首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of X-band EPR and ENDOR of the S2 state of photosystem II membrane fragments and core complexes in the frozen state is presented. The S2 state was generated either by continuous illumination at T=200 K or by a single turn-over light flash at T=273 K yielding entirely the same S2 state EPR signals at 10 K. In membrane fragments and core complex preparations both the multiline and the g=4.1 signals were detected with comparable relative intensity. The absence of the 17 and 23 kDa proteins in the core complex preparation has no effect on the appearance of the EPR signals. 1H-ENDOR experiments performed at two different field positions of the S2 state multiline signal of core complexes permitted the resolution of four hyperfine (hf) splittings. The hf coupling constants obtained are 4.0, 2.3, 1.1 and 0.6 MHz, in good agreement with results that were previously reported (Tang et al. (1993) J Am Chem Soc 115: 2382–2389). The intensities of all four line pairs belonging to these hf couplings are diminished in D2O. A novel model is presented and on the basis of the two largest hfc's distances between the manganese ions and the exchangeable protons are deduced. The interpretation of the ENDOR data indicates that these hf couplings might arise from water which is directly ligated to the manganese of the water oxidizing complex in redox state S2.Abbreviations cw continuous wave - ENDOR electron nuclear double resonance - EPR electron paramagnetic resonance - hf hyperfine - hfc hyperfine coupling - MLS multiline signal - PS II Photosystem II - rf radio frequency - WOC water oxidizing complex  相似文献   

2.
A mass spectrometric analysis of the water-splitting reaction   总被引:2,自引:0,他引:2  
Earlier mass spectrometric measurements, in which oxygen evolution was measured following short saturating light flashes, indicated that with a time resolution of about 30 s no form of bound water and/or an oxidation product exists up to the redox state S3 of the oxygen evolving center (R. Radmer and O. Ollinger, 1986, FEBS Lett 195: 285–289; K.P. Bader, P. Thibault and G.H. Schmid, 1987, Biochim Biophys Acta 893: 564–571). In the present study, isotope exchange experiments with H2 18O were performed under different experimental conditions. We found: a) the isotope exchange pattern is virtually the same at both pH 6.0 and 7.8, although marked structural changes of the PS II donor side are inferred to take place within this pH-range (Renger G., Messinger J. and Wacker U., 1992, Research in Photosynthesis, II: 329–332); b) injection of H2 18O at about 0°C gives rise to mass ratios of the evolved oxygen which markedly deviate from the theoretically expected values of complete isotope scrambling; and c) rapid injection of H2 18O into samples with high population of S1 and S2 and subsequent illumination with three and two flashes, respectively, spaced by a dark time of only 1.5 ms lead to similar 18O-labeling of the evolved oxygen. Based on the published data on the interaction with redox active amines, possible pathways of substrate exchange in the water oxidase are discussed.Abbreviations atom fraction of 18O - PS II Photosystem II - Si redox states of the water oxidase - Yz redox active tyrosine of polypeptide D1  相似文献   

3.
Escherichia coli nitrate reductase A (NarGHI) is a membrane-bound enzyme that couples quinol oxidation at a periplasmically oriented Q-site (QD) to proton release into the periplasm during anaerobic respiration. To elucidate the molecular mechanism underlying such a coupling, endogenous menasemiquinone-8 intermediates stabilized at the QD site (MSQD) of NarGHI have been studied by high-resolution pulsed EPR methods in combination with 1H2O/2H2O exchange experiments. One of the two non-exchangeable proton hyperfine couplings resolved in hyperfine sublevel correlation (HYSCORE) spectra of the radical displays characteristics typical from quinone methyl protons. However, its unusually small isotropic value reflects a singularly low spin density on the quinone carbon α carrying the methyl group, which is ascribed to a strong asymmetry of the MSQD binding mode and consistent with single-sided hydrogen bonding to the quinone oxygen O1. Furthermore, a single exchangeable proton hyperfine coupling is resolved, both by comparing the HYSCORE spectra of the radical in 1H2O and 2H2O samples and by selective detection of the exchanged deuterons using Q-band 2H Mims electron nuclear double resonance (ENDOR) spectroscopy. Spectral analysis reveals its peculiar characteristics, i.e. a large anisotropic hyperfine coupling together with an almost zero isotropic contribution. It is assigned to a proton involved in a short ∼1.6 Å in-plane hydrogen bond between the quinone O1 oxygen and the Nδ of the His-66 residue, an axial ligand of the distal heme bD. Structural and mechanistic implications of these results for the electron-coupled proton translocation mechanism at the QD site are discussed, in light of the unusually high thermodynamic stability of MSQD.  相似文献   

