共查询到20条相似文献,搜索用时 0 毫秒
1.
《Analytical biochemistry》1986,159(1):35-42
The usefulness of two monoclonal antibodies, ϵ-1 and ϵ-4, which recognize the ϵ subunit of Escherichia coli F1-ATPase, for removing that subunit from ATPase was assessed. The ϵ subunit is a tightly bound, but dissociable, inhibitor of the ATPase. ϵ-1 binds ϵ with 10-fold higher affinity than ϵ-4. ϵ-1 recognizes a site on ϵ which is hidden by the quaternary structure of ATPase, while ϵ-4 can recognize ϵ when it is part of ATPase. Each antibody was purified and coupled to Sepharose to generate affinity columns. Solutions of ATPase in a buffer which was designed to reduce the affinity of ϵ for the enzyme were pumped through the columns and the degree of ϵ depletion was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by Western blotting. Neither column retained ATPase significantly. At low ATPase concentrations and low flow rates, the ϵ-1 column was more efficient than the ϵ-4 column, removing in excess of 95% of the ϵ in a single passage compared with 93% removal by the ϵ-4 column. At higher protein concentrations or flow rates, however, the performance of the ϵ-1 column was substantially poorer, while that of the ϵ-4 column was much less affected. Very little ϵ emerged from the ϵ-4 column before most of the measured ϵ-binding capacity was filled. A second passage through the ϵ-4 column reduced residual ϵ to less than 2% of that which was originally present. Pure, active ϵ was eluted from either column by 1 m NH4OH, pH 11. The relatively poor performance of ϵ-1 is discussed in terms of the low availability of the epitope and the tendency of the ϵ-depleted complex to compete with ϵ-1 for residual ϵ subunit. From consideration of these factors it appears likely that antibodies which recognize exposed epitopes will generally be more effective than antibodies which recognize cryptic epitopes in removing spontaneously dissociable subunits from protein complexes. 相似文献
2.
Escherichia coli grown anaerobically for osmotic studies upon increased osmolarity in alkaline medium carried out H+–K+-exchange in two steps, the first of which was DCCD1 sensitive and osmo-dependent and had the 2H+/K+ stoichiometry. H+-efflux in the presence of protonophore (CCCP) upon increase of osmolarity was shown to be high and inhibited by DCCD, whereas H+-efflux induced by a decrease of osmolarity was small and not inhibited by DCCD. The 2H+/K+-exchange was absent intrkA anduncA mutants. InuncB mutant 2H+/K+-exchange was not DCCD-and osmosensitive. Competition between DCCD and osmoshock on inhibition of 2H+/K+-exchange was found. Osmosensitivity of this exchange disappeared in spheroplasts. Osmosensitivity of both 2H+/K+-exchange and the F0F1 and osmoregulation of the F0F1 via F0 and a periplasmic space are postulated.Abbreviations F0F1
H+-ATPase complex
- F0
H+-channel, proteolipid
- F1
H+-ATPase
-
Trk
constitutive system for K+ uptake
- PV
periplasmic protein valve
- DCCD
N,N-dicyclohexylcarbodiimide
- CCCP
carbonylcyanide-m-chlorophenylhydrazone
- H or K
transmembrane electrochemical gradient for H+ or K+ respectively
-
membrane potential
- upshock or downshock
increase or decrease of medium osmolarity, respectively
- CGSC
E. coli Genetic Stock Center, Yale University, USA 相似文献
3.
