首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+/adenosine co-transport in Vibrio parahaemolyticus   总被引:1,自引:0,他引:1  
Adenosine transport in Vibrio parahaemolyticus was studied. Na+ greatly stimulated adenosine uptake. Addition of adenosine to a cell suspension under anaerobic conditions elicited Na+ uptake, and the Na+ uptake was inhibited by monensin, an Na+ ionophore. Imposition of an electrochemical potential of Na+ or a membrane potential in energy-depleted cells elicited adenosine uptake. Therefore, adenosine transport in this organism was concluded to proceed by an Na+/adenosine co-transport mechanism. The Na+/adenosine co-transport system was induced when cells were grown in the presence of adenosine, and repressed by glucose. Although Na+ uptake elicited by adenosine was reduced by glucose, it was enhanced by methyl alpha-glucoside, which reduced the intracellular ATP level. Thus, the effects of glucose and the glucoside on the Na+/adenosine co-transport system did not seem to be due to inducer exclusion, but to be related to the intracellular ATP level.  相似文献   

2.
Intracellular Ca++ is known to influence Na+ flux in luminal membranes. Abnormally elevated Ca++ levels in some cells is believed to be the primary pathophysiologic defect in cystic fibrosis (CF). This in turn is thought to alter Na+ transport which accounts for certain clinical manifestations of this disease. Two Na+-dependent intestinal transport mechanisms have been reported to be suppressed or missing in CF. To examine whether alterations in cell Ca++ may account for these findings, studies were performed to examine the influence of Ca++ on Na+-solute co-transport across intestinal luminal membranes. Purified brush border membrane vesicles prepared from rat small bowel were preincubated in either Ca++-free buffer or buffer containing 2.5 mM CaCl2. Ca++ loaded vesicles showed marked inhibition of Na+ co-transport of taurocholic acid, taurochenodeoxycholic acid, glucose and valine when compared to controls. The uptake of Na+ was also significantly reduced by intravesicular Ca++. These data demonstrate that intravesicular Ca++ inhibits Na+-coupled solute transport as well as Na+ influx across intestinal brush border membranes. These data suggest that intracellular Ca++ may suppress Na+-dependent solute absorption in the intestine. Results presented here further support the theory that elevated intracellular Ca++ may account for intestinal malabsorption and other altered transport phenomena reported in CF.  相似文献   

3.
Inside-out membrane vesicles have been prepared from sheep reticulocytes. With these vesicles, Na+-dependent glycine uptake and net accumulation have been demonstrated to occur in reverse, i.e., from extravesicular (normal cytoplasmic) to intravesicular (normal extravesicular) surface. Uptake and accumulation are inhibited by energization of the sodium pump by ATP whereby the Na+ electrochemical gradient is dissipated. Glycine-dependent Na+ uptake was also observed, providing evidence that Na+-dependent glycine influx into these vesicles, equivalent to normal efflux, is characterized by Na+-glycine co-transport.  相似文献   

4.
Resting cells ofFusobacterium nucleatum ATCC 10953, when provided with glutamic acid (Na+ salt) as fermentable energy source, rapidly accumulated [14C]glucose, from the medium. Sugar accumulation was not observed when Na+ glutamate was replaced by ammonium glutamate. However, addition of Na+ (chloride) to the latter system elicited uptake of [14C]glucose by the organism. Of other monovalent cations tested, only Li+ was found to be slightly stimulatory, but K+, Rb+, and Cs+ ions were ineffective. For determination of the role(s) of Na+ in sugar accumulation, the transport of [14C]glucose and [14C]glutamic acid by the cells was studied independently, with lysine as an alternate (and Na+-independent) energy source. In the presence of lysine, cells ofF. nucleatum 10953 accumulated [14C]glucose from a Na+-free medium, but, in contrast, uptake and fermentation of [14C]glutamic acid was Na+-dependent. The glucose transport system is Na+-independent. However, our data indicate dual role(s) for Na+ in the transport and intracellular metabolism of glutamic acid. The Na+-dependent glutamate fermentation pathway provides the necessary energy for active transport of glucose by the resting cell.  相似文献   

