首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Understanding the molecular pathways driving the acute antiviral and inflammatory response to SARS‐CoV‐2 infection is critical for developing treatments for severe COVID‐19. Here, we find decreasing number of circulating plasmacytoid dendritic cells (pDCs) in COVID‐19 patients early after symptom onset, correlating with disease severity. pDC depletion is transient and coincides with decreased expression of antiviral type I IFNα and of systemic inflammatory cytokines CXCL10 and IL‐6. Using an in vitro stem cell‐based human pDC model, we further demonstrate that pDCs, while not supporting SARS‐CoV‐2 replication, directly sense the virus and in response produce multiple antiviral (interferons: IFNα and IFNλ1) and inflammatory (IL‐6, IL‐8, CXCL10) cytokines that protect epithelial cells from de novo SARS‐CoV‐2 infection. Via targeted deletion of virus‐recognition innate immune pathways, we identify TLR7‐MyD88 signaling as crucial for production of antiviral interferons (IFNs), whereas Toll‐like receptor (TLR)2 is responsible for the inflammatory IL‐6 response. We further show that SARS‐CoV‐2 engages the receptor neuropilin‐1 on pDCs to selectively mitigate the antiviral interferon response, but not the IL‐6 response, suggesting neuropilin‐1 as potential therapeutic target for stimulation of TLR7‐mediated antiviral protection.  相似文献   

2.
3.
To identify prostate cancer (PCa) patients with a high risk of recurrence is critical before delivering adjuvant treatment. We developed a classifier based on the Enzalutamide treatment resistance‐related genes to assist the currently available staging system in predicting the recurrence‐free survival (RFS) prognosis of PCa patients. We overlapped the DEGs from two datasets to obtain a more convincing Enzalutamide‐resistance‐related‐gene (ERRG) cluster. The five‐ERRG‐based classifier obtained good predictive values in both the training and validation cohorts. The classifier precisely predicted RFS of patients in four cohorts, independent of patient age, pathological tumour stage, Gleason score and PSA levels. The classifier and the clinicopathological factors were combined to construct a nomogram, which had an increased predictive accuracy than that of each variable alone. Besides, we also compared the differences between high‐ and low‐risk subgroups and found their differences were enriched in cancer progression‐related pathways. The five‐ERRG‐based classifier is a practical and reliable predictor, which adds value to the existing staging system for predicting the RFS prognosis of PCa after radical prostatectomy, enabling physicians to make more informed treatment decisions concerning adjuvant therapy.  相似文献   

4.
Vascular endothelial growth factor‐C (VEGF‐C) binds to receptor vascular endothelial growth factor receptor‐3 (VEGFR‐3) expressed on lymphatic endothelial and melanoma cells. Binding of VEGF‐C to VEGFR‐3 enhances receptor phosphorylation that activates mitogen‐activated protein kinase (MAP‐K) and phosphatidylinositol‐3‐kinase (PI3K). These signalling pathways regulate cell migration and adhesion in response to internal or external changes.In addition, the overexpression of VEGF‐C upregulates chemokine receptor CXCR‐4 in tumours (melanoma). CXCR‐4 is expressed on cells of the immune system (natural killer cells) and facilitates the migration of leukocytes in response to the CXCL12 ligand. The latter is expressed by lymphatic endothelial cells and by stromal cells in the tumour microenvironment (TME). The gradient established between CXCR‐4 expressed on tumour cells and CXCL12 produced by stromal and lymphatic endothelial cells enhances tumour cell metastasis.3‐(4‐Dimethylamino‐naphthalen‐1‐ylmethylene)‐1, 3‐dihydroindol‐2‐one, MAZ‐51, is an indolinone‐based synthetic molecule that inhibits the phosphorylation of the tyrosine kinase receptor VEGFR‐3. CTCE‐9908, a CXCR‐4 antagonist derived from human CXCL12, hinders receptor phosphorylation and the subsequent signalling pathways that would be activated.VEGF‐C is stimulated by transforming growth factor‐beta 1 (TGF‐β1), which facilitates cell–cell and cell‐matrix adhesion by regulating cadherins through the activation of focal adhesion kinase (FAK) and mediates paxillin upregulation.Increased VEGF‐C protein levels stimulated by TGF‐β bound to VEGFR‐3 impact on intracellular pathways that promote tumour cell adhesion. In addition, increased VEGF‐C protein levels lead to enhanced CXCR‐4 protein expression. Therefore, effective blocking of VEGR‐3 and CXCR‐4 may inhibit tumour cell metastasis by hampering intracellular proteins promoting adhesion.  相似文献   

