ca2+ entry mechanisms by the release of Ca2+ from SERCA-regulated stores. These results demonstrate that rat round spermatids can generate modulated intracellular Ca2+ signals upon activation of Ca2+ channels or Ca2+ release from intracellular stores.  相似文献   

9.
The particulate fraction from osmotically shocked synaptosomes (‘synaptosomal membranes’) sequesters Ca when incubated with ATP-containing solutions. This net accumulation of Ca can reduce the free [Ca2+] of the bathing medium to sub-micromolar levels (measured with arsenazo III). Two distinct types of Ca sequestration site are responsible for the Ca2+ buffering. One site, presumed to be smooth endoplasmic reticulum, operates at low [Ca2+] (less than 1 μM), and has a relatively small capacity. Ca sequestration at this site is prevented by the Ca2+ ionophore, A-23187, but not by mitochondrial poisons. The second (mitochondrial) site, in contrast, is blocked by the mitochondrial uncoupler, carbonyl cyanide p-trifluoromethoxyphenylhydrazone, and oligomycin. Since the intraterminal organelles can buffer [Ca2+] to about 0.3–0.5 μM, this may be an upper limit to the normal resting level of [Ca2+]i in nerve terminals. In the steady state, total cell Ca and [Ca2+]i will be governed principally by Ca transport mechanisms in the plasmalemma; the intracellular organelle transport systems then operate in equilibrium with this [Ca2+]. During activity, however, Ca rapidly enters the terminals and [Ca2+]i rises. The intracellular buffering mechanisms then come into play and help to return [Ca2+]i toward the resting level; the non-mitochondrial Ca sequestration mechanism probably plays the major role in this Ca buffering.  相似文献   

10.
We have evaluated the effect of vitamin D-3 and its metabolite 1,25-dihydroxyvitamin D-3 on Ca2+ accumulation by chick intestinal mitochondria. Ca2+ accumulation appears to occur in two phases: an early, transient accumulation into an Na+-labile pool followed by an ATP-dependent accumulation into an Na+-resistant pool. Ca2+ accumulation is extensive at free Ca2+ concentrations greater than 3 · 10?6 M in the presence of ATP. Ruthenium red and dinitrophenol block Ca2+ accumulation, but atractyloside does not. Oligomycin blocks ATP-supported accumulation completely with a partial inhibition of ATP and malate-supported accumulation. Little difference could be found in mitochondrial preparations from vitamin D-deficient chicks compared to those from vitamin D-3 (or 1,25(OH)2D-3)-supplemented chicks with respect to respiratory control, oxygen consumption, efficiency of oxidative phosphorylation, affinity for Ca2+, or the rate and extent of ATP-supported Ca2+ accumulation. Intestinal cytosol stimulated Ca2+ accumulation, but this was not specific with respect to vitamin D status or tissue of origin, nor was it duplicated by chick intestinal Ca2+-binding protein. 30 ng/ml 1,25(OH)2D-3 stimulated Ca2+ accumulation directly, regardless of the presence of intestinal cytosol. Other vitamin D metabolites were less potent: 25-hydroxyvitamin D-3 > 24,25-dihydroxyvitamin D-3 = vitamin D-3. Since increasing the free Ca2+ concentration from 3 · 10?6 to 1 · 10?5 M increased Ca2+ accumulation approx. 50-fold, whereas direct stimulation by 1,25(OH)2D-3 in vitro increased Ca2+ accumulation less than 2-fold, we conclude that 1,25(OH)2D-3 influences mitochondrial accumulation of Ca2+ in vivo primarily by altering cytosol concentrations of free Ca2+.  相似文献   

11.
Ca2+ binding by skeletal muscle microsomes in 5 mM ATP exhibited saturation kinetics in the range of Ca2+ concentrations between 3 · 10?8 and 10?5 M. Approximately 140 nmoles binding sites per mg protein were found. These had a Ca2+ binding constant of approximately 4.5 · 106 M?1 with half saturation at 2.2 · 10?7 M Ca2+. In the presence of oxalate, much larger amounts of Ca2+ (approx. 6 μmoles/mg protein) were taken up by the microsomes (Ca2+ uptake), but the rate of Ca2+ uptake increased linearly with [Ca2+] when ionized Ca2+ concentrations were below 3 · 10?6 M. At Ca2+ concentrations above 3 · 10?6, Ca2+ uptake was inhibited. Double reciprocal plots of the Ca2+ dependence of the initial rates of Ca2+ uptake in the concentration range between 3 · 10?7 M and 10?5 M, unlike those of Ca2+ binding, did not demonstrate saturation kinetics, but could be interpreted as representing a non-saturable system with inhibition at higher Ca2+ concentrations. In view of these differences, and because Ca2+-binding sites were almost fully saturated at 10?6 M Ca2+, whereas Ca2+ uptake rate increased linearly with increasing [Ca2+] to approximately 3 · 10?6 M, the Ca2+-binding sites are not shown kinetically to participate in oxalate-dependent Ca2+ uptake.  相似文献   