5.
Isolated muscle cells from adult rat heart have been used to study the relationship between myocardial glucose transport and the activity of the Na+/K+ pump. 86Rb+-uptake by cardiac cells was found to be linear up to 2 min with a steady-state reached by 40–60 min, and was used to monitor the activity of the Na+/K+ pump. Ouabain (10?3 mol/I) inhibited the steady-state uptake of 86Rb+ by more than 90%. Both, the ouabain-sensitive and ouabain-insensitive 86Rb+-uptake by cardiac cells were found to be unaffected by insulin treatment under conditions where a significant stimulation of 3-O-methylglucose transport occurred. 86Rb+-uptake was markedly reduced by the presence of calcium and/or magnesium, but remained unresponsive towards insulin treatment. Inhibition of the Na+/K+ pump activity by ouabain and a concomitant shift in the intracellular Na+:K+ ratio did not affect basal or insulin stimulated rates of 3-O-methylglucose transport in cardiac myocytes. The data argue against a functional relationship between the myocardial Na+/K+ pump and the glucose transport system.  相似文献   

6.
The effect of certain biochemical parameters on transendothelial fluid transport has been studied. Cellular ATP level and (Na+ + K+)-activated as well as Mg2+-activated ATPase activities were measured by ultramicrotechniques using individual rabbit corneal endothelium after they had been subjected to in vitro perfusion with solutions fully supplemented or deficient singly or severally in glucose, adenosine and glutathione (GSH). With the complete medium, the transport system operates in vitro for approx. 6 h. Deletion of glucose alone, glucose and adenosine or glucose, adenosine and GSH brings about a cessation of fluid transport after 3.5 h, 2 to 2.5 h and 0.5 to 1 h, respectively. A marked decrease (62%) of the endothelial ATP level, however, occurs only when all metabolites are omitted. The favorable effect of GSH on transport activity is attributable to its capacity to sustain cellular ATP rather than to protect the functionality of (Na+ + K+)-activated ATPase. Adenosine, in the presence of GSH, maintains normal ATP levels and, additionally, exerts a protective effect on Mg2+-activated ATPase and possibly also on (Na+ + K+)-activated ATPase.  相似文献   

7.
Abstract: The effect of hypoxia on Na+,K+-ATPase and Na+-K+-Cl? cotransport activity in cultured rat brain capillary endothelial cells (RBECs) was investigated by measuring 86Rb+ uptake as a tracer for K+. RBECs expressed both Na+,K+-ATPase and Na+-K+-Cl? cotransport activity (4.6 and 5.5 nmol/mg of protein/min, respectively). Hypoxia (24 h) decreased cellular ATP content by 43.5% and reduced Na+,K+-ATPase activity by 38.9%, whereas it significantly increased Na+-K+-Cl? cotransport activity by 49.1% in RBECs. To clarify further the mechanism responsible for these observations, the effect of oligomycin-induced ATP depletion on these ion transport systems was examined. Exposure of RBECs to oligomycin led to a time-dependent decrease of cellular ATP content (by ~65%) along with a complete inhibition of Na+,K+-ATPase and a coordinated increase of Na+-K+-Cl? cotransport activity (up to 100% above control values). Oligomycin augmentation of Na+-K+-Cl? cotransport activity was not observed in the presence of 2-deoxy-d -glucose (a competitive inhibitor of glucose transport and glycolysis) or in the absence of glucose. These results strongly suggest that under hypoxic conditions when Na+,K+-ATPase activity is reduced, RBECs have the ability to increase K+ uptake through Na+-K+-Cl? cotransport.  相似文献   

8.
Na+-dependent transport of methyl-β-D-thiogalactopyranoside (TMG) mediated by the melibiose transport system was investigated in Escherichia coli mutants lacking the lactose transport system. When an inwardly-directed electro-chemical potential difference of Na+ was imposed across the membrane of energy depleted cells, transient uptake of TMG was observed. Addition of TMG to cell suspensions under anaerobic conditions caused a transient acidification of the medium. This acidification was observed only in the presence of Na+ or Li+. These results support the idea that TMG is taken up by a mechanism of Na+-TMG co-transport via the melibiose transport system in Escherichia coli.  相似文献   