4.
During dark adaptation, a change in the O2-evolving complex (OEC) of spinach photosystem II (PSII) occurs that affects both the structure of the Mn site and the chemical properties of the OEC, as determined from low-temperature electron paramagnetic resonance (EPR) spectroscopy and O2 measurements. The S2-state multiline EPR signal, arising from a Mn-containing species in the OEC, exhibits different properties in long-term (4 h at 0 degrees C) and short-term (6 min at 0 degree C) dark-adapted PSII membranes or thylakoids. The optimal temperature for producing this EPR signal in long-term dark-adapted samples is 200 K compared to 170 K for short-term dark-adapted samples. However, in short-term dark-adapted samples, illumination at 170 K produces an EPR signal with a different hyperfine structure and a wider field range than does illumination at 160 K or below. In contrast, the line shape of the S2-state EPR signal produced in long-term dark-adapted samples is independent of the illumination temperature. The EPR-detected change in the Mn site of the OEC that occurs during dark adaptation is correlated with a change in O2 consumption activity of PSII or thylakoid membranes. PSII membranes and thylakoid membranes slowly consume O2 following illumination, but only when a functional OEC and excess reductant are present. We assign this slow consumption of O2 to a catalytic reduction of O2 by the OEC in the dark. The rate of O2 consumption decreases during dark adaptation; long-term dark-adapted PSII or thylakoid membranes do not consume O2 despite the presence of excess reductant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The copper(II) complex with tolfenamic acid [Cu(tolf)2(H2O)]2 was studied by X-band and K-band EPR spectroscopies in the temperature range from 90 to 300 K. The Cu2+ ions in dinuclear complex show a strong antiferromagnetic exchange interaction with |J| = 292 cm−1. The EPR spectra, which were observed for [Cu(tolf)2(H2O)]2, are typical powder spectra of the copper pairs. The spectra exhibit the hyperfine structure in low temperature range. The values of the spin-Hamiltonian parameters were determined on the basis of the best fit for the simulated spectra at both K-band (0.75 cm−1) at T = 298 K and X-band (0.3 cm−1) at T = 93 K as compared with the experimentally observed spectra. These values show that the local environment around the copper species is distorted tetragonal pyramid. This EPR evidence is consistent with the crystallographic data.  相似文献   

6.
We have investigated the effects of temperature on the formation and decay of the light-induced multiline EPR signal species associated with photosynthetic oxygen evolution (Dismukes, G.C. and Siderer, Y. (1980) FEBS Lett. 121, 78–80). (1) The decay rate following illumination is temperature dependent: at 295 K the half-time of decay is about 40 s, at 253 K the half-time is approx. 40 min. (2) A single intense flash of light becomes progressively less effective in generating the multiline signal below about 240 K. (3) Continuous illumination is capable of generating the signal down to almost 160 K. (4) Continuous illumination after a preilluminating flash generates less signal above 200 K than at lower temperatures. Our results support the conclusion of Dismukes and Siderer that the S2 state gives rise to this multiline signal; we find that the S1 state can be fully advanced to the S2 state at temperatures as low as 160 K. The S2 state is capable of further advancement at temperatures above about 210 K, but not below that temperature.  相似文献   

7.
《BBA》1986,850(2):333-342
The role of chloride in the manganese-containing oxygen-evolving complex of Photosystem II has been studied by observing the amplitude of the multiline EPR signal as a function of Cl concentration or when Cl is replaced by Br or F. The correlation of the multiline EPR signal intensity and O2 activity with the concentration of Cl shows that chloride is involved in oxygen evolution at the S2 or earlier S states, and that it is necessary for the production of an EPR-detectable S2 state. We have developed a new method for the preparation of subchloroplast PS II particles containing Br and F) and have used these particles for studying the EPR fine structure at high resolution. The fine structure shows a multiplet of 4–6 lines with 10–15 G spacing; at the resolution of our experiment there are no significant differences between the Cl-and Br-containing samples, suggesting that the halide is not a ligand of the EPR-active Mn. Various structural possibilities for the Mn complex, which would account for the observed fine structure of the multiline EPR spectrum are discussed.  相似文献   