12.
The ryanodine-sensitive intracellular Ca2+ stores are known to play a major role in excitation-contraction coupling in muscles. Although these stores are also abundantly present in central neurons, their functional role in these cells remains unclear. Using fluorometric digital imaging of the intracellular Ca2+ concentration ([Ca2+] i ) in rat hippocampal slices, we investigated the dynamic properties of the ryanodine-sensitive Ca2+ stores inCA1 hippocampal pyramidal cells. We found that at rest the ryanodine-sensitive Ca2+ stores are functioning predominantly as a “sink” for Ca ions responding to an increase in [Ca2+] i with an increase in the amount of Ca ions accumulated inside the stores. If, however, [Ca2+] i increases significantly, as happens during strong neuronal discharges, the ryanodine-sensitive Ca2+ stores respond with Ca2+ release, thus acting as an amplifier of the intracellular Ca2+ signal.  相似文献   

13.
(1) The effects of calmodulin binding on the rates of Ca2+-dependent phosphorylation and dephosphorylation of the red-cell Ca2+ pump, have been tested in membranes stripped of endogenous calmodulin or recombined with purified calmodulin. (2) In Mg2+-containing media, phosphorylation and dephosphorylation rates are accelerated by a large factor (at 0°C), but the steady-state level of phosphoenzyme is unaffected by calmodulin binding (at 0°C and 37°C). In Mg2+-free media, slower rates of phosphoenzyme formation and hydrolysis are observed, but both rates and the steady-state phosphoenzyme level are raised following calmodulin binding. (3) At 37°C and 0°C, the rate of (Ca2+ + Mg2+)-ATPase activity is stimulated maximally by 6–7-fold, following calmodulin binding. At 37°C the apparent Ca2+ affinity for sustaining ATP hydrolysis is raised at least 20-fold, Km(Ca) ? 10 μM (—calmodulin) and Km(Ca) < 0.5 μM (+ calmodulin), but at 0°C the apparent Ca2+ affinity is very high in calmodulin-stripped membranes and little or no effect of calmodulin is observed (Km(Ca) ? 3–4 · 10-8 M). (Ca2+ + Mg2+)-ATPase activity in calmodulin activated membranes and at saturating ATP levels, is sharply inhibited by addition of calcium in the range 50–2000 μM. (4) A systematic study of the effects of the nucleotide species MgATP, CaATP and free ATP on (Ca2+ + Mg2+)-ATPase activity in calmodulin-activated membranes reveals: (a) In the 1–10 μmolar concentration range MgATP, CaATP and free ATP appear to sustain (Ca2+ + Mg2+)-ATPase activity equally effectively. (b) In the range 100–2000 μM, MgATP accelerates ATP hydrolysis (Km(MgATP) ? 360 μM), and CaATP is an inhibitor (Ki(CaATP) ? 165 μM), probably competing with MgATP fo the regulatory site. (5) The results suggest that calmodulin binding alters the conformational state of the Ca2+- pump active site, producing a high (Ca2+ + Mg2+)-ATPase activity, high Ca2+ affinity and regulation of activity by MgATP.  相似文献   