Hyunjun Choe Sumi Lee Hyojin Hwang Jeong Chan Joo Dae Haeng Cho Yong Hwan Kim 《Biotechnology and Bioprocess Engineering》2014,19(4):613-620
The efficient regeneration of nicotinamide cofactors is an important process for industrial applications because of their high cost and stoichiometric requirements. In this study, the FDH1 β-subunit of NAD-dependent formate dehydrogenase from Methylobacterium extorquens AM1 was heterologously expressed in Escherichia coli. It showed water-forming NADH oxidase (NOX-2) activity in the absence of its α-subunit. The β-subunit oxidized NADH and generated NAD+. The enzyme showed a low NADH oxidation activity (0.28 U/mg enzyme). To accelerate electron transfer from the enzyme to oxygen, four electron mediators were tested; flavin mononucleotide, flavin adenine dinucleotide, benzyl viologen (BV), and methyl viologen. All tested electron mediators increased enzyme activity; addition of 250 μM BV resulted in the largest increase in enzyme activity (9.98 U/mg enzyme; a 35.6-fold increase compared with that in the absence of an electron mediator). Without the aid of an electron mediator, the enzyme had a substrate-binding affinity for NADH (K m) of 5.87 μM, a turnover rate (k cat) of 0.24/sec, and a catalytic efficiency (k cat/K m) of 41.31/mM/sec. The addition of 50 μM BV resulted in a 22.75-fold higher turnover rate (k cat, 5.46/sec) and a 2.64-fold higher catalytic efficiency (k cat/K m, 107.75/mM/sec). 相似文献
4.
5.
6.
7.
Characterization of rapidly labelled ribonucleic acid in Escherichia coli by deoxyribonucleic acid–ribonucleic acid hybridization 下载免费PDF全文
1. Rapidly labelled RNA from Escherichia coli K 12 was characterized by hybridization to denatured E. coli DNA on cellulose nitrate membrane filters. The experiments were designed to show that, if sufficient denatured DNA is offered in a single challenge, practically all the rapidly labelled RNA will hybridize. With the technique employed, 75-80% hybridization efficiency could be obtained as a maximum. Even if an excess of DNA sites were offered, this value could not be improved upon in any single challenge of rapidly labelled RNA with denatured E. coli DNA. 2. It was confirmed that the hybridization technique can separate the rapidly labelled RNA into two fractions. One of these (30% of the total) was efficiently hybridized with the low DNA/RNA ratio (10:1, w/w) used in tests. The other fraction (70% of the total) was hybridized to DNA at low efficiencies with the DNA/RNA ratio 10:1, and was hybridized progressively more effectively as the amount of denatured DNA was increased. A practical maximum of 80% hybridization of all the rapidly labelled RNA was first achieved at a DNA/RNA ratio 210:1 (+/-10:1). This fraction was fully representative of the rapidly labelled RNA with regard to kind and relative amount of materials hybridized. 3. In competition experiments, where additions were made of unlabelled RNA prepared from E. coli DNA, DNA-dependent RNA polymerase (EC 2.7.7.6) and nucleoside 5'-triphosphates, the rapidly labelled RNA fraction hybridized at a low (10:1) DNA/RNA ratio was shown to be competitive with a product from genes other than those responsible for ribosomal RNA synthesis and thus was presumably messenger RNA. At higher DNA/rapidly labelled RNA ratios (200:1), competition with added unlabelled E. coli ribosomal RNA (without messenger RNA contaminants) lowered the hybridization of the rapidly labelled RNA from its 80% maximum to 23%. This proportion of rapidly labelled RNA was not competitive with E. coli ribosomal RNA even when the latter was in large excess. The ribosomal RNA would also not compete with the 23% rapidly labelled RNA bound to DNA at low DNA/RNA ratios. It was thus demonstrated that the major part of E. coli rapidly labelled RNA (70%) is ribosomal RNA, presumably a precursor to the RNA in mature ribosomes. 4. These studies have shown that, when earlier workers used low DNA/RNA ratios (about 10:1) in the assay of messenger RNA in bacterial rapidly labelled RNA, a reasonable estimate of this fraction was achieved. Criticisms that individual messenger RNA species may be synthesized from single DNA sites in E. coli at rates that lead to low efficiencies of messenger RNA binding at low DNA/RNA ratios are refuted. In accordance with earlier results, estimations of the messenger RNA content of E. coli in both rapidly labelled and randomly labelled RNA show that this fraction is 1.8-1.9% of the total RNA. This shows that, if any messenger RNA of relatively long life exists in E. coli, it does not contribute a measurable weight to that of rapidly labelled messenger RNA. 相似文献
8.