5.
6.
Alternative splicing (AS) is assumed to play important roles in the progression and prognosis of cancer. Currently, the comprehensive analysis and clinical relevance of AS in lower‐grade diffuse gliomas have not been systematically addressed. Here, we gathered alternative splicing data of lower‐grade diffuse gliomas from SpliceSeq. Based on the Percent Spliced In (PSI) values of 515 lower‐grade diffuse glioma patients from the Cancer Genome Atlas (TCGA), we performed subtype‐differential AS analysis and consensus clustering to determine robust clusters of patients. A total of 48 050 AS events in 10 787 genes in lower‐grade diffuse gliomas were profiled. Subtype‐differential splicing analysis and functional annotation revealed that spliced genes were significantly enriched in numerous cancer‐related biological phenotypes and signalling pathways. Consensus clustering using AS events identified three robust clusters of patients with distinguished pathological and prognostic features. Moreover, each cluster was also associated with distinct genomic alterations. Finally, we developed and validated an AS‐related signature with Cox proportional hazards model. The signature, significantly associated with clinical and molecular features, could serve as an independent prognostic factor for lower‐grade diffuse gliomas. Thus, our results indicated that AS events could discriminate molecular subtypes and have prognostic impact in lower‐grade diffuse gliomas.  相似文献   

7.
The ecotype population of goats (Capra hircus) was created by long‐term artificial selection and natural adaptation. Mile red‐bone goat is an indigenous breed with visible red bones, and its special bone structure has received extensive attention. This study aimed to identify genetic variants and candidate genes associated with specific bone phenotypes using next‐generation sequencing technology (NGS). The results revealed that 31,828,206 single nucleotide polymorphisms (SNPs) were obtained from 72 goats (20 Mile red‐bone goats and 52 common goats) by NGS. A total of 100 candidate genes were identified on the basis top 1% window interaction from nucleotide diversity (π), π ratio (π A/π B), and pairwise fixation index (F ST). Exactly 77 known signaling pathways were enriched. Specifically, three coding genes (NMNAT2, LOC102172983, and PNLIP) were annotated in the vitamin metabolism signaling pathways, and NCF2 was annotated to the osteoclast (OC) differentiation pathway. Furthermore, 5862 reliable copy number variations (CNVs) were obtained, and 14 and 24 genes were annotated with the top 1‰ CNV based on F ST (>0.490) and V ST (>0.527), respectively. Several pathways related to bone development and metabolism of exogenous substances in vivo, including calcium signaling pathway, OC differentiation, and glycerophospholipid metabolism, were annotated. Specifically, six genes from 19 candidate CNVs, which were obtained by interaction of the top 1‰ CNVs with F ST and V ST, were annotated to mucin‐type O‐glycan biosynthesis and metabolic pathways. Briefly, the results implied that pseudopurpurin and specific genetic variants work together to contribute to the red‐bone color and specific bone structure of Mile red‐bone goat. This study is helpful to understanding the genetic basis of the unique bone phenotype of Mile red‐bone goats.  相似文献   

8.
Carnivore intraguild dynamics depend on a complex interplay of environmental affinities and interspecific interactions. Context‐dependency is commonly expected with varying suites of interacting species and environmental conditions but seldom empirically described. In South Africa, decentralized approaches to conservation and the resulting multi‐tenure conservation landscapes have markedly altered the environmental stage that shapes the structure of local carnivore assemblages. We explored assemblage‐wide patterns of carnivore spatial (residual occupancy probability) and temporal (diel activity overlap) co‐occurrence across three adjacent wildlife‐oriented management contexts—a provincial protected area, a private ecotourism reserve, and commercial game ranches. We found that carnivores were generally distributed independently across space, but existing spatial dependencies were context‐specific. Spatial overlap was most common in the protected area, where species occur at higher relative abundances, and in game ranches, where predator persecution presumably narrows the scope for spatial asymmetries. In the private reserve, spatial co‐occurrence patterns were more heterogeneous but did not follow a dominance hierarchy associated with higher apex predator densities. Pair‐specific variability suggests that subordinate carnivores may alternate between pre‐emptive behavioral strategies and fine‐scale co‐occurrence with dominant competitors. Consistency in species‐pairs diel activity asynchrony suggested that temporal overlap patterns in our study areas mostly depend on species'' endogenous clock rather than the local context. Collectively, our research highlights the complexity and context‐dependency of guild‐level implications of current management and conservation paradigms; specifically, the unheeded potential for interventions to influence the local network of carnivore interactions with unknown population‐level and cascading effects.  相似文献   