14.
Bovine thyroid tissue exhibited cAMP-dependent and Ca2+-dependent protien kinase activities as well as a basal (cAMP- and Ca2+-independent) one, and phosphoprotein phosphatase activity. Although the former two protein kiniase activities were not clearly demonstrated using endogenous protein as substrate, they were clearly shown in soluble, particulate and plasma membrane fractions using exogenous histones as substrate. The highest specific activities were in the plasma membrane. The apparent Km values of cAMP and Ca2+ for the membrane-bound protein kinase were 5·10?8 M and 8.3·10?4M (in the presence of 1 mM EGTA), respectively. The apparent Km values of Mg2+ were 7·10?4 M (without cAMP and Ca2+, 5·10?4 M (with cAMP) and 1.3·10?3 M (with Ca2+), and those ATP were 3.5·10?5 M (with or without cAMP) and 8.5·10?5 M (with Ca2+). The Ca2+-dependent protein kinase could be dissociated from the membrane by EGTA-washing. The enzyme activity so released was further activated by added phospholipid (phosphatidylserine/1,3-diolein), but not by calmodulin. Phosphoprotein phosphatase activity was also clearly demonstrated in all of the fractions using 32P-labeled mixed histones as substrate. The activity was not modified by either cAMP or Ca2+, but was sitmulated by a rather broad range (5–25 mM) of Mg2+ and Mn2+. NaCl and substrate concentrations also influenced the activity. Pyrophosphate, ATP, inorganic phosphate and NaF inhibited the activity in a dose-dependent manner. Trifluoperazine, chlorpromazine, dibucaine and Triton X-100 (above 0.05%, w/v) specifically inhibited the Ca2+-dependent protein kinase in plasma membranes. Repetitive phosphorylation of intrinsic and extrinsic proteins by the membrane-bound enzyme activities clearly showed an important co-ordination of them at the step of protein phosphorylation. These findings suggest that these enzyme activities in plasma membranes may contribute to regulation of thyroid function in response to external stimuli.  相似文献   

15.
Low concentrations of a polyoxyethylene detergent, Brij 58, inhibited the secondary phase of platelet aggregation induced by ADP in human citrated platelet-rich but had no effect on primary aggregation. Thrombin-induced aggregation of washed human platelets suspended in Tyrode's buffer was inhibited after incubation of cells with 4 · 10?6 M detergent. Efflux of [14C]serotonin, 45Ca2+ and labile aorta contracting substance (thromboxane A2) and development of prothrombin-converting activity (platelet factor 3) were abolished concomitantly. Aggregation of washed platelets either by sodium arachidonate or by collagen was also inhibited by the same concentration of Brij 58 which inhibited thrombin aggregation. This concentration did not itself produce any release of a cytoplasmic marker, lactate dehydrogenase, from platelets. Higher concentrations of Brij 58, exceeding 4 · 10?5 M, lysed the cells liberating lactate dehydrogenase, serotonin and Ca2+. When albumin was included as a platelet stabilizer in the suspending medium the concentration of detergent required for the inhibitory effects was increased ten-fold. This could be attributed to competitive binding of the detergent to albumin, demonstrated with [14C]acetylated Brij 58. A variety of other polyoxyethylene detergents, at concentrations from 8 · 10?4 to 5 · 10?3 M, also inhibited platelet aggregation induced by thrombin. It is concluded that low concentrations of Brij 58 stabilize the platelets against the action of aggregation agents, while higher concentrations produce membrane destabilization and cell lysis.  相似文献   

16.
The enzyme discadenine synthase, which transfers the 3-amino-3-carboxypropyl residue of S-adenosylmethionine to an acceptor, N6-isopentenyladenine, from the fruiting body of the cellular slime mold Dictyostelium discoideum, was purified 420-fold. Its apparent molecular mass was 82 000 Da and the isoelectric point was pH 5.8. The Km value for S-adenosylmethionine was 1.85 · 10−5 M and for benzyladenine was 7.0 · 10−7 M. In contrast to theenzyme which catalyzes the formation of 3-(3-amino-3-carboxypropyl)uridine in tRNAs, the present enzyme did not require Mg2+ and was not stimulated by ATP. Some other metal ions (Zn2+, Mn2+, Ca2+) showed inhibition at 10–100 mM.  相似文献   