Yu Zhang Ning An Yan Zhao Xueqi Li Xiaolin Shen Jia Wang Xinxiao Sun Qipeng Yuan 《Biotechnology and bioengineering》2023,120(1):312-317
α-Aminoadipic acid (AAA) is a nonproteinogenic amino acid with potential applications in pharmaceutical, chemical and animal feed industries. Currently, AAA is produced by chemical synthesis, which suffers from high cost and low production efficiency. In this study, we engineered Escherichia coli for high-level AAA production by coupling lysine biosynthesis and degradation pathways. First, the lysine-α-ketoglutarate reductase and saccharopine dehydrogenase from Saccharomyces cerevisiae and α-aminoadipate-δ-semialdehyde dehydrogenase from Rhodococcus erythropolis were selected by in vitro enzyme assays for pathway assembly. Subsequently, lysine supply was enhanced by blocking its degradation pathway, overexpressing key pathway enzymes and improving nicotinamide adenine dineucleotide phosphate (NADPH) regeneration. Finally, a glutamate transporter from Corynebacterium glutamicum was introduced to elevate AAA efflux. The final strain produced 2.94 and 5.64 g/L AAA in shake flasks and bioreactors, respectively. This work provides an efficient and sustainable way for AAA production. 相似文献
9.
The respiratory chain of Escherichia?coli contains three quinones. Menaquinone and demethylmenaquinone have low midpoint potentials and are involved in anaerobic respiration, while ubiquinone, which has a high midpoint potential, is involved in aerobic and nitrate respiration. Here, we report that demethylmenaquinone plays a role not only in trimethylaminooxide-, dimethylsulfoxide- and fumarate-dependent respiration, but also in aerobic respiration. Furthermore, we demonstrate that demethylmenaquinone serves as an electron acceptor for oxidation of succinate to fumarate, and that all three quinol oxidases of E.?coli accept electrons from this naphtoquinone derivative. 相似文献
10.
Ping Yu Kaifei Chen Xingxing Huang Xinxin Wang Qian Ren 《Preparative biochemistry & biotechnology》2013,43(10):906-913
AbstractThe compound γ-aminobutyric acid (GABA) has many important physiological functions. The effect of glutamate decarboxylases and the glutamate/GABA antiporter on GABA production was investigated in Escherichia coli. Three genes, gadA, gadB, and gadC were cloned and ligated alone or in combination into the plasmid pET32a. The constructed plasmids were transformed into Escherichia coli BL21(DE3). Three strains, E. coli BL21(DE3)/pET32a-gadA, E. coli BL21(DE3)/pET32a-gadAB and E. coli BL21(DE3)/pET32a-gadABC were selected and identified. The respective titers of GABA from the three strains grown in shake flasks were 1.25, 2.31, and 3.98?g/L. The optimal titer of the substrate and the optimal pH for GABA production were 40?g/L and 4.2, respectively. The highest titer of GABA was 23.6?g/L at 36?h in batch fermentation and was 31.3?g/L at 57?h in fed-batch fermentation. This study lays a foundation for the development and use of GABA. 相似文献
11.
Sekiya M Nakamoto RK Nakanishi-Matsui M Futai M 《The Journal of biological chemistry》2012,287(27):22771-22780
In observations of single molecule behavior under V(max) conditions with minimal load, the F(1) sector of the ATP synthase (F-ATPase) rotates through continuous cycles of catalytic dwells (~0.2 ms) and 120° rotation steps (~0.6 ms). We previously established that the rate-limiting transition step occurs during the catalytic dwell at the initiation of the 120° rotation. Here, we use the phytopolyphenol, piceatannol, which binds to a pocket formed by contributions from α and β stator subunits and the carboxyl-terminal region of the rotor γ subunit. Piceatannol did not interfere with the movement through the 120° rotation step, but caused increased duration of the catalytic dwell. The duration time of the intrinsic inhibited state of F(1) also became significantly longer with piceatannol. All of the beads rotated at a lower rate in the presence of saturating piceatannol, indicating that the inhibitor stays bound throughout the rotational catalytic cycle. The Arrhenius plot of the temperature dependence of the reciprocal of the duration of the catalytic dwell (catalytic rate) indicated significantly increased activation energy of the rate-limiting step to trigger the 120° rotation. The activation energy was further increased by combination of piceatannol and substitution of γ subunit Met(23) with Lys, indicating that the inhibitor and the β/γ interface mutation affect the same transition step, even though they perturb physically separated rotor-stator interactions. 相似文献
12.