9.
The transport of adenosine was studied in pure cultures of glial cells from chick embryo brain. In order to avoid complications in uptake measurements due to adenosine metabolism, cultures were depleted of ATP by incubation with cyanide and iodoacetate prior to addition of [3H]adenosine. Under the 5- to 25-s periods used for the transport assay, no adenosine metabolism could be detected. Initial rates of adenosine transport under these conditions obeyed the Michaelis-Menten relationship with Km = 370 μM and Vmax = 10.3 nmol/min/mg cell protein. ATP depletion or elimination of Na+ from the assay medium had no significant effect on initial rates of adenosine uptake. However, when assays were carried out under conditions of significant adenosine metabolism (10-min uptake in the absence of metabolic inhibitors), a high-affinity incorporation process could be demonstrated in the glial cells (Km = 12 μM; Vmax = 0.34 nmol/ min/mg protein). The transport activity expressed in ATP-depleted glial cells was most sensitive to inhibition by nitrobenzylthioinosine, dipyridamole, and N6-benzyladenosine. In decreasing order of potency, N6-methyladenosine, 2-chloroadenosine, inosine, and thymidine also blocked adenosine translocation in glial cultures. Thus, adenosine transport by cultured glial cells occurs by means of a low-affinity, facilitated diffusion system which is similar to the nucleoside transporter in cells of nonneural origin.  相似文献   

10.
In the brain, extracellular adenosine increases as a result of neuronal activity. The mechanisms by which this occurs are only incompletely understood. Here we investigate the hypothesis that the Na+ influxes associated with neuronal signalling activate the Na+-K+ ATPase which, by consuming ATP, generates intracellular adenosine that is then released via transporters. By measuring adenosine release directly with microelectrode biosensors, we have demonstrated that AMPA-receptor evoked adenosine release in basal forebrain and cortex depends on extracellular Na+. We have simultaneously imaged intracellular Na+ and measured adenosine release. The accumulation of intracellular Na+ during AMPA receptor activation preceded adenosine release by some 90 s. By removing extracellular Ca2+, and thus preventing indiscriminate neuronal activation, we used ouabain to test the role of the Na+-K+ ATPase in the release of adenosine. Under conditions which caused a Na+ influx, brief applications of ouabain increased the accumulation of intracellular Na+ but conversely rapidly reduced extracellular adenosine levels. In addition, ouabain greatly reduced the amount of adenosine released during application of AMPA. Our data therefore suggest that activity of the Na+-K+ ATPase is directly linked to the efflux of adenosine and could provide a universal mechanism that couples adenosine release to neuronal activity. The Na+-K+ ATPase-dependent adenosine efflux is likely to provide adenosine-mediated activity-dependent negative feedback that will be important in many diverse functional contexts including the regulation of sleep.  相似文献   

11.
Na+/H+ exchange activity in whole cells of the halotolerant alga Dunaliella salina can be elicited by intracellular acidification due to addition of weak acids at appropriate external pH. The changes in both intracellular pH and Na+ were followed. Following a mild intracellular acidification, intracellular Na+ content increased dramatically and then decreased. We interpret the phase of Na+ influx as due to the activation of the plasma membrane Na+/H+ antiporter and the phase of Na+ efflux as due to an active Na+ extrusion process. The following observations are in agreement with this interpretation: (a) the Na+ influx phase was sensitive to Li+, which is an inhibitor of the Na+/H+ antiporter, did not require energy, and was insensitive to vanadate; (b) the Na+ efflux phase is energy-dependent and sensitive to the plasma membrane ATPase inhibitor, vanadate. Following intracellular acidification, a drastic decrease in the intracellular ATP content is observed that is reversed when the cells regain their neutral pH value. We suggest that the intracellular acidification-induced change in the internal Na+ concentration is due to a combination of Na+ uptake via the Na+/H+ antiporter and an active, ATPase-dependent, Na+ extrusion. The Na+/H+ antiporter seems, therefore, to play a principal role in internal pH regulation in Dunaliella.  相似文献   