8.
The S2 state of the oxygen-evolving Mn-cluster of Photosystem II (PS II) is known to have different forms that exhibit the g =2 multiline and g = 4.1 EPR signals. These two spin forms are interconvertible at > 200 K and the relative amplitudes of the two signals are dependent on the species of cryoprotectant and alcohol contained in the medium. Also, it was recently found that the mutiline form can be converted to the g = 4.1 form by absorption of near-infrared light by the Mn-cluster itself at around 150 K [Boussac et al. (1996) Biochemistry 35: 6984–6989]. We have used light-induced Fourier transform infrared (FTIR) difference spectroscopy to study the structural difference in these two S2 forms. FTIR difference spectra for S2/S1 as well as for S2QA -/S1QA measured at cryogenic temperatures using PS II membranes in the presence of various cryoprotectants, and monohydric alcohols did not show any specific differences except for intensities of amide I bands, which were larger when ethylene glycol or glycerol was present in addition to sucrose. This result was interpreted due to more flexible movement of the protein backbones upon S2 formation with a higher cryoprotectant content. Light-induced difference spectra measured at 150 K using either blue light without near-infrared light or red plus near-infrared light also did not show any detectable difference. In addition, a different spectrum upon near-infrared illumination at 150 K of the PS II sample in which the S2 state had been photogenerated at 200 K exhibited no meaningful signals. These results indicate that the two S2 forms that give rise to the multiline and g = 4.1 signals have only minor differences, if any, in the structures of amino-acid ligands and polypeptide backbones. This conclusion suggests that conversion between the two spin states is caused by a spin-state transition in the Mn(III) ion rather than valence swapping within the Mn-cluster that would considerably affect the vibrations of ligands.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

9.
The directed synthesis of a new organically templated copper sulfate has been achieved through the use of chiral organic amine. Reaction containing S-2-methylpiperazine, CuSO4·5H2O, H2SO4 and H2O were subjected to the slow evaporation conditions, resulting in the growth of single crystals of [(S)-C5H14N2][Cu(SO4)2(H2O)4]·(H2O)2. At room temperature, it crystallises in the non-centrosymmetric space group P21, Z = 2, a = 7.5583(5), b = 10.1721(6), c = 10.7974(7) Å, β = 94.425(4)° and V = 827.67(9) Å3. The structure consists of trimeric units [Cu(SO4)2(H2O)4]2−, [(S)-C5H14N2]2+ cations and free water molecules, donating hydrogen bonds that stabilize the three-dimensional structure and filling space. The title compound undergoes a reversible phase transition of first-order, which is detected by differential-scanning calorimetry at 347.2 K in the heating cycle and at 318.9 K in the cooling cycle. The evolution of the dielectric constant as a function of frequency and temperature revealed this transition to be ferro-paraelectric. Thermogravimetric analyses indicate that its decomposition proceeds through three stages giving rise to the copper oxide.  相似文献   

10.
《BBA》2019,1860(10):148059
Based on characterization by X-ray absorption spectroscopy, it has been proposed that the Mn4CaO5 cluster in the crystal structure of the water-oxidizing enzyme, photosystem II (PSII), may represent an over-reduced form arising from reduction by the X-ray beam. Using a quantum mechanical/molecular mechanical approach, and assuming that all of the μ-oxo bridges are deprotonated in S1, we analyzed the reduction process of the Mn4CaO5 cluster. In the crystal structure, the O atom (O5), which is linked with three Mn atoms and one Ca atom, has no H-bond. When reduced to S–2, unexpectedly, a water molecule at Ca2+ (W3) reoriented itself, formed a H-bond with O5, and released a proton to O5, resulting in formation of OH at both W3 and O5. Once generated, the OH group at O5 was stable, because the W3…O5 H-bond had already disappeared. A weak binding of H2O at Ca2+ led W3 to reorient and serve as a proton donor to O5 upon over-reduction.  相似文献   