17.
High-affinity receptors for α2-macroglobulin-trypsin complex were demonstrated in rat hepatocytes at 4°C. The dissociation rate constant for the labelled complex was very small at low receptor occupancies, approx. 4·10−4 min−1. Dissociation was biphasic at high receptor occupancies with a rate constant for the rapid phase of about 2·10−2 min−1. At near-equilibrium, half of the receptors were saturated at a complex concentration of 150 pM, and the Scatchard plot was concave upwards. Thus, the binding shows complex kinetics with the probable involvement of negative cooperativity. Binding of the labelled complex was not influenced by galactose, mannose, mannose phosphate or fucoidin, whereas it was abolished in the absence of extracellular Ca2+ and inhibited by bacitracin. Approx. 70% of the labelled complex bound at 4°C was rapidly internalized (kint about 3·10−1 min−1) after being warmed to 37°C. Radioactivity released from the cells at 37°C comprised intact labelled complex and iodide. The complex was initially released at a rapid rate (k−1 about 1·10−1 min−1) from about 25% of the cell-bound pool. This probably represents dissociation from the receptors. A slow phase of release followed, so that half of the bound pool was finally released as intact complex. Iodide release followed a sigmoidal curve after a 20 min lag period. Thus, specific high-affinity receptors mediate the internalization and eventual degradation of α2-macroglobulin-proteinase complex into hepatocytes.  相似文献   

18.
We studied the effect of a donor of peroxynitrite, SIN-1, on the morphological characteristics of interweaved rat C6 glioma cells, on menadione-induced production of superoxide anion radicals, and on the concentration of Ca2+ in these cells. In concentrations of 1.25·10−4 to 2.5·10−7 M, SIN-1 demonstrated cytotoxic and antimitogenic effects. This donor of peroxynitrite caused abnormal modifications of the size of C6 cells and the structure of cellular organelles, intensified in a dose-dependent manner the release of Ca2+ from cellular stores into the cytoplasm, and suppressed menadione-induced production of superoxide anion radicals. Therefore, it should be believed that peroxynitrite exerts a modifying effect on the processes of mitotic division and induces apoptosis; it is also involved in the processes of intracellular signalling providing an increase in the concentration of cytosolic Ca2+ and a decrease in the redox activity of cells. Neirofiziologiya/Neurophysiology, Vol. 38, Nos. 5/6, pp. 401–406, September–December, 2006.  相似文献   

19.
Abstract: We used cultured rat chromaffin cells to test the hypothesis that Ca2+ entry but not release from internal stores is utilized for exocytosis. Two protocols were used to identify internal versus external Ca2+ sources: (a) Ca2+ surrounding single cells was transiently displaced by applying agonist with or without Ca2+ from an ejection pipette. (b) Intracellular stores of Ca2+ were depleted by soaking cells in Ca2+-free plus 1 mM EGTA solution before transient exposure to agonist plus Ca2+. Exocytosis from individual cells was measured by microelectrochemical detection, and the intracellular Ca2+ concentration ([Ca2+]i) was measured by indo-1 fluorescence. KCl (35 mM) and nicotine (10 µM) caused an immediate increase in [Ca2+]i and secretion in cells with or without internal Ca2+ stores, but only when applied with Ca2+ in the ejection pipette. Caffeine (10 mM) and muscarine (30 µM) evoked exocytosis whether or not Ca2+ was included in the pipette, but neither produced responses in cells depleted of internal Ca2+ stores. Pretreatment with ryanodine (0.1 µM) inhibited caffeine- but not muscarine-stimulated responses. Elevated [Ca2+]i and exocytosis exhibited long latency to onset after stimulation by caffeine (2.9 ± 0.38 s) or muscarine (2.2 ± 0.25 s). However, the duration of caffeine-evoked exocytosis (7.1 ± 0.8 s) was significantly shorter than that evoked by muscarine (33.1 ± 3.5 s). The duration of caffeine-evoked exocytosis was not affected by changing the application period between 0.5 and 30 s. An ~20-s refractory period was found between repeated caffeine-evoked exocytotic bursts even though [Ca2+]i continued to be elevated. However, muscarine or nicotine could evoke exocytosis during the caffeine refractory period. We conclude that muscarine and caffeine mobilize different internal Ca2+ stores and that both are coupled to exocytosis in rat chromaffin cells. The nicotinic component of acetylcholine action depends primarily on influx of external Ca2+. These results and conclusions are consistent with our original observations in the perfused adrenal gland.  相似文献   

20.
The action of acetylcholine on the horizontal cells of the goldfish retina and the electro-retinogram of the frog was studied. Acetylcholine in concentrations of 1·10−9–1·10−3 M depolarized these cells. The maximal level of depolarization never reached zero level of the membrane potential and was about equal to the membrane potential in darkness. In a concentration of 1·10−2–5·10−2 M acetylcholine suppressed the b- and d-waves of the frog electro-retinogram, and as a result the stable PIII component was isolated from the ERG. A mediator role is ascribed to acetylcholine in the synapses of the outer plexiform layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号