12.
Chronic renal adaptation to dietary deprivation of Pi is accompanied by increased Na+/Pi co-transport across the brush border membrane of the renal proximal tubule. The increased activity of this co-transport system depends on de novo protein synthesis and insulin. The present study used normal and diabetic rats to determine if the endosomal pool of Na+/Pi co-transporters was altered by Pi deprivation and the possible role of insulin. In response to 5 days of dietary Pi deprivation there was a significant increase in endosomal Na+/Pi co-transport in control rats but there was no change in diabetic rats. The increase in endosomal Pi uptake was restored in diabetic rats treated with exogenous insulin. Na+/Pi-independent Pi uptake and proline uptake remained unchanged in all groups. The changes in endosomal Na+/Pi co-transport correlated with the abundance of the specific Na+/Pi co-transporter protein, as determined by Western blots. The pattern of endosomal changes paralleled that observed in brush border membranes. One possibility consistent with these findings is that the endosomal fraction contains newly synthesized Na+/Pi co-transporters targeted for delivery to the apical brush border membrane. Increased synthesis and delivery is required to maintain the adaptation to chronic Pi deprivation. © 1997 John Wiley & Sons, Ltd.  相似文献   

13.
Compounds belonging to a carbazole series have been identified as potent fungal plasma membrane proton adenosine triphophatase (H+-ATPase) inhibitors with a broad spectrum of antifungal activity. The carbazole compounds inhibit the adenosine triphosphate (ATP) hydrolysis activity of the essential fungal H+-ATPase, thereby functionally inhibiting the extrusion of protons and extracellular acidification, processes that are responsible for maintaining high plasma membrane potential. The compound class binds to and inhibits the H+-ATPase within minutes, leading to fungal death after 1–3 h of compound exposure in vitro. The tested compounds are not selective for the fungal H+-ATPase, exhibiting an overlap of inhibitory activity with the mammalian protein family of P-type ATPases; the sarco(endo)plasmic reticulum calcium ATPase (Ca2+-ATPase) and the sodium potassium ATPase (Na+,K+-ATPase). The ion transport in the P-type ATPases is energized by the conversion of ATP to adenosine diphosphate (ADP) and phosphate and a general inhibitory mechanism mediated by the carbazole derivative could therefore be blocking of the active site. However, biochemical studies show that increased concentrations of ATP do not change the inhibitory activity of the carbazoles suggesting they act as allosteric inhibitors. Furthermore decreased levels of intracellular ATP would suggest that the compounds inhibit the H+-ATPase indirectly, but Candida albicans cells exposed to potent H+-ATPase-inhibitory carbazoles result in increased levels of intracellular ATP, indicating direct inhibition of H+-ATPase.  相似文献   

14.
The effect of acetate on active fluorescein transport in intact proximal tubules of surviving frog kidney was studied. When the kidneys were incubated in a 120 mM Na+ medium, 10 mM acetate stimulated fluorescein uptake in the tubules. The stimulation was more pronounced if the kidneys had been previously preincubated for 3 h in the substrate-free solution. Lowering of the Na+ concentration in the bathing medium to 10 mM resulted in the disappearance of the acetate effect. Preincubation of the kidneys with acetate at 2–4°C gave rise to stimulation of the fluorescein transport only in the 120 mM Na+ acetate-free medium. The acetate effect on the fluorescein uptake was partially prevented by ouabain. The stimulation of the uptake by acetate in the 120 mM Na+ medium correlated with an increase in the extent of reduction of pyridine nucleotides in the tubules. The pyridine nucleotides were reduced more markedly after incubation of the kidneys in the 10 mM Na+ medium, when acetate had no effect on the fluorescein transport. In both the 120 mM and the 10 mM Na+ media, the cold preincubation of the kidneys with 2.5 mM ADP or 2.5 mM ATP resulted in only slight stimulation of the fluorescein uptake. But in both media the uptake was significantly enhanced after cold preincubation of the kidneys with 2 mM NADH. After the cold precincubation with ADP, stimulation of the fluorescein transport by acetate was observed in the case of the 10 mM Na+ medium also. The absence of any stimulatory effect of acetate on the organic acid transport in the 10 mM Na+ medium is explained as the result of the transformation of mitochondria in the tubular cells into the inactive state 4 due to a decrease in the intracellular ADP level. Reducing equivalents are supposed to take part in energization and/or regulation of transport processes in plasma membranes of the renal proximal tubules.  相似文献   