11.
Continuous illumination at 200 K of photosystem (PS) II-enriched membranes generates two electron paramagnetic resonance (EPR) signals that both are connected with the S2 state: a multiline signal at g 2 and a single line at g = 4.1. From measurements at three different X-band frequencies and at 34 GHz, the g tensor of the multiline species was found to be isotropic with g = 1.982. It has an excited spin multiplet at ~30 cm-1, inferred from the temperature-dependence of the linewidth. The intensity ratio of the g = 4.1 signal to the multiline signal was found to be almost constant from 5 to 23 K. Based on these findings and on spin quantitation of the two signals in samples with and without 4% ethanol, it is concluded that they arise from the ground doublets of paramagnetic species in different PS II centers. It is suggested that the two signals originate from separate PS II electron donors that are in a redox equilibrium with each other in the S2 state and that the g = 4.1 signal arises from monomeric Mn(IV).  相似文献   

12.
J.L. Zimmermann  A.W. Rutherford 《BBA》1984,767(1):160-167
The light-induced EPR multiline signal is studied in O2-evolving PS II membranes. The following results are reported: (1) Its amplitude is shown to oscillate with a period of 4, with respect to the number of flashes given at room temperature (maxima on the first and fifth flashes). (2) Glycerol enhances the signal intensity. This effect is shown to come from changes in relaxation properties rather than an increase in spin concentration. (3) Deactivation experiments clearly indicate an association with the S2 state of the water-oxidizing enzyme. A signal at g = 4.1 with a linewidth of 360 G is also reported and it is suggested that this arises from an intermediate donor between the S states and the reaction centre. This suggestion is based on the following observations: (1) The g = 4.1 signal is formed by illumination at 200 K and not by flash excitation at room temperature, suggesting that it arises from an intermediate unstable under physiological conditions. (2) The formation of the g = 4.1 signal at 200 K does not occur in the presence of DCMU, indicating that more than one turnover is required for its maximum formation. (3) The g = 4.1 signal decreases in the dark at 220 K probably by recombination with Q?AFe. This recombination occurs before the multiline signal decreases, indicating that the g = 4.1 species is less stable than S2. (4) At short times, the decay of the g = 4.1 signal corresponds with a slight increase in the multiline S2 signal, suggesting that the loss of the g = 4.1 signal results in the disappearance of a magnetic interaction which diminishes the multiline signal intensity. (5) Tris-washed PS II membranes illuminated at 200 K do not exhibit the signal.  相似文献   

13.
Using highly purified ornithine decarboxylase isolated from androgen-treated mice, [1R-2H]putrescine was generated by the decarboxylation of l-ornithine in D2O, and [1S-2H]putrescine was generated from [2-2H]ornithine by carrying out the decarboxylation in H2O. Chirality of the putrescines was then determined from the 200-MHz 1H NMR spectra of their bis-camphanamides in the presence of Eu(fod)3. These results demonstrated that decarboxylation had taken place with retention of configuration.  相似文献   

14.
John L. Casey  Kenneth Sauer 《BBA》1984,767(1):21-28
In Photosystem II preparations at low temperature we were able to generate and trap an intermediate state between the S1 and S2 states of the Kok scheme for photosynthetic oxygen evolution. Illumination of dark-adapted, oxygen-evolving Photosystem II preparations at 140 K produces a 320-G-wide EPR signal centered near g = 4.1 when observed at 10 K. This signal is superimposed on a 5-fold larger and somewhat narrower background signal; hence, it is best observed in difference spectra. Warming of illuminated samples to 190 K in the dark results in the disappearance of the light-induced g = 4.1 feature and the appearance of the multiline EPR signal associated with the S2 state. Low-temperature illumination of samples prepared in the S2 state does not produce the g = 4.1 signal. Inhibition of oxygen evolution by incubation of PS II preparations in 0.8 M NaCl buffer or by the addition of 400 μM NH2OH prevents the formation of the g = 4.1 signal. Samples in which oxygen evolution is inhibited by replacement of Cl? with F? exhibit the g = 4.1 signal when illuminated at 140 K, but subsequent warming to 190 K neither depletes the amplitude of this signal nor produces the multiline signal. The broad signal at g = 4.1 is typical for a S = 52 spin system in a rhombic environment, suggesting the involvement of non-heme Fe in photosynthetic oxygen evolution.  相似文献   