13.
14.
The kinetics of renaturation of the β2-subunit of Escherichia coli tryptophan-synthetase (l-serine hydrolyase (adding indole) E.C. 4.2.1.20) and those of its two proteolytic fragments F1 and F2 are studied and compared. Steps corresponding to the refolding of F1, to the association of the folded F1 and F2 fragments, and to an isomerization of the associated protein are identified. These steps are ordered on the pathway of renaturation and some of their kinetic parameters are determined. This leads to a tentative kinetic model for the renaturation of nicked-β2 starting from the denatured F1 and F2 fragments.The step corresponding to the refolding of the F1 domain, as well as that corresponding to the last rate-limiting isomerization leading to the native protein, is shown to be the same in the refolding of the entire, uncleaved β2-protein. It is concluded that the refolded F1 fragment corresponds to a folding intermediate on the pathway of renaturation of the β2-subunit. 相似文献
15.
We showed previously that active PKC-α maintains F0F1-ATPase activity, whereas inactive PKC-α mutant (dnPKC-α) blocks recovery of F0F1-ATPase activity after injury in renal proximal tubules (RPTC). This study tested whether mitochondrial PKC-α interacts with and phosphorylates F0F1-ATPase. Wild-type PKC-α (wtPKC-α) and dnPKC-α were overexpressed in RPTC to increase their mitochondrial levels, and RPTC were exposed to oxidant or hypoxia. Mitochondrial levels of the γ-subunit, but not the α- and β-subunits, were decreased by injury, an event associated with 54% inhibition of F0F1-ATPase activity. Overexpressing wtPKC-α blocked decreases in γ-subunit levels, maintained F0F1-ATPase activity, and improved ATP levels after injury. Deletion of PKC-α decreased levels of α-, β-, and γ-subunits, decreased F0F1-ATPase activity, and hindered the recovery of ATP content after RPTC injury. Mitochondrial PKC-α co-immunoprecipitated with α-, β-, and γ-subunits of F0F1-ATPase. The association of PKC-α with these subunits decreased in injured RPTC overexpressing dnPKC-α. Immunocapture of F0F1-ATPase and immunoblotting with phospho(Ser) PKC substrate antibody identified phosphorylation of serine in the PKC consensus site on the α- or β- and γ-subunits. Overexpressing wtPKC-α increased phosphorylation and protein levels, whereas deletion of PKC-α decreased protein levels of α-, β-, and γ-subunits of F0F1-ATPase in RPTC. Phosphoproteomics revealed phosphorylation of Ser146 on the γ subunit in response to wtPKC-α overexpression. We concluded that active PKC-α 1) prevents injury-induced decreases in levels of γ subunit of F0F1-ATPase, 2) interacts with α-, β-, and γ-subunits leading to increases in their phosphorylation, and 3) promotes the recovery of F0F1-ATPase activity and ATP content after injury in RPTC. 相似文献
16.
Mototaka Senda Hiroshi Kanazawa Tomofusa Tsuchiya Masamitsu Futai 《Archives of biochemistry and biophysics》1983,220(2):398-404
Conformational change in the α subunit of Escherichia coli proton-translocating ATPase was studied using trypsin. The subunit was cleaved with a small amount of trypsin (1 μg/mg subunit) to peptides of less than 8000 daltons. On the other hand, the subunit was cleaved to two main polypeptides (30,000 and 25,000 daltons) in the presence of sufficient ATP (1 mm-0.5 μm) to saturate the high-affinity site of the subunit. Analysis of digests of the subunit combined with fluorescent maleimide suggested that the subunit was digested in the middle of the polypeptide chain in the presence of the nucleotide. ADP and adenylyl imidodiphosphate had the same effect as ATP. These results suggest that the conformation of the subunit changed to form two trypsin-resistant domains upon binding of ATP to the high-affinity site. 相似文献
17.