15.
Summary A Na+-sensitive uptake of 3-O-methylglucose (3-O-MG), a nonmetabolized sugar, was characterized in frog skeletal muscle. A removal of Na+ from the bathing solution reduced 3-O-MG uptake, depending on the amount of Na+ removed. At a 3-O-MG concentration of 2mm, the Na+-sensitive component of uptake in Ringer's solution was estimated to be about 26% of the total uptake. The magnitude of Na+-sensitive component sigmoidally increased with an increase of 3-O-MG in bathing solution, whereas in Na+-free Ringer's solution the uptake was proportional to the concentration. The half saturation of the Na+-sensitive component was at a 3-O-MG concentration of about 13mm, and the Hill coefficient was 1.4 to 1.6. Phlorizin (5mm), a potent inhibitor specific for Na+-coupled glucose transport, reduced the uptake in a solution containing Na+ to the level in Na+-free Ringer's solution. Glucose of concentrations higher than 20mm suppressed 3-O-MG uptake to a level slightly lower than that in Na+-free Ringer's solution. These observations indicate that there are Na+-coupled sugar transport systems in frog skeletal muscle which are shared by both glucose and 3-O-MG.  相似文献   

16.
Nature of the light-induced h efflux and na uptake in cyanobacteria   总被引:3,自引:0,他引:3       下载免费PDF全文
We investigated the nature of the light-induced, sodium-dependent acidification of the medium and the uptake of sodium by Synechococcus. The rate of acidification (net H+ efflux) was strongly and specifically stimulated by sodium. The rates of acidification and sodium uptake were strongly affected by the pH of the medium; the optimal pH for both processes being in the alkaline pH range. Net proton efflux was severely inhibited by inhibitors of adenosine triphosphatase activity, energy transfer, and photosynthetic electron transport, but was not affected by the presence of inorganic carbon (Ci). Light and Ci stimulated the uptake of sodium, but the stimulation by Ci was observed only when Ci was present at the time sodium was provided. Amiloride, a potent inhibitor of Na+/H+ antiport and Na+ channels, stimulated the rate of acidification but inhibited the rate of sodium uptake. It is suggested that acidification might stem from the activity of a light dependent proton excreting adenosine triphosphatase, while sodium transport seems to be mediated by both Na+/H+ antiport and Na+ uniport.  相似文献   

17.
Decreased cellular accumulation of cisplatin is a frequently observed mechanism of resistance to the drug. Beside passive diffusion, several cellular proteins using ATP hydrolysis as an energy source are assumed to be involved in cisplatin transport in and out of the cell. This investigation aimed at clarifying the contribution of intracellular ATP as an indicator of energy-dependent transport to cisplatin resistance using the A2780 human ovarian adenocarcinoma cell line and its cisplatin-resistant variant A2780cis. Depletion of intracellular ATP with oligomycin significantly decreased cellular platinum accumulation (measured by flameless atomic absorption spectrometry) in sensitive but not in resistant cells, and did not affect cisplatin efflux in both cell lines. Inhibition of Na+,K+-ATPase with ouabain reduced platinum accumulation in A2780 cells but to a lesser extent compared with oligomycin. Western blot analysis revealed lower expression of Na+,K+-ATPase α1 subunit in resistant cells compared with sensitive counterparts. The basal intracellular ATP level (determined using a bioluminescence-based assay) was significantly higher in A2780cis cells than in A2780 cells. Our results highlight the importance of ATP-dependent transport, among other processes mediated by Na+,K+-ATPase, for cisplatin influx in sensitive cells. Cellular platinum accumulation in resistant cells is reduced and less dependent on energy sources, which may partly result from Na+,K+-ATPase downregulation. Our data suggest the involvement of other ATP-dependent processes beside those regulated by Na+,K+-ATPase. Higher basal ATP level in cisplatin-resistant cells, which appears to be a consequence of enhanced mitochondrial ATP production, may represent a survival mechanism established during development of resistance.  相似文献   