9.
10.
11.
12.
Red blood cells (RBCs) generated ex vivo have the potential to be used for transfusion. Human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) possess unlimited self‐renewal capacity and are the preferred cell sources to be used for ex vivo RBC generation. However, their applications are hindered by the facts that the expansion of ES/iPS‐derived erythroid cells is limited and the enucleation of ES/iPS‐derived erythroblasts is low compared to that derived from cord blood (CB) or peripheral blood (PB). To address this, we sought to investigate the underlying mechanisms by comparing the in vitro erythropoiesis profiles of CB CD34+ and ES CD34+ cells. We found that the limited expansion of ES CD34+ cell‐derived erythroid cells was associated with defective cell cycle of erythroid progenitors. In exploring the cellular and molecular mechanisms for the impaired enucleation of ES CD34+ cell‐derived orthochromatic erythroblasts (ES‐ortho), we found the chromatin of ES‐ortho was less condensed than that of CB CD34+ cell‐derived orthochromatic erythroblasts (CB‐ortho). At the molecular level, both RNA‐seq and ATAC‐seq analyses revealed that pathways involved in chromatin modification were down‐regulated in ES‐ortho. Additionally, the expression levels of molecules known to play important role in chromatin condensation or/and enucleation were significantly lower in ES‐ortho compared to that in CB‐ortho. Together, our findings have uncovered mechanisms for the limited expansion and impaired enucleation of ES CD34+ cell‐derived erythroid cells and may help to improve ex vivo RBC production from stem cells.  相似文献   

13.
Acetylshikonin (ASK) is a natural naphthoquinone derivative of traditional Chinese medicine Lithospermum erythrorhyzon. It has been reported that ASK has bactericidal, anti‐inflammatory and antitumour effects. However, whether ASK induces apoptosis and autophagy in acute myeloid leukaemia (AML) cells and the underlying mechanism are still unclear. Here, we explored the roles of apoptosis and autophagy in ASK‐induced cell death and the potential molecular mechanisms in human AML HL‐60 cells. The results demonstrated that ASK remarkably inhibited the cell proliferation, viability and induced apoptosis in HL‐60 cells through the mitochondrial pathway, and ASK promoted cell cycle arrest in the S‐phase. In addition, the increased formation of autophagosomes, the turnover from light chain 3B (LC3B) I to LC3B II and decrease of P62 suggested the induction of autophagy by ASK. Furthermore, ASK significantly decreased PI3K, phospho‐Akt and p‐p70S6K expression, while enhanced phospho‐AMP‐activated protein kinase (AMPK) and phospho‐liver kinase B1(LKB1) expression. The suppression of ASK‐induced the conversion from LC3B I to LC3B II caused by the application of inhibitors of AMPK (compound C) demonstrated that ASK‐induced autophagy depends on the LKB1/AMPK pathway. These data suggested that the autophagy induced by ASK were dependent on the activation of LKB1/AMPK signalling and suppression of PI3K/Akt/mTOR pathways. The cleavage of the apoptosis‐related markers caspase‐3 and caspase‐9 and the activity of caspase‐3 induced by ASK were markedly reduced by inhibitor of AMPK (compound C), an autophagy inhibitor 3‐methyladenine (3‐MA) and another autophagy inhibitor chloroquine (CQ). Taken together, our data reveal that ASK‐induced HL‐60 cell apoptosis is dependent on the activation of autophagy via the LKB1/AMPK and PI3K/Akt‐regulated mTOR signalling pathways.  相似文献   

14.
Due to its high proliferation capacity and rapid intracranial spread, glioblastoma (GBM) has become one of the least curable malignant cancers. Recently, the competing endogenous RNAs (ceRNAs) hypothesis has become a focus in the researches of molecular biological mechanisms of cancer occurrence and progression. However, there is a lack of correlation studies on GBM, as well as a lack of comprehensive analyses of GBM molecular mechanisms based on high‐throughput sequencing and large‐scale sample sizes. We obtained RNA‐seq data from The Cancer Genome Atlas (TCGA) and Genotype‐Tissue Expression (GTEx) databases. Further, differentially expressed mRNAs were identified from normal brain tissue and GBM tissue. The similarities between the mRNA modules with clinical traits were subjected to weighted correlation network analysis (WGCNA). With the mRNAs from clinical‐related modules, a survival model was constructed by univariate and multivariate Cox proportional hazard regression analyses. Thereafter, we carried out Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Finally, we predicted interactions between lncRNAs, miRNAs and mRNAs by TargetScan, miRDB, miRTarBase and starBase. We identified 2 lncRNAs (NORAD, XIST), 5 miRNAs (hsa‐miR‐3613, hsa‐miR‐371, hsa‐miR‐373, hsa‐miR‐32, hsa‐miR‐92) and 2 mRNAs (LYZ, PIK3AP1) for the construction of a ceRNA network, which might act as a prognostic biomarker of GBM. Combined with previous studies and our enrichment analysis results, we hypothesized that this ceRNA network affects immune activities and tumour microenvironment variations. Our research provides novel aspects to study GBM development and treatment.  相似文献   