15.
Treatment of Photosystem II (PS II) with low concentrations of hydroxylamine is known to cause a two-flash delay in the O2-evolution pattern, and in the formation of the S2-state multiline EPR signal, due to the two-electron reduction of the S1-state by hydroxylamine to form the S-1-state. Past work has shown that these delays are not reversed by washing out the hydroxylamine nor by adding DCBQ or ferricyanide to oxidize the residual hydroxylamine, but are reversed by illumination with two saturating flashes followed by a 30-min dark incubation. We have examined the effects of treatments aimed at restoring the normal flash-induced O2-evolution pattern and S2-state multiline EPR signal after treatment of PS II with 40 M hydroxylamine. In agreement with past work, we find that the two-flash delay in O2 evolution is not reversed when the hydroxylamine is removed by three cycles of centrifugation and resuspension in hydroxylamine-free buffer nor by adding ferricyanide or DCBQ to oxidize the unreacted hydroxylamine. However, the normal flash-induced O2-evolution pattern is restored by illumination with two saturating flashes followed by a 30-min dark incubation (after the sample was first treated with 40 M hydroxylamine and the unreacted hydroxylamine was removed); illumination with one saturating flash followed by a 30-min dark incubation is only partially effective. These results show that ferricyanide and DCBQ are not effective at oxidizing the S-1-state to the S1-state. In contrast, adding hypochlorite (OCl-) after treatment with hydroxylamine restored the normal flash-induced O2-evolution pattern and also restored the formation of the S2-state multiline EPR signal by illumination at 200 K. We conclude that hypochlorite is capable of oxidizing the S-1-state to the S1-state. This is the first example of a chemical treatment that advances the delayed flash-induced O2 evolution pattern.Abbreviations DCBQ 2,5-dichloro-p-benzoquinone - OEC O2-evolving center  相似文献   

16.
《BBA》1987,893(3):564-571
In the present paper we analyzed the properties of the S3-state in the filamentous cyanobacterium Oscillatoria chalybea by mass spectrometry. In this organism a substantial O2-signal due to a single flash is observed even after extensive dark adaptation (20 min). This signal can be measured by mass spectrometry as well as amperometrically on an oxygen electrode and is not due to an interference of respiratory and photosynthetic electron transport in the prokaryotic membrane. The mass spectrometric analysis shows that, if S3 is generated by two flashes in a medium containing only H216O, addition of H218O and subsequent firing of a third flash yields O2 evolution labelled with 18O. It appears that the isotopic composition of the O2 evolved corresponds to the isotopic composition of the water in the suspension. This experiment shows that water oxidation does not proceed via an oxygen precursor or water derivatives bound to the S3-state. This conclusion has been reached shortly before ours by Radmer and Ollinger [15] in the reverse marker experiment. From our study with O. chalybea it appears that freshly generated S3 can be distinguished from metastable S3 by the mass spectrometric method. It looks as if in contrast to freshly generated S3 metastable S3 contained bound unexchangeable water or an oxidized water derivative.  相似文献   

17.
Our recent EPR and EXAFS experiments investigating the structure of the oxygen-evolving complex of PS II are discussed. PS II treatments which affect the cofactors calcium and chloride have been used to poise samples in modified forms of the S-states, S1, S2 and S3. X-ray absorption studies indicate a similar overall structure for the manganese complex between treated and native samples although the influence of the treatments and cofactors is observed. Manganese oxidation (or oxidation of a ligand to the manganese cluster) is indicated to occur on each of the transitions S1 S2 and S2 S3 in these modified samples. The cluster appears to contain at least two inequivalent Mn-Mn pairs. In the native samples the Mn-Mn distance is 2.7 Å, but in samples where the calcium site is affected, one of the pairs has a 3.0 Å Mn-Mn distance. The intensity of the 3.3/3.6 Å interaction is reduced on sodium chloride treatment (calcium depletion) perhaps indicating calcium binding close to the manganese cluster. From EPR data we also propose that treatments which affect calcium and chloride binding cause a modification of the native S2 state, slow the reduction of Yz and allow an S3 EPR signal to be observed following illumination. The origin of the S3 EPR signal, a modified S3 or S2 X where X is an organic radical of unknown charge, is discussed in relation to the results from the EXAFS studies.Abbreviations EPR electron paramagnetic resonance spectroscopy - EXAFS extended X-ray absorption fine structure - HTG n-heptyl -d-thioglucoside - MES 2(N-morpholino)ethanesulfonic acid - OEC oxygen evolving complex - PPBQ phenyl-1,4-benzoquinone - PS II Photosystem II - Yz redox active tyrosine  相似文献   