18.
Active serine accumulation in cell envelope vesicles from Halobacterium halobium proceeds by co-transport with Na+ and can be induced by either transmembrane electrical potential or transmembrane Na+ concentration difference. It was shown earlier that in the former case the initial transport rate is a fourth-power function of the magnitude of the electrochemical potential difference of sodium ions, and in the latter, a second-power function. A possible interpretation of this finding is cooperativity of sodium-transporting sites in the transport carrier. When both kinds of driving force are imposed simultaneously on the vesicles, fourth-power dependence on the total potential difference of sodium ions is obtained, suggesting that the transport carrier is regulated by the electrical potential. Heat treatment of the vesicles at 48 ° partially inactivates transport and abolishes this effect of the electrical potential.  相似文献   

19.
The transport of 5-hydroxytryptamine (5-HT) was shown to be strongly dependent on the presence of Na+ in the incubation medium whereas divalent cations were without effect. The Km for the Na+ requirement was 16.8 mm. The addition of Na+ to Na+-depleted platelets restored maximum 5-HT transport within 3 min. The affinity of the 5-HT carrier for its substrate was directly proportional to the concentration of Na+; however, below 25 mm Na+ unique reversible morphological changes in platelet shape occurred as revealed by scanning electron microscopy which resulted in a drastically reduced affinity for 5-HT. K+, choline (Ch+), or Li+ could be used as counterbalancing cations to maintain osmolarity, and the affinity for 5-HT was also dependent on the concentrations of these ions. Ouabain as well as various ionophores at low concentrations inhibited 5-HT uptake. The inhibition was the result of the destruction of the Na+K+ gradient across the cytoplasmic membrane. Ionophores, however, did not cause the depletion of either intracellular ATP or 5-HT.  相似文献   

20.
Summary Glucose transport was studied in marine mussels of the genusMytilus. Initial observations, with intact animals and isolated gills, indicated that net uptake of glucose occurred in mussels by a carrier-mediated, Na+-sensitive process. Subsequent studies included use of brush-border membrane vesicles (BBMV) in order to characterize this transport in greater detail. The highest activity of Na+-dependent glucose transport was found in the brush-border membrane fractions used in this study, while basal-lateral membrane fractions contained the highest specific binding of ouabain. Glucose uptake into BBMV showed specificity for Na+, and concentrative glucose transport was observed in the presence of an inwardly directed Na+ gradient. There was a single saturable pathway for glucose uptake, with an apparentK t of 3 m in BBMV and 9 m in intact gills. The kinetics of Na+ activation of glucose uptake were sigmoidal, with apparent Hill coefficients of 1.5 in BBMV and 1.2 in isolated gills, indicating that more than one Na+ may be involved in the transport of each glucose. Harmaline inhibited glucose transport in mussel BBMV with aK i of 44 m. The uptake of glucose was electrogenic and stimulated by an inside-negative membrane potential. The substrate specificity in intact gills and BBMV resembled that of Na+-glucose cotransporters in other systems;d-glucose and -methyl glucopyranoside were the most effective inhibitors of Na+-glucose transport,d-galactose was intermediate in its inhibition, and there was little or no effect ofl-glucose,d-fructose, 2-deoxy-glucose, or 3-O-methyl glucose. Phlorizin was an effective inhibitor of Na+-glucose uptake, with an apparentK i of 154nm in BBMV and 21nm in intact gills. While the qualitative characteristics of glucose transport in the mussel gill were similar to those in other epithelia, the quantitative characteristics of this process reflect adaptation to the seawater environment of this animal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号