Xiulai Chen Xiaoxiang Dong Jia Liu Qiuling Luo Liming Liu 《Biotechnology and bioengineering》2020,117(9):2791-2801
α-Ketoglutaric acid (α-KG) is a multifunctional dicarboxylic acid in the tricarboxylic acid (TCA) cycle, but microbial engineering for α-KG production is not economically efficient, due to the intrinsic inefficiency of its biosynthetic pathway. In this study, pathway engineering was used to improve pathway efficiency for α-KG production in Escherichia coli. First, the TCA cycle was rewired for α-KG production starting from pyruvate, and the engineered strain E. coli W3110Δ4-PCAI produced 15.66 g/L α-KG. Then, the rewired TCA cycle was optimized by designing various strengths of pyruvate carboxylase and isocitrate dehydrogenase expression cassettes, resulting in a large increase in α-KG production (24.66 g/L). Furthermore, acetyl coenzyme A (acetyl-CoA) availability was improved by overexpressing acetyl-CoA synthetase, leading to α-KG production up to 28.54 g/L. Finally, the engineered strain E. coli W3110Δ4-P(H)CAI(H)A was able to produce 32.20 g/L α-KG in a 5-L fed-batch bioreactor. This strategy described here paves the way to the development of an efficient pathway for microbial production of α-KG. 相似文献
18.
《生物化学与生物物理学报:生物膜》1985,816(1):63-67
The binding of calmodulin to the mitochondrial F1 · F0-ATPase has been studied. [125I]Iodoazidocalmodulin binds to the ε-subunit and to the endogeneous ATPase inhibitor peptide in a Ca2+-dependent reaction. The effect of the mitochondrial ATPase inhibitor peptide on the purified Ca2+-ATPase of erythrocytes has also been analyzed. The inhibitor peptide stimulates the ATPase when pre-incubated with the enzyme. The activation of the Ca2+-ATPase by calmodulin is not influenced by the inhibitor peptide, indicating that the two mechanisms of activation are different. These in vitro effects of the two regulatory proteins may reflect a common origin of the two ATPases considered and/or of the regulatory proteins. 相似文献
19.
《Journal of biotechnology》1988,8(2):141-148
We have determined the nucleotide sequence of the constant region exons of the rearranged human immunoglobulin γ1 chain gene cloned from a human plasma cell leukemia line, ARH-77. The amino acid sequence deduced from the nucleotide sequence revealed that the allotype of the ARH-77 γ1 chain was Glm (−1, −2, 3).Recombinant plasmids were then constructed in order to express the human γ1 chain constant region genes (the Fc region gene and the CH2-CH3 domains gene) in Escherichia coli. The human γ1 chain constant region genes without introns were derived from the genomic gene using synthetic DNA fragments. E. coli carrying each expression plasmid produced antigenically active constant region polypeptides as soluble proteins. In the case of the E. coli-derived Fc region polypeptides, they were generated as monomeric forms in the cytoplasm. 相似文献
20.
《Gene》1996,173(2):271-274
The PCR-amplified β-subunit of the human chorionic gonadotropin structural gene (fihCG) was cloned under the control of the tac promoter and the heat-labile enterotoxin chain B (LTB) signal sequence (LTBss). βhCG was successfully produced, processed and exported to the periplasmic space in Escherichia coli. Expression of βhCG was confirmed by immunoblot analysis using an anti-βhCG polyclonal antibody. The processing of the protein was very efficient, as only the processed band could be detected at all time points during the course of induction. Expression was evident soon after the addition of the lactose analogue, IPTG. These results demonstrate that E. coli cells can synthesize, process and export βhCG using the LTBss. 相似文献