18.
The hydrogen-activating cluster (H cluster) in [FeFe]-hydrogenases consists of two moieties. The [2Fe]H subcluster is a (L)(CO)(CN)Fe(μ-RS2)(μ-CO)Fe(CysS)(CO)(CN) centre. The Cys-bound Fe is called Fe1, the other iron Fe2. The Cys-thiol forms a bridge to a [4Fe–4S] cluster, the [4Fe–4S]H subcluster. We report that electron paramagnetic resonance (EPR) spectra of the 57Fe-enriched enzyme from Desulfovibrio desulfuricans in the Hox–CO state are consistent with a magnetic hyperfine interaction of the unpaired spin with all six Fe atoms of the H cluster. In contrast to the inactive aerobic enzyme, the active enzyme is easily destroyed by light. The [2Fe]H subcluster in some enzyme molecules loses CO by photolysis, whereupon other molecules firmly bind the released CO to form the Hox–CO state giving rise to the so-called axial 2.06 EPR signal. Though not destroyed by light, the Hox–CO state is affected by it. As demonstrated in the accompanying paper [49] two of the intrinsic COs, both bound to Fe2, can be exchanged by extrinsic 13CO during illumination at 2 °C. We found that only one of the three 13COs, the one at the extrinsic position, gives an EPR-detectable isotropic superhyperfine interaction of 0.6 mT. At 30 K both the inhibiting extrinsic CO bound to Fe2 and one more CO can be photolysed. EPR spectra of the photolysed products are consistent with a 3d 7 system of Fe with the formal oxidation state +1. The damaged enzyme shows a light-sensitive g=5 signal which is ascribed to an S=3/2 form of the [2Fe]H subcluster. The light sensitivity of the enzyme explains the occurrence of the g=5 signal and the axial 2.06 signal in published EPR spectra of nearly all preparations studied thus far.  相似文献   

19.
The Oxygen evolving complex of plant photosystem II is made of a manganese cluster that gives rise to a low temperature EPR multiline signal in the S2 oxidation state. The origin of this EPR signal has been addressed with respect to the question of the magnetic couplings between the electron and nuclear spins of the four possible Mn ions that make up this complex. Considering Mn(III) and Mn(IV) as the only possible oxidation states present in the S2 state, and no large anisotropy of the magnetic tensors, the breadths of the EPR spectra calculated for dimers and trimers with S = ½ have been compared with that of the biological site. It is concluded that neither a dinuclear nor a trinuclear complex made of Mn(III) and Mn(IV) can be responsible for the multiline signal; but that, by contrast, a tetranuclear Mn complex can be the origin of this signal. The general shape of the experimental spectrum, its particular hyperfine pattern, the positions of most of the hyperfine lines and their relative intensities can be fit by a tetramer model described by the following six fitting parameters: g ≈ 1.987, A1 ≈ 122.4 10-4 cm-1, A2 ≈ 87.2 10-4 cm-1, A3 ≈ 81.6 10-4 cm-1, A4 ≈ 19.1 10-4 cm-1 and δH = 24.5 G. A second model described by parameters very close to those given above except for A4 ≈ 77.5 10-4 cm-1 gives an equally good fit. However, no other set of parameters gives an EPR spectrum that reproduces the hyperfine pattern of the S2 multiline signal. This demonstrates that in the S2 state of the oxygen evolving complex, the four manganese ions are organized in a magnetic tetramer.  相似文献   

20.
Molecular dynamics simulation is used to study the decomposition and stability of SII hydrogen and hydrogen/tetrahydrofuran (THF) hydrates at 150 K, 220 K and 100 bar. The modelling of the microscopic decomposition process of hydrogen hydrate indicates that the decomposition of hydrogen hydrate is led by the diffusive behaviour of H2 molecules. The hydrogen/THF hydrate presents higher stability, by comparing the distributions of the tetrahedral angle of H2O molecules, radial distribution functions of H2O molecules and mean square displacements or diffusion coefficients of H2O and H2 molecules in hydrogen hydrate with those in hydrogen/THF hydrate. It is also found that the resistance of the diffusion behaviour of H2O and H2 molecules can be enhanced by encaging THF molecules in the (51264) cavities. Additionally, the motion of THF molecules is restricted due to its high interaction energy barrier. Accordingly, THF, as a stabiliser, is helpful in increasing the stability of hydrogen hydrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号