15.
Platinum resistance is one of the major concerns in ovarian cancer treatment. Recent evidence shows the critical role of epithelial–mesenchymal transition (EMT) in this resistance. Epithelial‐like ovarian cancer cells show decreased sensitivity to cisplatin after cisplatin treatment. Our study prospected the association between epithelial phenotype and response to cisplatin in ovarian cancer. Microarray dataset GSE47856 was acquired from the GEO database. After identifying differentially expressed genes (DEGs) between epithelial‐like and mesenchymal‐like cells, the module identification analysis was performed using weighted gene co‐expression network analysis (WGCNA). The gene ontology (GO) and pathway analyses of the most considerable modules were performed. The protein–protein interaction network was also constructed. The hub genes were specified using Cytoscape plugins MCODE and cytoHubba, followed by the survival analysis and data validation. Finally, the co‐expression of miRNA‐lncRNA‐TF with the hub genes was reconstructed. The co‐expression network analysis suggests 20 modules relating to the Epithelial phenotype. The antiquewhite4, brown and darkmagenta modules are the most significant non‐preserved modules in the Epithelial phenotype and contain the most differentially expressed genes. GO, and KEGG pathway enrichment analyses on these modules divulge that these genes were primarily enriched in the focal adhesion, DNA replication pathways and stress response processes. ROC curve and overall survival rate analysis show that the co‐expression pattern of the brown module''s hub genes could be a potential prognostic biomarker for ovarian cancer cisplatin resistance.  相似文献   

16.
Gene variants associated with longevity are also associated with protection against cognitive decline, dementia and Alzheimer''s disease, suggesting that common physiologic pathways act at the interface of longevity and cognitive function. To test the hypothesis that variants in genes implicated in cognitive function may promote exceptional longevity, we performed a comprehensive 3‐stage study to identify functional longevity‐associated variants in ~700 candidate genes in up to 450 centenarians and 500 controls by target capture sequencing analysis. We found an enrichment of longevity‐associated genes in the nPKC and NF‐κB signaling pathways by gene‐based association analyses. Functional analysis of the top three gene variants (NFKBIA, CLU, PRKCH) suggests that non‐coding variants modulate the expression of cognate genes, thereby reducing signaling through the nPKC and NF‐κB. This matches genetic studies in multiple model organisms, suggesting that the evolutionary conservation of reduced PKC and NF‐κB signaling pathways in exceptional longevity may include humans.  相似文献   

17.
18.
Circadian rhythms in mammals are governed by the hypothalamic suprachiasmatic nucleus (SCN), in which 20,000 clock cells are connected together into a powerful time‐keeping network. In the absence of network‐level cellular interactions, the SCN fails as a clock. The topology and specific roles of its distinct cell populations (nodes) that direct network functions are, however, not understood. To characterise its component cells and network structure, we conducted single‐cell sequencing of SCN organotypic slices and identified eleven distinct neuronal sub‐populations across circadian day and night. We defined neuropeptidergic signalling axes between these nodes, and built neuropeptide‐specific network topologies. This revealed their temporal plasticity, being up‐regulated in circadian day. Through intersectional genetics and real‐time imaging, we interrogated the contribution of the Prok2‐ProkR2 neuropeptidergic axis to network‐wide time‐keeping. We showed that Prok2‐ProkR2 signalling acts as a key regulator of SCN period and rhythmicity and contributes to defining the network‐level properties that underpin robust circadian co‐ordination. These results highlight the diverse and distinct contributions of neuropeptide‐modulated communication of temporal information across the SCN.  相似文献   

19.
Proteostasis is essential for cellular survival and particularly important for highly specialised post‐mitotic cells such as neurons. Transient reduction in protein synthesis by protein kinase R‐like endoplasmic reticulum (ER) kinase (PERK)‐mediated phosphorylation of eukaryotic translation initiation factor 2α (p‐eIF2α) is a major proteostatic survival response during ER stress. Paradoxically, neurons are remarkably tolerant to PERK dysfunction, which suggests the existence of cell type‐specific mechanisms that secure proteostatic stress resilience. Here, we demonstrate that PERK‐deficient neurons, unlike other cell types, fully retain the capacity to control translation during ER stress. We observe rescaling of the ATF4 response, while the reduction in protein synthesis is fully retained. We identify two molecular pathways that jointly drive translational control in PERK‐deficient neurons. Haem‐regulated inhibitor (HRI) mediates p‐eIF2α and the ATF4 response and is complemented by the tRNA cleaving RNase angiogenin (ANG) to reduce protein synthesis. Overall, our study elucidates an intricate back‐up mechanism to ascertain translational control during ER stress in neurons that provides a mechanistic explanation for the thus far unresolved observation of neuronal resilience to proteostatic stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号